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Abstract: The analysis of the behavior of a tunnel requires the evaluation 
of numerous parameters, relative to the ground and the support structure 
and which are generally only known with a certain degree of 
approximation. The uncertainty of these parameters is reflected on the 
results of the calculation, that is, on the state of stress in the support 
structure. In order to be able to manage this uncertainty on the 
representative ground and support structure parameters in a rational way, it 
is useful to resort to a probabilistic type analysis, making use of the Monte-
Carlo method and to simple analytical methods for an analysis of the 
tunnel-support structure interaction. A calculation procedure of 
probabilistic type that is able to establish representative values of the 
maximum moment and of the associated normal force in the support 
structure is presented in this study. This procedure can be used to verify the 
suitability of the support structure to sustain the induced loads. 
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Introduction 

The analysis of the behavior of a tunnel and the 
dimensioning of the support structures necessary to 
guarantee its stability require the knowledge of 
numerous parameters that are essential for the 
calculation. These parameters make it possible to 
describe the ground in which the tunnel is excavated, the 
entity of the pre-existing stress state at the depth of the 
tunnel and the geometrical and mechanical 
characteristics of the support structure that is to be 
installed. Unfortunately, many of these parameters are 
only known with a certain approximation, also because 
they can vary along the tunnel stretch (Karakostas and 
Manolis, 2000; Oreste, 2005a; Špacková et al., 2013). 

For this reason, reference to calculation parameters 
established according to a deterministic approach could 
lead to serious problems. Instead, a probabilistic 
approach allows one to have precise indications on the 
uncertainty of the calculation parameters and to obtain 
results associated to the requested level of reliability 
(Lü and Low, 2011; Fellin et al., 2010; Oreste, 2005b; 
Kalamaras, 1997; Guarascio et al., 2007a; 2007b; 2013; 
Lombardi et al., 2013). In other words, the probabilistic 

approach is able to deal with the in situ uncertainty of 
the calculation parameters and of the obtained results 
in a rational way. 

In order to be able to conduct a probabilistic type 
analysis, it is generally necessary to refer to the 
Monte-Carlo method, which allows the single 
uncertain calculation parameters to be extracted 
randomly, once their probabilistic distribution has 
been defined (type of distribution, mean value and 
standard deviation for each parameter considered 
uncertain) (Oreste, 2006; Tonon et al., 2000). 

Moreover, as numerous calculations are necessary 
for each series of extracted parameters (random 
vector), it is necessary to adopt simple calculation 
methods, of an analytical type, that lead to a closed 
solution which can be reached in a reasonable time 
(Osgoui and Oreste, 2007; Oreste, 2009a; 2013). 
Numerical type calculation methods (Do et al., 2013; 
2014a; 2014b), which are usually slower and more 
complex, do not in fact lend themselves to 
probabilistic type analyses in the tunneling sector. 

The convergence-confinement method (Rechsteiner 
and Lombardi, 1974; Ribacchi and Riccioni, 1977; 
Lembo-Fazio and Ribacchi, 1986; AFTES, 1993; Panet, 
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1995; Panet et al., 2001) and the Einstein and Schwartz 
(1979) method are two of the most commonly used 
analytical methods in the field of tunneling. The 
former allows the stresses and strains that develop 
around a deep circular tunnel to be analyzed as well as 
the interaction between the tunnel and the support 
structure (Oreste, 2003a; 2003b; 2009b): The value of 
the radial stress acting at the extrados of the support 
structure is an important result that can be obtained. The 
latter method allows the maximum moment acting within 
the support and the normal force associated to it to be 
simply obtained through the application of a certain load 
to the support structure. 

Once the probabilistic distribution of the maximum 
moment values and the associated normal force have 
been obtained, it is possible to proceed with a 
verification of the capacity of the hypothesized support 
to absorb its internal induced stresses. 

In this study, the convergence-confinement method 
and the techniques necessary to proceed with a study 
of the interaction between a tunnel and a support 
structure are presented first, in order to evaluate the 
load acting on the support structure. Then, a technique 
is indicated that can be used to be able to determine 
the maximum moment and the associated normal 
force, once the load acting on the support structure is 
known, through the Einstein and Schwartz method. 

Finally, the modalities that can be used to treat the 
analyses of the behavior of a support structure in 
probabilistic terms, through the use of the Monte-Carlo 
method, are given. In particular, the modalities that can 
be used, at the end of the probabilistic analyses, to 
obtain the values of the maximum moment and the 
normal force, from which the maximum stresses in the 
support structure are obtained, are indicated. These 
values could then be compared with the strength of the 
material that makes up the support in order to have 
indications on whether the hypothesized support 
structure is adequate, lacking or excessive. 

Materials and Methods 

The convergence-confinement method allows an 
analysis to be made of the interaction between a tunnel 
and a support, on the basis of the following hypotheses: 
Circular and deep tunnel (depth of the tunnel axis from 
the surface greater than 10-12 times the tunnel radius R); 
homogeneous and isotropic ground; constant and 
isotropic lithostatic stress p0 (K0 = 1) around the tunnel 
(Ribacchi and Riccioni, 1977; Lembo-Fazio and 
Ribacchi, 1986; Panet, 1995; Oreste, 2009b). 

The convergence-confinement curve is the relation 
that connects the radial displacements of the tunnel wall 
uR to the pressure applied inside the tunnel σR. For 
elastic behavior of the ground around the tunnel, the 

following is obtained (Rechsteiner and Lombardi, 1974; 
Ribacchi and Riccioni, 1977; Panet, 1995): 
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Where: 
E = The elastic modulus of the ground 
ν = The Poisson ratio of the ground 
 

In the case of elastic-plastic behavior, a plastic zone 
develops around the tunnel when the internal applied 
pressure σR is below σRpl (radial stress at the border 
between the plastic zone and the zone with elastic 
behavior) and when the latter is greater than 0. 

Therefore, for σR≤σRpl and σRpl≥0, the relation 
between uR and σR is no longer obtained using Equation 
1, but from the following Equation 2, considering the 
Mohr-Coulomb strength criterion as being valid 
(Ribacchi and Riccioni, 1977): 
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cp and cr  = The ground peak and residual cohesion 
ϕp and ϕr = The ground peak and residual friction angle 
Ψ = The dilatancy (dilatancy is an angle that can 

vary between 0 and the residual friction 
angle of the ground) 
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Therefore, if σRpl<0, the convergence-confinement 

curve can be obtained from Equation 1, which expresses 
a linear trend of uR as σR varies from p0 to 0. Instead, if 
σRpl ≥0, the convergence-confinement curve is expressed 
by Equation 1 for σR varying from p0 to σRpl and from 
Equation 2, for σR varying from σRpl to 0. 

The interaction between the tunnel and the support 
structure can be studied by overlapping the support 
reaction line onto the convergence-confinement curve of 
the tunnel. This reaction line is expressed by the 
following σR-uR relation (Panet, 1995; Oreste, 2003a): 
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= −
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where, ksup is the stiffness of the support; in the case of a 
continuous shotcrete lining, the stiffness of the support is 
given, for example, by the following relation (Hoek and 
Brown, 1980): 
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Esup = The elastic modulus of the lining material 
νsup = The Poisson ratio of the lining material 
tsup = The thickness of the lining 
uRo = The radial displacement of the tunnel that has 

already developed at the point in which the 
support has been installed 

 
According to Vlachopoulos and Diederichs (2009), 

this value can be estimated in function of the maximum 
displacement uRmax that occurs at a long distance from 
the excavation face, in function of the distance d from 
the excavation face at which the support is installed and 
in function of the value of the plastic radius Rpl(σReq) for 
a pressureσR equal to σReq (the final pressure acting on 
the support structure): 
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As both uRmax and σReq can be obtained from the 

intersection of the convergence-confinement curve with 
the reaction line of the support and they therefore depend 

on the uRo, it is necessary to have an iterative procedure 
that quickly converges to a final value, starting from the 
initial condition uRo = 0 (Fig. 1). At the end of the iterative 
procedure, a value of the maximum displacement of the 
tunnel wall uRmax (at a long distance from the excavation 
face) and a value of the final load acting on the support 
structure σReq are obtained. This load is very useful for 
verifying whether the initially hypothesized support 
structure can be considered adequate. 

In order to proceed with this verification, it is 
necessary to refer to the maximum bending moment 
Mmax and to the associated normal force N induced 
inside the support. It is possible to estimate the 
maximum compression stress and the maximum tensile 
stress (if it exists) inside the support structure using this 
previous couple of values (Mmax and N). 

Mmax and the associated N that act inside the tunnel 
supports, can be obtained adopting the Einstein and 
Schwartz (1979). This method belongs to the analytical 
method category that does not require a numerical 
solution and it is relatively simple to carry out the 
calculations. It considers the medium around the lining 
as being elastic, homogeneous and isotropic and of being 
of infinite extension, with an initial stress (a different 
value of the vertical stress and of the horizontal stress) 
equal to the lithostatic stress. The tunnel lining is treated 
as an elastic ring, with a normal stiffness and a bending 
stiffness, which are described by the following 
dimensionless parameters C* and F*, respectively 
(Einstein and Schwartz, 1979): 
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Where: 
Asup = The area of the lining section: Asup= tsup·1 
Isup = The inertia moment of the lining section: Isup= 

tsup
3·1/12 

 
Let us consider the support-tunnel wall interface 

case, which supposes relative displacement without any 
limitation. It is possible to obtain Mmax and the 
associated N through the following simple relation 
(Einstein and Schwartz, 1979), under the conservative 
hypothesis that the load σReq obtained from the 
convergence-confinement method represents the radial 
stress acting at the extrados of the support in 
correspondence to the crown zone: 
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Where: 
K0 = The lateral thrust coefficient in litho 

static conditions (ratio between the 
horizontal stresses and the vertical ones) 

a*0, a
*
2and α = Dimensionless coefficients: 
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In order to be able to obtain the two fundamental 

values of Mmax and the associated N, it is necessary to 
refer to a series of parameters, which are usually known 
with a certain approximation. In particular, the following 
characteristic parameters of the ground (cp, cr, ϕp, ϕr, E), 
the lithostatic vertical stress p0, the coefficient K0 and the 
characteristic parameters of the support structure (Esup, 
tsup) can present a certain variability and it is often 
difficult to attribute a representative parameter for all of 
the conditions that can be encountered during the 
excavation of a tunnel. 

It would be more appropriate to proceed with a 
probabilistic study, in which the parameters of the 
problem are represented by their intrinsic uncertain 
value; a normal distribution is generally adopted. This 
distribution is generally interrupted at ± 3·σ of the mean 
value µ of the distribution (where µ is the mean value 
and σ the standard deviation of the population). In this 
way, 0.27% of the values outside the µ±3·σ interval are 
excluded. Therefore, if a variability interval of an 
uncertain parameter (β±β·µ, with β expressed in 
percentage terms) is identified, it is possible to evaluate 
the standard deviation σ of the probabilistic distribution 
of the population in the following way: σ = (β·µ)/3. 
Once the probabilistic distributions of each parameter of 
the problem have been determined (through µ and σ), 
it is possible to proceed with a random extraction of 
these parameters using the Monte-Carlo method 
(Karakostas and Manolis, 2000; Oreste, 2005a; Fellin et al., 
2010; Oreste, 2006; Tonon et al., 2000). 

The Monte-Carlo procedure, applied to the 
convergence-confinement method, allows a value of the 
σReq load to be obtained for each extracted vector; each 
vector is represented by the set of the single values 
extracted for each probabilistic parameter that 
characterizes the problem. The procedure therefore leads 
to the establishment of a sample of σReq values; the 
number of values of the sample is considered sufficient 
when the stabilization of the mean value and/or standard 
deviation of the sample is verified through an evaluation 
of the variability of the mean value and/or standard 
deviation of the σReq population. For this purpose, the 

Student probabilistic distribution should be considered to 
evaluate the variability interval of the mean value and 
the distribution of X2 for an evaluation of the variability 
interval of the standard deviation: 
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x  = The mean value of the sample 
s = The standard deviation of the sample 
α = The reliability of the estimation of the 

variability interval 
n = The samples size 
µ = Is the mean value of the population (unknown): 
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From which the following is obtained: 
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As the number of values of σReq in the sample 

grows, the estimation interval of the mean value and 
of the standard deviation of the population of σReq 
decreases. A sample that allows the semi-amplitude of 
the variability interval of the mean value below 1% of 
the mean of the sample to be obtained with a 
reliability of 99% and the semi-amplitude of the 
variability interval of the standard deviation of the 
population below 2% of the standard deviation of the 
sample to be obtained with a reliability of 95%, may 
be considered sufficient. 
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The thus obtained σReq sample can then be used to 
obtain a set of couples of Mmax and N values though the 
Einstein and Schwartz (1979) method. Together with the 
σReq sample, other samples of uncertain parameters that 
intervene in the calculation with the Einstein and 
Schwartz method can be extracted with the Monte-Carlo 
method; for example, the elastic modulus of the ground 
E, the elastic modulus of the material that constitutes the 
support Esup, the thickness of the support tsup and the value 
of the coefficient K0. Again in this case, each single vector 
of the uncertain parameters produces a couple of values of 
Mmax and N. Therefore, the final result is a sample of 
couples of values of Mmax and N. This sample can be 
treated in probabilistic terms in order to identify the value 
of Mmax that corresponds to a probability, for example, 
equal to 99%, that no values of the maximum moment 
will occur in the support structure above this value. Then, 
by analyzing the associated N values of all the values of 
Mmax close to that probability, it is possible to obtain a 
probabilistic distribution of the values of N. In this case, 
the values of N at the ends of the extracted cumulative 
probabilistic distribution are of particular interest; for 
example, the values of N relative to a probability of 5 and 
of 95%, which can be used to identify the values of the 
maximum compression stress and of the maximum tensile 
stress (if it exists), in order to compare them with the 
relative compression and tensile strengths of the material 
that makes up the support structure. 

Results 

The probabilistic procedure explained in the previous 
section has been applied to the case of a circular tunnel, 
with a 4.5 m radius, excavated in a rock mass with a GSI 
= 35 (Marinos et al., 2005; Hoek et al., 2013; Marinos and 
Hoek, 2000; Cai et al., 2004), anuniaxial compression 
strength of the intact rock σc equal to 80 MPa and a 
Hoek and Brown strength parameter of the intact rock mi 

equal to 18 (Hoek et al., 2002; Hoek and Brown, 1997; 
Hoek, 2007). On the basis of these parameters, it has 
been possible to make an estimation of the cohesion cp 
(0.312 MPa), of the friction angle ϕp (33°) and of the 
elastic modulus E of the rock mass (3772 MPa), through 
the linearization of the Hoek and Brown criteria, as 
illustrated by (Hoek, 2006). The residual strength 
parameters have been made equal to the peak values (cr = 
cp; ϕr = ϕp). The dilatancy angle has been assumed equal 
to 50% of the friction angle and the Poisson ratio has 
been made equal to 0.3. The litho static stress p0 has 
been taken as 5 MPa. The support structure is made up 
of shotcrete lining of a thickness of 0.3 m. A mean 
elastic modulus of the shotcrete Econ of 12000 MPa has 
been hypothesized, as well as a Poisson ratio νcon of 
0.15. The stiffness ksup has been calculated equal to 190.2 
MPa/m (Oreste, 2003a; Hoek and Brown, 1980). The 

distance from the excavation face d at which the support 
is positioned in the tunnel is equal to 1.5 m. 

Given the uncertainty concerning many of the above 
reported parameters (cp, ϕp, E, p0, ksup), it was decided to 
assume a normal probabilistic distribution for each one 
of them with a mean value equal to the estimated value 
and the standard deviation obtained on the basis of the 
probable variability interval (semi-amplitude of the 
interval equal to 5% of the estimated value, reliability of 
the estimation equal to 99.73%). According to this 
hypothesis, the standard deviation of the distribution is 
equal to a third of the semi-amplitude of the assumed 
variability interval. The normal distributions were 
interrupted at a distance of ± 3·σ from the mean value. 

The probabilistic parameters were then extracted 
randomly, according to the Monte-Carlo procedure, in 
order to obtain a succession of random vectors of 
dimension 5, in which each component is made up of a 
random value of one of the five parameters considered 
variable. The set of the other deterministic parameters, 
which were instead considered fixed, was then 
associated to each vector. A load value σReq, obtained 
from the calculation according to the modality illustrated 
in section 2 (through the intersection of the convergence-
confinement curve with the intersection line of the 
support), was then associated to each random vector. The 
random vector generation procedure comes to an end 
when the sample of σReq is considered stable, in relation to 
the estimation of the mean value and standard deviation of 
the population (see section 2). In this specific case, 4539 
extractions of the uncertain parameters were necessary 
and the generated sample of σReq therefore presents the 
same number of values. The cumulative distribution of the 
values of σReq that were obtained are reported in Fig. 2; 
values of σReq varying between about 0.79 MPa and about 
0.96 MPa can be observed. 

The thus obtained sample of σReq was then used to 
proceed with the determination of the maximum bending 
moment Mmax and of the associated normal force N 
induced inside the support structure, through the 
Einstein and Schwartz (1997) calculation method. 
Together with the probabilistic variables σReq, the 
following parameters were considered uncertain and 
therefore variable, from the probabilistic point of view: 
The elastic modulus of the ground E, the elastic modulus 
of the material constituting the support structure Esup, the 
area of the section of the support structure Asup, the 
lateral thrust coefficient K0 in litho static conditions. A 
normal type probabilistic distribution was also 
considered for these parameters and interrupted at ± 3·σ 
from the mean value of the distribution. The mean value 
of each distribution is represented by the estimation value 
of the parameter (E = 3772 MPa, Esup= 12000 MPa, Asup = 
0.3 m2, K0 = 0.5); the standard deviation was considered a 
third of the semi-amplitude of the interval of variability, 
which was assumed equal to 5% of the mean value. 



Pierpaolo Oreste / American Journal of Applied Sciences 2015, 12 (2): 121.129 

DOI: 10.3844/ajassp.2015.121.129 

 

126 

 
 
Fig. 1. Intersection between the convergence-confinement curve of the tunnel and the reaction line of the support. The intersection 

point represents the final equilibrium situation at a long distance from the excavation face (Rechsteiner and Lombardi, 
1974; Panet, 1995; Oreste, 2003a; Hoek and Brown, 1980) 

 

 
 
Fig. 2. Cumulative probabilistic distribution of σReq, obtained from the sample generated using the Monte-Carlo procedure, starting 

from the normal probabilistic distribution of the parameters considered uncertain 
 

Proceeding with the Monte-Carlo method in the same 
way as previously seen for the convergence-confinement 
method for each random vector extracted, which was 
composed of random values of the five uncertain 
parameters (σReq, E, Esup, Asup, K0), it is possible to 
calculate the maximum moment Mmax on the support 
structure and the associated normal force N. The 
procedure continues until the available sample of values 
of σReq has been completed. 

Discussion 

The final result is a set of couples of values of 
Mmax-N, which can be well represented as a cloud of 
points in a Mmax-N diagram (Fig. 3). The cumulative 
distribution of the maximum moment Mmax can also be 
obtained and as a consequence, it is possible to 

identify the maximum moment referring to a 
probability of 99% (0.0168 MN·m/m) (Fig. 4): This 
value has the probability of being overcome inside the 
support structure in only 1% of the cases. 

It is possible to extract the couples of values Mmax-N for 
which Mmax falls within a relatively restricted interval 
around the cumulated frequency of 99% from the sample of 
Mmax-N couples, for example, between 98.5 and 99.5% 
(Fig. 3), that is, between 0.01672 and 0.01700 MN·m/M. It 
is possible to analyze the cumulative distribution of only 
force N for these couples of values (Fig. 5). By calculating 
the mean value and the standard deviation of the N of this 
sub-set of the sample, it is possible to trace the normal 
cumulative distribution, which is very useful to identify two 
extreme values of N, for example the force N associated to 
a cumulative percentage of 5% (N = 3.813 MN/m) and a 
cumulative percentage of 95% (N = 4.189 MN/m).  



Pierpaolo Oreste / American Journal of Applied Sciences 2015, 12 (2): 121.129 

DOI: 10.3844/ajassp.2015.121.129 

 

127 

 
 
Fig. 3. Results of the Monte-Carlo analyses, in terms of couples of values of the maximum moment Mmax in the support structure and 

the associated normal force N.  The red rectangle encloses all the points of the sample of the Mmax-N couples that present a 

moment  Mmax with a cumulative percentage between 98.5 and 99.5% 
 

 
 
Fig. 4. Cumulative distribution of Mmax in the support structure, obtained through the Monte-Carlo method. The value of Mmax 

identified in the graph shows a cumulative frequency of 99% 
 

 
 
Fig. 5. Cumulative distribution of N for only couples of values of Mmax-N of the sample that present cumulative frequencies of Mmax 

between 98.5 and 99.5%. The cumulated normal distribution, obtained starting from the mean value and the standard 

deviation of N for only couples of Mmax-N of the identified sub-set, is shown in red 
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These two extreme values of N, together with the 
moment Mmax relative to a cumulative percentage of 99% 
(0.0168 MN·m/m) render it possible to obtain a 
maximum compression strength and a maximum tensile 
stress (if it exists) which can be compared with the 
strength of the material that makes up the support 
structure (which, in this case, is shotcrete). 

Conclusion 

The parameters that characterize the ground and 
support structure of a tunnel are usually only known to a 
certain extent. In order to be able to analyze the statistic 
conditions of a tunnel, when there is a support structure, 
it is useful to consider a probabilistic approach that is 
able to furnish the probabilistic distribution of the stress 
actions inside the support structure. 

The probabilistic approach generally requires resort 
to the Monte-Carlo method, which allows the uncertain 
parameters to be extracted randomly, once the 
probabilistic distribution has been defined for each of 
them. Moreover, the probabilistic approach should be 
associated with an analytical calculation method, with 
closed-form solution, that can manage the remarkable 
number of analyses that are necessary in contained times. 

A probabilistic type of analysis technique that can be 
used to analyze the behavior of a tunnel and verify the 
stability conditions of the support structure is presented 
in this study. This technique, which makes use of the 
convergence-confinement method and the Einstein and 
Schwartz method, allows a sample of couples of values 
of the maximum moment and the associated normal 
force to be obtained and these values can then be treated 
from the probabilistic point of view. In particular, it has 
been possible to determine the maximum moment of the 
support structure and two values of the normal force, 
from which it is possible to obtain the representative 
values of the maximum compression and tensile stresses. 
These values can then be compared with the strength of 
the material that constitutes the support structure. 

A calculation example, referring to a real tunnel, has 
been given. This example has made it possible to follow 
the proposed procedure step by step. 
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