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Introduction 

The problem on adsorption on the single-layer 
Epitaxial Graphene (EG) is of interest firstly since EG 
is the basic element of the planar device structures 
(Castro Neto et al., 2008; Haas et al., 2008; Wu et al., 
2010; Cooper et al., 2011). 

The second fundamental aspect of this problem is 
connected with the two questions: (I) how and in what 
extent electronic state of the adsorbed particle is 
connected with the graphene layer from the one hand and 
with the substrate from the other hand; (II) how adatom 
effects graphene electronic spectrum. 

Adsorption properties of the single-layer free-Standing 

Graphene (SLG) where studied earlier in the scope of the 

so-called M-model (Davydov and Sabirova, 2011; 

Davydov, 2011a). Here we also will use the model 

approach to the EG adsorption problem. We will construct 

corresponding model step-by-step, beginning with the EG 

model and then transfer to the adsorption problem. 

General Relations 

The problem on electron states of EG was considered 
by us (see, for example, Davydov (2013) and references 
therein). For the corresponding Green function Geg (ω, 
k), where k = (kx, ky) is the two-dimensional SLG wave 
vector we have obtained: 
 

1

2

( ,  k) ( ) ( ) (k),

(k) 3 2cos( 3) 4cos( 3 / 2)cos(3 / 2)

eg eg eg

x x y

G i tf

f k a k a k a

ω ω ω
−

= Ω− Λ + Γ

= + +
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 (1) 

 

Here Ω = ω-εc, where ω is the energy variable, εc is 

the Dirac point energy for the free-standing SLG, 

corresponding to the |pz〉 state of the carbon atom, the 

carbon quasilevel half-width function 

2( ) ( )eg sg subVω π ρ ωΓ = , where Vsg is the substrate-graphene 

hopping energy, ρsub(ω) is the substrate Density of States 

(DOS), t is the hopping energy for the |pz〉 states of the 

nearest-neighbor carbon atoms separated by the distance 

a, the carbon quasilevel shift function: 
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eg

eg

d
P d

ω ω
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∞
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where, P is the principal value symbol, the upper sign in (1) 

is related to the conduction π* band ( )( ) 0
eg
ωΩ ≡ Ω−Λ > , 

the lower sign is related to the valence π band ( )0Ω< . 

Then the low-energy free-standing SLG spectrum 

approximation (Castro Neto et al., 2008) was used: 
 

3
(q) | q |

2
c

taε ε
±

= ±  (3) 

 

where, q= K-k, 1
Κ (2 / 3 3,   2 / 3)a π π

−

= is the Dirac point 

wave vector. Then: 
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−
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where, q = |q|. DOS for EG has the form (Davydov, 

2011a): 
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where, ξ = 3taqB /2 is the cut-off energy with the cut-off 

wave vector. 

Now let us turn to the adsorption on EG. From the 

general point of view the adatom’s Green function Ga(ω) 

for this case can be written as: 
 

1( ) ( ) ( )
a a a a

G iω ω ε ω ω
−

= − − Λ + Γ  (6) 

 

Here εa is the energy of the adatom’s quasilevel, 

which is participated in the charge-transfer process, the 

adatom’s quasilevel half-width function 
2

/
( ) ( )

a a eg eg
Vω π ρ ωΓ = , where Va/eg is the adatom-EG 

hopping energy, the adatom’s quasilevel shift function: 
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The adatom’s DOS ρa(ω), corresponding to the 

Green function (6), is: 
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and the adatom’s occupation number na for the zero 

temperature is: 
 

( )
F

a a
n d

ε

ρ ω ω

−∞

= ∫  (9) 

 

where, εF is the Fermi level energy. 

Metallic Substrate 

We take the metallic substrate DOS equal to constant 

value ρm as for the Anderson model within the scope of 

the wide-band approximation (Anderson, 1961). Then 

Γeg(ω) = Γm = πV
2

g/m ρm = const and Λeg(ω) ≡ Λm = 0 

(Vg/m is the graphene-metal hopping energy). In this case 

instead of Equation 5 we get: 
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Estimations made in (Davydov, 2011b) shown that 

Equation 10 can be approximated by the expression: 
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where, we put εc = 0, the upper sing is referred to ω>0, 

the lower sign is referred to ω<0 and: 
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It is easy to see that for βm = (ξ/Γm)<<1 we arrive at 

ωmax ≈ ξ/2. In the cast of βm>>1 we obtain ωmax ≈ 

(ξ/2)+(πΓm/16). 

Note that the parameter ξ defines the half-width of 

the linear ρg(ω) dependence energy interval centered at 

the Dirac point ωD = εc. Actually, in the low-energy 

approximation we have (see, for example, (Davydov and 

Sabirova, 2011; Davydov, 2013): 
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−
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Then we estimate ξ≤t∼3 eV. Since βm ∼t/Γm, then the 

limit βm<<1 can be interpreted as the strong-coupling 

graphene-substrate regime (in compare with the 

interatomic graphene coupling); in the opposite limit 

βm>>1
 
the weak-coupling regime is realized. 

Since 2

/
( ) ( )m

a a eg eg
Vω π ρ ωΓ = , taking ρeg (ω) from (11) 

and using (7), we find: 
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It is easy to demonstrate that in the case of 
max

| |ω ω>>  

shift-function 2 3

/ max
( ) 2 /

a a eg m
Vω ω ωΛ ≈ − Γ , while in the 

opposite limit 
max

| |ω ω<<  we 

obtain 2 3

/ max
( ) 2 /

a a eg m
Vω ω ωΛ ≈ − Γ . 

Now we introduce dimensionless values: /
m

x ω= Γ , 

max max
/
m

x ω= Γ , /
a a m
e ε= Γ , 

/
/

a eg m
v V= Γ . The reduced 

shift functions /
a a m

λ = Λ Γ , half-width function 

/
a a m

γ = Γ Γ , DOS of EG m m

eg eg m
ρ ρ= Γ  and adatom’s DOS 

a a m
ρ ρ= Γ

 
are equal correspondingly: 
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 (15) 

 

For the strong-coupling regime (βm<<1) we find xm 

≈ 0, for a weak-coupling regime (βm >>1) we have xm 

≈ π/16, which also can be considered as a small value. 

Thus, for the illustrative purposes only we can restrict 

our consideration by the case xmax = 0, which gives 

λ(x) = 0. 
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 (a) (b) 

 

Fig. 1. (a) Metallic substrate: Adatom’s reduced DOS ( )
a
xρ  dependence on the dimensionless energy x for x

m = 0 and ν = 0.5 

(rhombs), 1 (circles) и  2 (squares) (а) ε
a
 = 0 (only right hand-side of the symmetric curve is shown), (b) Metallic substrate: 

Adatom’s reduced DOS ( )
a
xρ  dependence on the dimensionless energy x for x

m = 0 and ν = 0.5 (rhombs), 1 (circles) и 2 

(squares). (b) ε
a
 = 1 

 

Figure 1 demonstrates the typical dependencies of the 

adatom’s DOS 
a

ρ on the dimensionless energy x for the 

three values of parameter ν. The obtained differences for 

the cases ν = 0.5, 1 and 2 can be understood as follows. 

Firstly, the maximal value of the adatom’s DOS is 
2

maxa
vρ
−

∝ (рис. 1). Secondly, for εa = 0 maximums of 

(0)
a

ρ  appear at ν≤1, minimums appear at ν>1 (Fig. 1а). 

Thirdly, ( )
a
xρ maximums shift to the greater x (for εa 

>0) with the ν increase (Fig. 1b) is connected with the 

character of positive root x
*

 of the equation 

( ) / 0
a

d x dxρ = , which can be estimated for ν<1 as: 

 
4

*

2 3
1

( 1)
a

a

x e

e

ν 
≈ + 

+ 
 (16) 

 

Underline, that the inequality ν = (Va/eg/Γm)<1 

corresponds to the excess of the graphene-substrate 

coupling compared to the adatom-graphene coupling, the 

opposite inequality ν>1 corresponds to the excess of 

adatom-graphene coupling. 

To calculate the adatom’s occupation number na we 

make some extra simplification taking * *( )
a a

xγ γ=  instead 

of γa(x). Then for ν<1 we find: 

 

*

1
arcctg a F

a

a

e e

n

π γ

−

≈  (17) 

where, eF = εF/Γm. Increase of ν leads to decrease of 

γ
*
a and na increases for ea<eF and decreases for ea>eF. 

Thus, the increase of the adatom-EG coupling 

compared to graphene-metal charge transfer decreases 

for ea<eF and increases for ea>eF. 

Semiconducting Substrate 

In this case we take DOS ρsc(ω) in the form 

(Davydov, 2014a): 

 

/ 2,       / 2,

( ) / 2,    /2, 

0,                      | | / 2

g g

sc g g

g

E E

A E E

E

ω ω

ρ ω ω ω

ω

 − >



= ⋅ − − < −


≤

 (18) 

 

Here A
 

is the coefficient, Eg is the energy gap 

width, zero of energy coincides with the gap center. 

As it was shown in (Davydov, 2014b), EG DOS 

( )sc

eg
ρ ω

 
is given by Equation 5 provided ( )

eg
ωΓ  is 

changed by ( )
sc
ωΓ  and ( )

eg
ωΛ  is changed by ( )

sc
ωΛ , 

where. 

where, ( ) / 2
g

F Eω π ω
±

= ± + .  

2

/
( ) ( )

sc g sc sc
Vω π ρ ωΓ = , 

/g sc
V  is the graphene-substrate 

hopping energy and: 
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Let us consider function ( )sc

eg
ρ ω

 
in the energy domain 

| | / 2
g

Eω < . Within this domain function ( )
sc
ωΓ  is equal 

identically to zero, so that Equation 5 transforms to: 
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ξ
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where, ( )
c sc

ω ε ωΩ = − − Λ , s = 0
+
. As it was 

demonstrated in (Davydov, 2011a), the value of ( )sc

eg
ρ ω

 
becomes zero for | | ξΩ > . If this inequality does not 

satisfied, EG DOS in the energy interval has the form: 
 

2

2 | |
( )sc

eg
ρ ω

ξ

Ω
=  (21) 

 
Which in the case of ( ) 0

sc
ωΛ =  coincides with the 

free standing SLG DOS ( )
g

ρ ω , given by Equation 13. 

Within the energy region | | / 2
g

Eω <  adatom’s 

quasilevel shift function: 
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sc g sc g g
AV E Eω π ω ωΛ = − + − +  (22) 

 

Has minimal value equal to (0) 0
sc

Λ =  and maximal 

value equal to 2

max /
( / 2)

sc g g sc g
E AV EπΛ = Λ ± = . In an 

analogy with the metallic substrate, let us introduce ratio 

max
/

sc
β ξ= Λ  and will address the case 1

sc
β <<  as the 

graphene-substrate strong-coupling regime, the opposite 

case when 1
sc

β >>  will be addressed as the weak-

coupling regime. Here, as in sec. 2, 
max

~ /
sc

tβ Λ . In the 

first case ( 1
sc

β << ) the substrate energy gap Eg 

crucially manifests itself in the resulting spectrum of 

EG. In the second case ( 1
sc

β >> ) we obtain the so 

called quasi-free-standing EG (Davydov, 2014a), 

having gapless DOS but with the shifted Dirac point 

from the energy 
D c

ε ε=  to ( )
D c sc D

ε ε ε′ ′= + Λ . 

Let for simplicity εc = 0, i.e., εc coincides with the 

center of the substrate band gap Eg. This excludes the 

charge transfer between undoped graphene and the 

intrinsic semiconducting substrate. The gapless EG 

spectrum condition is the fulfillment of the inequality 

max
( / 2)

g
EξΛ < − . Since ξ ∼ t ≈ 3 eV and Eg\2 = 1.5 eV 

for the 6H-SiC polytype, the above inequality becomes 

Λmax < 1.5 eV. Estimations of the (Davydov, 2014b) give 

A ≈ 0.2 eV
-3.2

 and Λmax ≈ 1 eV
−1

· 2

/g sc
V . 

DOS on the atom adsorbed on EG is given by 

Equation 8, where 2

/
( ) ( )sc

a a eg eg
Vω π ρ ωΓ =

 
and: 
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Let us introduce dimensionless values: y = ω/Eg, ec = 

2εc/Eg, a = A(Eg/2)
3/2

, ξ = 2ξ/Eg, w = 2Vg/sc/Eg, 

( ) ( / 2)sc sc

eg eg g
y Eρ ρ= ⋅ . Dependences of the reduced EG 

DOS sc

eg
ρ

 
on the dimensionless energy y are shown in Fig. 

2 for the energy domain corresponding to the substrate 

valence band. Note that the function ( )sc

eg
yρ

 
for ec = 0 is 

symmetric relative to y = 0; function ( )sc

eg
yρ

 
for y<-1 and 

ec = C, where C is some number, does not change 

provided y>1 and ec =-C. Figure 3 demonstrates ( )sc

eg
yρ

 
dependences for the energy domain corresponding to the 

substrate energy gap Eg. Note that in Fig. 3а the ( )sc

eg
yρ

 
dependence for ec = 1.5 does not shown since it can be 

obtained from the ( )sc

eg
yρ

 
для ec = -1.5 dependence be the 

mirror reflection relative to y = 0; Fig. 3b demonstrates 

only one-half of the symmetric ( )sc

eg
yρ

 
function for y<0. 

It follows from Fig. 2, that for w = 1, ec = 0, 1.5 (Fig. 

2а) and w = 2, ec, = 0 (Fig. 2b) ( )sc

eg
yρ

 
function can be 

approximated by the constant ρval for the energies 

corresponding to the valence and conduction bands. 

Then, taking into account Equation 21, we find for the 

shift function Λa(ω) following expression. 
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where, ω-(+) is the bottom (top) of the EG of the EG 

sub and within the substrate gap energy domain. 

Taking into account results obtained here (Fig. 3) and 

in (Davydov, 2014a) (Fig. 1 in (Davydov, 2014b)), 

replace function Λsc(ω) given by Equation 22 by its 

approximate value 2

/
( ) 2 /

sc g sc g
AV Eω ωΛ ≈ − . Then we 

can express integral I in the form: 
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where, 2

/
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 (a) (b) 
 
Fig. 2. (a) Semiconducting substrate: EG reduced DOS dependence on the dimensionless energy for ≈ 0.37, = 2 and (а), = � 1.5 

(circles), 0 (squares), 1.5 (rhombs), (b) Semiconducting substrate: EG reduced DOS dependence on the dimensionless energy for 

≈ 0.37, = 2 and (b) = 0, (crosses), 2 (triangles). Only the energy domain corresponding to the substrate valence band is shown 

 

    
 (a) (b) 
 
Fig. 3. (a) Semiconducting substrate: EG reduced DOS dependence on the dimensionless energy for ≈ 0.37, = 2 and (а), � 1.5 

(circles), 0 (squares), 1.5 (rhombs); Energies corresponding to the substrate energy gap, (b) Semiconducting substrate: EG 

reduced DOS dependence on the dimensionless energy for ≈ 0.37, = 2 and (b) = 0, (crosses), 2 (triangles). Energy domain 

corresponding to the substrate valence band is shown 
 

For εc = 0 we arrive at: 
 

2 2 2

/ *

2 2

2
ln

a eg
V

I
α ω ω

ω
ξ ω

−

≈ −  (27) 

 

where, ω* = ω+ = -ω-. 

For the  semiconducting  substrate  the  adatom’s 

occupation  number  na  for  the  zero  temperature  is 

given  by  Equation  9. However, it is more 

convenient to represent na as the sum of three terms. 

The first term is the contribution of the substrate 

valence band: 
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/ 2
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g
E

v a
n dρ ω ω

−

−∞

= ∫  (28) 

 

where, ρa(ω) is defined by Equation 8, 
2

/
( )a a eg valVω π ρΓ =  (i.e., Γa(ω) = const) and Λa(ω) is 

defined by Equation 24-27. 

Underline, that we take the lower integration limit 

equal to -∞, which is considerably simplified calculation. 

It will be more correctly to take into account the finite 

band widths for semiconductor W (see, for example, 

(Davydov, 2014a)) and graphene D and define the 

bottom energy of the EG DOS as the lower limit of 

integration. Using, however, semiconductor DOS given 

by Equation 18, we arrive at (28). 

The second term in na, i.e., neg, arises from the energy 

gap Eg domain in the case when the Fermi level 

corresponds to the subband (21) energy interval. Thus: 

 

2

2
( ) | |

F

eg F
n d

ε

ω

ϑ ε ω ω
ξ

−

−

= − ⋅ Ω∫  (29) 

 

where, ϑ(z)-Heaviside step function, which is equal to1 

for z>0 and 0 for z<0.  

The third term is the local state contribution n1, 

defined as: 

 
1

( )
1

l

a

l

d
n

d
ω

ω

ω

−

Λ
= −  (30) 

 

where, ωl is the energy of the local state lying below the 

bottom of the EG DOS. Since we have shifted this 

bottom to -∞, the local state contribution (30) is absent. 

Estimate now value of nv. Since Γa(ω) = const, 

ρa(ω) function has maximum at energy ω’, which is 

the root of equation: 

 

( ) 0
a a

ω ε ω− − Λ =  (31) 

 

Let us suppose that for the energies ω<-Eg/2 shift 

function Λa(ω) is small except the narrow interval near 

the upper edge of the semiconductor valence band (-

Eg/2). Putting approximately ( )
a a a a

ω ε ε′ ≈ + Λ , we get 
1 2 2( ) / [( ) ]

a a a
ρ ω π ω ω

−

′≈ Γ − + Γ , which gives with the use 

of Equation 28 the following expression: 
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E
n

V

ε ε

π π ρ

+ Λ +
≈  (32) 

 

Note, that for the р-type substrate, when the Fermi 

level lies just near the top of the valence band, n
ν
 = na. 

Now consider some particular cases. Let εa<<-

Eg/2. Then we obtain from Equation 32 that n
ν
 ∼ 1, 

which means that the charge transfer between adatoms 

and EG is absent. For (εa+Eg/2)∼0 it follows from (32) 

that n
ν
 ∼ 0. The same result is taken place for εa>>-

Eg/2. In this case we have the complete charge 

transfer from adatom to EG. For the simplest case εc = 

εa = 0 we have: 

 

2
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1
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g

v
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E
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Vπ π ρ
≈  (33) 

 

Coarsen the real situation, we can rewrite Equation 

33 in the form of 1 2 2

/ /
arcctg( / )

v g sc a eg
n V Vπ −

≈ . Thus, the 

increase of the adatom-EG coupling compare to 

graphene-substrate coupling the valence band 

contribution to the resulting adatom’s occupation 

number na increases but the charge transfer decreases. 

Now turn to the estimation of neg. If ω-<εF<ω+, then: 

 

2

2
| ( ) |

F

eg c sc
n d

ε

ω

ω ε ω ω
ξ

−

= − − Λ∫  (34) 

 

Putting ( )
c c sc c

ω ε ε′ ≈ + Λ  for 
F c

ε ω′≤ , we find 
21 2 ( ) /

eg F c F
n ε ω ε ξ′≈ − − , for 

c F
ω ε ω

+
′ < ≤  we get 

21 2 ( ) /
eg F F c
n ε ε ω ξ′≈ + −  and for 

F
ε ω

+
>  we obtain neg = 

2. The value of εF is, of course, calculated from the 

electron number conservation. Here, however, we omit 

this procedure since we are only interested in the relative 

effects of graphene and substrate on the value of na. 

Conclusion 

In this study we have constructed the scheme, 

which gives us possibility to calculate the charge 

transfer in the system adatom-EG. Estimations which 

have been done here show that the electronic state of 

adatom is affected by both gra-phene and substrate. 

What coupling is prevailed depends on the particular 

adsorption system. 

Here we have considered only the isolated adatom. 

It is not very complicate to generalize obtained results 

to the finite adatom’s concentrations taking into 

account their interactions (see, for example, 

(Davydov, 2012)). Difficulties, however, concern with 

the practical absence of the corresponding 

experimental data while it should be good to have 

such an information in the volume of, say, adsorption 

on metals (Braun and Medvedev, 1989). In this 

situation it is may be possible for the semi-quantity 

estimations to use the adsorption on graphite data 

(Caragiu and Finberg, 2005; Davydov, 2010). 
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