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Introduction 

In recent year, the exact traveling wave solution 

for nonlinear Partial Differential Equations (PDEs) 

has been investigated by various authors who are 

nonlinear substantial phenomena. Many powerful method 

have been obtainable for instance the exp(-Φ(ξ))-

expansion method (Khan et al., 2013a; Islam et al., 

2014); the jacobi elliptic function method (Ali, 2011); 

the homogeneous balance method (Wang, 1995; 

Zayed et al., 2004); the modified simple equation 

method (Jawad et al., 2010; Khan and Akbar, 2013b; 

Zayed and Ibrahim, 2012; Akter and Akbar, 2015); 

the (G′/G)-expansion method (Wang et al., 2008; 

Zayed, 2010; Akbar et al., 2012b; Zayed and Gepreel, 

2009; Akbar and Ali, 2011; Shehata, 2010; Akbar et al., 

2012a; Mirzazadeh et al., 2014; Alam and Akbar, 

2014a); the improve (G′/G)-expansion method    

(Zhang et al., 2010); the extended(G′/G)-expansion 

method (Roshid et al., 2014a; 2014b; Alam and 

Akbar, 2014b); the generalized (G′/G)-expansion 

method (Alam et al., 2014a; 2014b; 2014c); the novel 

(G′/G)-expansion method (Hafez et al., 2014); the 

homotopy perturbation method (Mohyud-Din et al., 

2011a; 2011b; 2011c); the variational method (He, 

1997; Abbasbandy, 2007; Arife and Yildirim, 2011; 

Abdou and Soliman, 2005); the exp-function method 

(Akbar and Ali, 2012; He and Wu, 2006; Naher et al., 

2012); the truncated painleve expansion method 

(Weiss et al., 1983); the asymptotic method (He, 

2008); the Hirota’s bilinear transformation method 

(Hirota, 1973; Hirota and Satsuma, 1981); the tanh-

function method (Abdou, 2007; Fan, 2000; Malfliet, 

1992); the F-expansion method (Wang and Li, 2005); 

the generalized Riccati equation (Yan and Zhang, 

2001); the ansatz method (Sassaman and Biswas, 

2009a; 2010; Sassaman et al., 2010a; 2010b; 

Chowdhury and Biswas, 2012); the perturbation 

method (Biswas et al., 2008; Sassaman and Biswas, 

2009b; Biswas et al., 2012a); the lie symmetry 

method (Biswas et al., 2013); the method of 

integrability (Biswas et al., 2012b) and so on. 
The objective of this article is to bring to bear the 

enhanced (G′/G)-expansion method to extract new 
exact traveling wave solutions and then solitary wave 
solutions to the Phi-4 equation. This application 
shows the simplicity, efficiency and effectiveness of 
the enhanced (G′/G)-expansion method. To the best of 
our knowledge the enhanced (G′/G)-expansion 
method has not been applied to the above mentioned 
equation in the previous literature. 

The article is organized as follows: In section 2, 
we have discussed the description of the method and 
its application. In section 3, the advantages of the 
method, comparison, physical explanation and 
graphical representation of the obtained solutions 
have been discussed. Finally, in section 4, we have 
drawn our conclusions. 

Materials and Methods 

In this section, we discuss the enhanced (G′/G)-
expansion method to yields some new and more general 
exact traveling wave solutions of the Phi-4 equation. 

Description of the Enhanced (G′/G)-Expansion 

Method 

In this sub section, we describe in details the 

enhanced (G′/G)-expansion method for finding traveling 
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wave solutions of nonlinear equations. Any nonlinear 

equation in two independent variables x and t can be 

expressed in following form: 

 

 ( , , , , , .........) 0
t x tt xx xt

u u u u u uΨ =  (2.1) 

 

where, u(ξ) = u(x, t) is an unknown function, Ψ is a 

polynomial of u(x,t) and its partial derivatives in which 

the highest order derivatives and non linear terms are 

involved. The following steps are involved in finding the 

solution of nonlinear Equation (2.1) using this method. 

 

Step 1: The given PDE (2.1) can be transformed into ODE 

using the transformation ξ= x±ωt, where ω is the 

speed of traveling wave such that ω∈R-{0}. 

 

The traveling wave transformation permits us to 

reduce Equation 2.1 to the following ODE: 

 

( , , ,..................) 0u u u′ ′′Ψ =  (2.2) 

 

where, Ψ is a polynomial in u(ξ) and its derivatives, 

where  
2

2
( ) , ( ) ,

du d u
u u

d d
ξ ξ

ξ ξ
′ ′′= =  and so on. 

 

Step 2: Now we suppose that the Equation (2.2) has a 

general solution of the form: 

 

( )

( )( )

( )
( )

2

1

/

1 /
( )

/
/ 1

i

i

i

n

i n
i

i

a G G

G G

u

G G
b G G

λ
ξ

σ
µ

=−

−

 ′
 
 ′+
 =
  ′
 ′  + +

  
  

∑  (2.3) 

 

Subject to the condition that G = G(ξ) satisfy the 

equation: 

 

0G Gλ′′ + =  (2.4) 

 

where, ai, bi (-n≤i≤n; n∈N) and λ are constant to be 

determined, provided that σ = ±1 and µ≠0. 

 

Step 3: The positive integer n can be determined by 

balancing the highest order derivatives to the 

highest order nonlinear terms appear in Equation 

2.1 or in Equation 2.2. More precisely, we define 

the degree of u(ξ) as D(u(ξ)) = n which gives rise 

to the degree of other expression as follows: 

 

 ( ),

s
q q

p

q q

d u d u
D n q D u np s n q

d dξ ξ

    
 = + = + +        

 (2.5) 

Step 4: We substitute Equation 2.3 into Equation 2.2 and 

use Equation 2.4. We then collect all the 

coefficient of (G′/G)
j
 and 

( )
( )

2
/

/ 1
j G G

G G σ
µ

 ′
′  +

 
 

 together. Since 

Equation 2.3 is a solution of Equation 2.2. we can 

set each of the coefficient equal to zero which 

leads to a system of algebraic equations in terms 

of ai, bi (-n≤i≤n; n∈N), λ and ω. One can solves 

easily these system equations using Maple. 

 

Step 5: For µ<0 general solution of Equation 2.4 gives: 

 

( )tanh
G

A
G

µ µ ξ
′
= − + −  (2.6) 

 

and: 

 

( )coth
G

A
G

µ µ ξ
′
= − + −  (2.7) 

 

and for µ>0, we get: 

 

( )tan
G

A
G

µ µ ξ
′
= −  (2.8) 

 

and: 

 

( )cot
G

A
G

µ µ ξ
′
= +  (2.9) 

 

where, A is an arbitrary constant. Finally we can 

construct a number of families of travelling wave 

solutions of Equation 2.1 by substituting the values of ai, 

bi (-n≤i≤n; n∈N), λ and ω (obtained in Step 3) and using 

Equation 2.6 to 2.9 into Equation 2.3. 

Application of the Method 

In this sub-section, the Phi-4 equation is a very 

important Nonlinear Evolution Equations (NLEEs) in 

the area of Mathematical Physics. The Phi-4 equation 

is considered as a particular form of the Klein- 

Gordon equation that model phenomenon in particle 

physics where kink and anti-kink solitary waves 

interact. The phi-4 equation is studied in various areas 

of Physics includes Plasma Physics, Fluid Dynamics, 

Quantum Field Theory, Solid State Physics and others 

(Ehsani et al., 2013). We will exploit the enhanced 

(G′/G)-expansion method to solve the phi-4 equation. 

Let us consider the phi-4 equation is in the form: 

 

 2 3 0
tt xx

u u m u uλ− + + =  (3.1) 
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where, m and λ are real valued constants, the terms utt 

and uxx represents the effect of dissipation and the term 

u
3
 represents the nonlinearity effect. Using the traveling 

wave variable ξ = x-ωt, Equation 2.1 is transformed into 

the following ODE for u = u(ξ): 

 

 2 2 3( 1) 0u m u uω λ′′− + + =  (3.2) 

 

where, primes denotes the differentiation with regard to 

ξ. By balancing u′′ and u
3
, we obtain N = 1. Therefore, 

the enhanced (G′/G)-expansion method admits to 

solution of (2.1) in the form: 
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 (3.3) 

 

where, G = G (ξ) satisfies Equation 2.4. Substituting 

Equation 3.3 into Equation 3.2 and using Equation 

2.4, we get a polynomial in (G′/G)
j
 and 

( )
( )

2
/

/ 1
j G G

G G σ
µ

 ′
′  +

 
 

. Setting the coefficient of 

(G′/G)
j
 and ( )

( )
2

/
/ 1

j G G
G G σ

µ

 ′
′  +

 
 

equal to zero, we 

obtain a system containing a large number of 

algebraic equations in terms of unknown coefficients. 

We have solved this system of equations using Maple 

13 and obtained the following set of solutions: 

Set 1: 

 

2

0

2

1 1 0 1 1

2 ( 2 )
, ,

2

(1 )
, 0, 0, 0, 0

m
a m

m
a a b b b

µ µ
ω λµ

µ

λ µ

λµ
− −

− −
= ± = ±

+
= = = = =∓

 

 

 Set 2: 

 
2

0 1

1 0 1 1

( )
, 0, 0,

2
0, 0, , 0

2

m
a a

m
a b b b

µ µ
ω

µ

λσ
− −

+
= ± = =

= = = ± =

−

 

 

Set 3: 

2

0 1 1 0

1 1

( )
, 0, 0, 0,

2
, 0, 0

m
a a a b

b b

µ µ
ω

µ

µ

λσ

−

−

+
= ± = = =

−
= ± = =

 

 

Set 4: 

 

2

0 1 1

0 1 1

2 ( 2 )
, , 0,

2

, 0, 0, 0

m
a m a a

m
b b b

µ µ
ω λµ

µ

λµ

λ

−

−

− −
= ± = =

= ± = = =

∓

 

 

Set 5: 

 
2

0 1 1

0 1 1

(2 )
, , 0,

, , 0, 0

m
a m a a

m m
b b b

µ µ
ω λµ

µ

λµ µ

λ λσ

−

−

− −
= ± = =

= ± = ± = =

∓

 

 

Substituting Set 1-Set 5 into Equation 3.3 along with 

Equation 2.6-2.9; we get the following families of 

traveling wave solutions. 

Hyperbolic function solutions: When µ<0, we get the 

following five families of hyperbolic function solutions. 

Family 1: 

 

1,2

3,4

tanh ( )
( , )

1 tanh( )

coth ( )
( , )

1 coth ( )

Am
u x t

A

Am
u x t

A

λ µ µ µ ξ

λ µ λ µ µ ξ

λ µ µ µ ξ

λ µ λ µ µ ξ

 − − + −±
=   + − + − 

 − − + −±
=   + − + − 

 

 

where,  
2

2 ( 2 )

2

m t
x

µ µ
ξ

µ

− −
= ±  

Family 2: 
 

5,6

7,8

2
( , ) sec ( )

2

2
( , ) csc ( )

2

mI
u x t h A

m
u x t h A

µ ξ
λ

µ ξ
λ

= + −

±
= + −

∓

 

 

where,  
2

( )m t
x

µ µ
ξ

µ

+
= ±  

Family 3: 
 

9,10

11,12

2
( , ) csc ( ),

2

2
( , ) sec ( )

2

m
u x t h A

m I
u x t h A

µ ξ
λ

µ ξ
λ

±
= + −

= + −
∓
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where,  
2

( )m t
x

µ µ
ξ

µ

+
= ±  

Family 4: 
 

13,14

15,16

( , ) coth( ),

( , ) tanh( )

I m
u x t A

I m
u x t A

µ ξ
λ

µ ξ
λ

= + −

±
= + −

∓

 

 

where, 
2

2 ( 2 )

2

m t
x

µ µ
ξ

µ

− −
= ±  

Family 5:  

 

17,18

19,20

( , ) (coth ( ) csc ( ) ),

( , ) (sec ( ) tanh ( ))

I m
u x t A h A

m
u x t h A I A

µ ξ µ ξ
λ

µ ξ µ ξ
λ

= + − − + −

= + − − + −

∓

∓
 

 

where, 
2

(2 )m t
x

µ µ
ξ

µ

− −
= ±  

Trigonometric function solutions: When µ>0, we 

get the following five families of trigonometric 

function solutions. 

Family 6: 

 

21,22

23,24

tan ( )
( , ) ,

1 tan ( )

cot ( )
( , )

1 cot ( )

Am
u x t

A

Am
u x t

A

λ µ µ ξ

λ λ µ µ ξ

λ µ µ ξ

λ λ µ µ ξ

 − −±
=   + − 

 − +±
=   + + 

 

 

where,  
2

2 ( 2 )

2

m t
x

µ µ
ξ

µ

− −
= ±  

Family 7: 

 

25,26

27,28

2
( , ) sec( ),

2

2
( , ) csc( )

2

mI
u x t A

m I
u x t A

µ ξ
λ

µ ξ
λ

= −

= +

∓

∓

 

 

where, 
2

( )m t
x

µ µ
ξ

µ

+
= ±  

Family 8:  

 

29,30

31,32

2
( , ) csc( ),

2

2
( , ) sec( )

2

mI
u x t A

m I
u x t A

µ ξ
λ

µ ξ
λ

= ± −

= ± +

 

where, 
2

( )m t
x

µ µ
ξ

µ

+
= ± , 

Family 9: 

 

33,34

35,36

( , ) cot ( ),

( , ) tan ( )

m
u x t A

m
u x t A

µ ξ
λ

µ ξ
λ

= ± −

= ± +

 

 

where, 
2

2 ( 2 )

2

m t
x

µ µ
ξ

µ

− −
= ± , 

Family 10: 

 

37,38

39,40

( , ) (cot ( ) csc( ) ),

( , ) ( tan ( ) sec( ) )

m
u x t A A

m
u x t A A

µ ξ µ ξ
λ

µ ξ µ ξ
λ

= ± − + −

= ± + + +

 

 

where, 
2

(2 )m t
x

µ µ
ξ

µ

− −
= ± , 

Remark: All the obtained solutions have been 

checked with maple by putting them back into the 

original equations and found correct. In Family 3 and 

4, the solutions u5,6 (x, t) and u7,8 (x, t) are coincide 

with the solutions u11,12 (x, t) and u9,10 (x, t) 

respectively. 

Discussion 

In this section, we will discuss the advantages, 

comparison between (Akter and Akbar, 2015) solutions 

and our solutions, physical explanations and graphical 

representation of the above determined ten families of 

the solutions. 

Advantages and Comparison 

By means of the enhanced (G′/G)-expansion 

method, we have found forty solutions of the phi-4 

equation. On the other hand, Akter and Akbar (2015) 

have found only four solutions of the phi-4 equation 

through the modified simple equation method to see 

below the Appendix. 

Appendix 

Akter and Akbar (2015) investigated solutions of the 

Phi-4 equation by the modified simple equation method 

and they obtained the following solutions: 

 
2

2

1 2
( , ) tanh ( )

2 1

m
u x t m x V t

Vλ

 
= ± − −  − 

 (R.1) 
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and: 

 
2

2

1 2
( , ) coth ( )

2 1

m
u x t m x V t

Vλ

 
= ± − −  − 

 (R.2) 

 

Using hyperbolic function identities, Equation R.1 

and R.2 can be written as: 

 
2

2

1 2
( , ) tan ( )

2 1

m
u x t i im x V t

Vλ

 
= − −  − 
∓  (R.3) 

 

and: 

 
2

2

1 2
( , ) cot ( )

2 1

m
u x t i im x V t

Vλ

 
= ± − −  − 

 (R.4) 

 

The main advantages of the enhanced (G′/G)-

expansion method over the modified simple equation 

method is that it provides more new exact traveling 

wave solutions along with additional free parameters. 

Moreover, if we compare between these two methods 

and if we also focus on our newly generated solutions, 

the enhanced (G′/G)-expansion method is more 

effective in providing many new solutions than the 

modified simple equation method. The comparison 

between (Akter and Akbar, 2015) solutions and our 

solutions are given Table 1. 

Beyond this table, all others solutions are new 

exact traveling wave solutions which are not being 

establish in the previous literature. 

Physical Explanation 

The introduction of dispersion without introducing 
nonlinearity destroys the solitary wave as different 

Fourier harmonics start propagating at different group 
velocities. On the other hand, introducing nonlinearity 
without dispersion also prevents the formulation of 
solitary waves, because the pulse energy is frequently 
pumped into higher frequency models. However, if 
both dispersion and nonlinearity are present, solitary 

waves can be sustained. Similarity to dispersion, 
dissipation can also give rise to solitary wave when 
combined with nonlinearity. Hence it is more 
interesting to point out that the delicate balance 
between the nonlinearity effect of u

3
 and the 

dissipative effect of u
xx

 gives rise to solitons solitary 

waves, that after a full interaction with others the 
solitons come back retaining their identities with the 
same speed and shape. The Phi-4 equation has many 
solitary wave solutions. There is various type of 
traveling wave solutions that one of particular interest 
in solitary wave theory. The type of traveling wave 

depends on the variation of the physical parameters. If 
the exact solutions of the Phi-4 equation arise in a 
complex form according to the variations of the 
physical parameters, then the wave propagation for 
any varied instance is characterize by |u(x, t)|. For 
some special values of the physical parameters, the 

traveling wave solutions originate from the obtained 
exact explicit solutions as follows: 

The solitary wave solutions of kink type 
corresponding to u1 (x,t) for the fixed values of the 
parameters m = 0.2, µ = -0.5, A = 2, λ = 1 within -1 ≤ x ≤ 
1 and 0 ≤ t ≤ 1 have presented in Fig. 1. 

 
Table 1. Comparison between the new solutions and (Akter and Akbar, 2015) solution 

(Akter and Akbar, 2015) Solution Our solution 

 If 2, 4,V 3m λ= = = ,  If 2, 4, 1, A 0m λ µ= = = − =  and 

Solution (from the Equation 3.36) becomes:
 15,16

( , ) ( , )u x t u x t= , Solution
15,16

( , )u x t becomes:
 

( , ) tanh( 3 )u x t I x t= ± −  ( , ) tanh( 3 )u x t I x t= ± −  

 If 2, 4,V 3m λ= = = ,  If 2, 4, 1, A 0m λ µ= = = − =  and 

Solution (from the Equation 3.37) becomes:  
13,14

( , ) ( , )u x t u x t= , Solution
13,14

( , )u x t becomes: 

( , ) coth( 3 )u x t I x t= ± − . ( , ) coth( 3 )u x t I x t= ± −  

If 
1

1, 1,V , 1
2

m iλ= − = = = − , If 1, 1, 1, A 0m λ µ= − = = =  and 

Solution (from the Equation 3.38) becomes:  
35,36

( , ) ( , )u x t u x t= , Solution
35,36

( , )u x t becomes: 

1
( , ) tan( )

2
u x t x t= ± −  

1
( , ) tan( )

2
u x t x t= ± −  

If 
1

1, 1,V , 1
2

m iλ= − = = = − ,  If 1, 1, 1, A 0m λ µ= − = = =  and 

Solution (from the Equation 3.39) becomes:  
33,34

( , ) ( , )u x t u x t= , Solution
33,34

( , )u x t becomes: 

1
( , ) cot( )

2
u x t x t= ± −    

1
( , ) cot( )

2
u x t x t= ± −  
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Figure 2 shows the solitary wave solutions of singular 

kink type corresponding to u9 (x,t) with fixed parameters 

m = -0.10, µ = -1.57, A = 1, λ = 1 within the interval -3 ≤ 

x, t ≤ 3. The bell type solitary wave solution 

corresponding to u11 (x,t) for the fixed values of the 

parameters m = 0.2, µ = -1.5, A = 0.5, λ = 1 and -3 ≤ x, t ≤ 

3 is shown in Fig. 3. Again, for the values m = -0.15, µ = -

1, A = 0, λ = 1.5 and -3 ≤ x, t ≤ 3, solution u5 (x,t) are also 

given the exact solitary wave solutions of bell type. The 

bell type solitary wave solution is shown in Fig. 6. It has 

infinite wings or infinite tails. This soliton referred to as 

non topological solitons. This solution does not depend on 

the amplitude and high frequency soliton. Figure 4 shows 

the shape of exact solitary wave solution of singular 

soliton; obtained from the solution u17 (x,t) corresponding 

to the fixed values m = 4, µ = -0.8, A = 0, λ = 2, -3 ≤ x, t ≤ 

3. The exact periodic traveling wave solutions 

corresponding to u21 (x,t) for the values of the parameters m 

= 1, µ = 1.5, A = 0, λ = 1 and -3 ≤ x, t ≤ 3 is shown in Fig. 5. 

Again, for the values m = -0.05, µ = 0.5, A = 4.5, λ = 2, -3 ≤ 

x, t ≤ 3 and m = 0.05, µ = 0.5, A = 1.5, λ = 1, -3 ≤ x, t ≤ 3, 

solutions u33 (x,t) and u35 (x,t) are also given the exact 

solitary wave solutions of periodic shape. The periodic 

wave solution is shown in Fig. 7 and 8 respectively.

 

 
 
Fig. 1. Kink type soliton profile of Phi-4 equation for m = 0.2, µ = -0.5, A = 2, λ = 1 within -1≤x≤1. (Only shows the shape of u1(x, 

t), the left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 

 

 
 

Fig. 2. Singular kink type soliton profile of Phi-4 equation for m =- 0.10, µ =-1.57, A = 1, λ = 1 with -3≤x, t≤3. (Only shows the 

shape of u9 (x, t), the left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 



S.M. Rayhanul Islam / American Journal of Applied Sciences 2015, 12 (11): 836.846 

DOI: 10.3844/ajassp.2015.836.846 

 

842 

 
 
Fig. 3. Bell type soliton profile of Phi-4 equation for m = 0.2, µ = -1.5, A = 0.5, λ = 1 with -3≤x, t≤3. (Only shows the shape of u11 (x, 

t), the left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 
 

 
 
Fig. 4.  Singular soliton profile of Phi-4 equation for m = 4, µ = -0.8, A = 0, λ = 2 with -3≤x, t≤3. (Only shows the shape of u17 (x, t), 

the left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 
 

 
 
Fig. 5. Periodic wave profile of Phi-4 equation for m = 1, µ = 1.5, A = 0, λ = 1 with -3≤x, t≤3. (Only shows the shape of u21 (x, t), the 

left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 
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Fig. 6. Bell type soliton profile of Phi-4 equation for m = -0.15, µ = -1, A = 0, λ = 1.5 with -3≤x, t≤3. (Only shows the shape of u2 (x, 

t), the left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 
 

 
 
Fig. 7. Periodic wave profile of Phi-4 equation for m = 0.05, µ = 0.5, λ = 2, A = 4.5 with -3≤x, t≤3. (Only shows the shape of u33 (x, 

t), the left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 
 

 
 
Fig. 8. Periodic wave profile of Phi-4 equation for m = 0.05, µ = 0.5, A = 1.5, λ = 1 with -3≤x, t≤3. (Only shows the shape of u33 (x, 

t), the left figure shows the 3D plot and the right figure shows the 2D plot for t = 0 
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Graphical Representation 

In this sub section, we will plot the figure of the Phi-

4 equation by using mathematical software Maple 13. 

Two and three dimensional plots of the some obtained 

solutions are shown in Fig. 1-8 to visualize the 

underlying features of the exact traveling wave solutions 

of the Phi-4 equation. 

Conclusion 

In this section, we have seen that two types of 

traveling wave solutions in terms of hyperbolic and 

trigonometric functions for the Phi-4 equation is 

successfully found out by using enhanced (G′/G)-

expansion method. From our results obtained in this 

study, we conclude the enhanced (G′/G)-expansion 

method is powerful, effective and convenient. The 

performance of this method is reliable, simple and gives 

many new solutions. The enhanced (G′/G)-expansion 

method has more advantages: It is direct and concise. 

Also, the solutions of the proposed nonlinear evolution 

equations in this study have many potential applications 

in nuclear and particle physics. Finally, this method 

provides a powerful mathematical tool to obtain more 

general exact solutions of a great many nonlinear PDEs 

in mathematical physics. 
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