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Abstract: The purpose of this paper is to develop a numerical analytical 
method for an accurate solution to the problem on frequencies and mode 
shapes of a rectangular cantilever plate. The problem is reduced to an 
infinite system of linear algebraic equations relative to ratios of 
trigonometric series, which contains vibration frequency as a parameter. 
The core of the method is using two hyperbolic-trigonometric series by two 
coordinates with six undetermined ratios. Functional series are subject to 
the main differential equation of vibrations and undetermined ratios are 
obtained from boundary conditions of the problem. Symmetric and 
asymmetric mode shapes are considered separately. The symmetric solution 
required the introduction of an additional function to compensate free terms 
in the decomposition of hyperbolic functions into Fourier series. The 
infinite system relative to six successions of undetermined ratios was 
reduced to a homogeneous infinite system relative to one (basic) succession 
of ratios. The iterative process of its solution at the chosen vibration 
frequency was presented. A compact resolving system of homogeneous 
linear equations was obtained, relative to basic ratios of mode shapes of a 
rectangular cantilever plate. The search for natural frequencies was done 
with simple exhaustion of a frequency parameter up to the values, at which 
the basic ratios become invariable, starting with some iteration. The 
simplicity of the algorithm and the resolving system allows fast obtaining 
natural frequencies with high accuracy. The calculation accuracy is 
analyzed. The results in this study are well coincided with the results of the 
authors, who fulfilled all the problem’s conditions most accurately. The 
obtained results can be used to do highly accurate dynamic calculations in 
nanoengineering. The calculation accuracy with this algorithm can be 
enhanced by increasing the number of terms in series, the number of 
iterations and the size of the mantissa. 
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Introduction 

The problem of free vibrations of rectangular cantilever 

plates does not have an exact closed-form solution. Some 

authors use methods that allow finding an approximate 

solution using a simple computational procedure, others 

tend to satisfy all conditions of the problem more precisely, 

which causes considerable difficulties of analytical and 

computational nature. The numerical results of such 

computations often differ from each other. 
A rectangular cantilever plate is a computational 

scheme for many elements of different constructions, 
devices and plants. Modern development of aviation and 
space machinery, nanotechnologies, etc. requires high-
precision dynamic computations of these elements. 

The goal of this work is to find an accurate solution 

to the problem, which is an infinite system of linear 

algebraic equations relative to the ratios of hyperbolic-

trigonometric function series satisfying all conditions of 

the problem. Selection of frequencies that give non-

trivial solutions of a reduced system and also an increase 

in the dimension of this system allow obtaining an 

accurate solution within the limit. 

A brief analysis of works on this issue enabled us to 

concentrate on those which have numerical results for a 

square plate, which is commonly considered a standard 

plate. Dividing the major well-known works into 

theoretical and experimental ones, we put their 

numerical results in a chronological order in Table 1. 
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Table 1. Comparison of the relative natural frequencies of the square cantilever plate ( ( )2
/pb h Dω ρ= ) ν = 0.3 

Eigen frequencies ω1S ω2A ω3S ω4S ω5A ω6S ω7S ω8A 

Present theory 3.471 8.5061 21.284 27.1987 30.9543 54.1837 - 64.143 
Young (1950) 3.494 8.547 21.44 27.46 31.17 - - - 
Barton (1951) 3.494 8.547 21.44 27.46 31.17 - - - 
Claassen and Thorne (1962)  3.4721 8.547 21.289 27.24 31.089 - - - 
Bazley et al. (1967) 3.482 - 21.365 27.276 - 54.288 61.449 - 
Bazley et al. (1967) 3.43 - 20.873 26.5 - 51.49 60.24 - 
Anderson et al. (1968) 3.47 8.54 21.559 27.215 - - - - 
Leissa (1973) 3.4917 8.5246 21.429 27.331 31.111 54.443 - - 
Gorman (1976) 3.459 8.356 21.09 27.06 30.55 53.53 61.12 63.62 
Gorman (1976) 3.471 8.506 - - - - 61.25 - 
Misusawa (1986) 3.467 8.462 21.19 27.18 30.77 - - - 

Fu and Price (1987) 3.473 8.516 21.42 27.15 31.03 - - - 

Liew et al. (1990) 3.49 8.54 21.33 27.81 - - - - 
Bardell (1991) 3.47 8.51 21.29 27.2 - - - - 
Rossi and Laura (1996) 3.471 8.508 21.29 27.2 30.96 54.19 61.26 64.15 
Seok et al. (2004) 3.4603 8.4977 21.266 27.178 30.908 54.09 - - 
Kerboua et al. (2007) 3.47 8.51 21.35 27.14 30.96 53.82 - - 
Wu et al. (2008) 3.485 8.547 21.85 27 31.53 - - - 
Eftekhari and Jafari (2013) 3.4306 8.0605 20.0895 25.4991 28.2448 47.531 54.116 57.0137 
Zhong et al. (2013) 3.448 8.333 20.87 26.92 30.46 53.4 61.19 63.51 
Shi et al. (2014) 3.435 8.063 20.085 25.493 28.247 47.532 54.066 56.987 
experiment                 
Barton (1951)  3.43 8.32 20.55 27.15 29.75 - - - 

Dalley and Ripperger (1952) 3.37 8.26 20.55 27.15 29.75 - - - 

Lindholm et al. (1965) 3.38 8.46 20.74 27.45 30.43 - -   
Leissa (1969)  3.35 8.53 20.9 26.72 30.61 - - - 
Singal et al. (1992) 3.27 7.86 20.21 26.31 29.29 51.6 - - 

 

The first theoretical works on determining natural 

frequencies and mode shapes of rectangular cantilever 

plates were published by (Young, 1950; Barton, 1951). 

They used the Ritz method (Rayleigh-Ritz method), 

keeping in the approximation expression of the bending 

function nine items-combinations of hyperbolic and 

trigonometric functions. The calculated values in 

(Young, 1950; Barton, 1951) of the first five natural 

frequencies coincide and serve as the main reference 

point for many researchers. Many authors (Warburton, 

1954; Martin, 1956; Claassen and Thorne, 1962; Leissa, 

1973; Mizusawa, 1986; Liew et al., 1990; Wu et al., 

2009; Eftekhari and Jafari, 2013; Shi et al., 2014) solved 

the problem with the same method. Warburton (1954) 

obtained approximate formulae of frequencies for 

different boundary conditions, including ones for 

cantilever plates. A cantilever plate with the ratio of its 

sides 1.855 was chosen as an example. A similar 

example was given by Martin (1956). Claassen and 

Thorne (1962) improved the solutions of Barton (1951) 

for more exact approximations using computing. He got 

the first eight natural frequencies of the square cantilever 

plate's vibration. Leissa (1973) searched for a solution in 

the form of a double power series with 36 items. 

Mizusawa (1986) used B-spline functions. He also 

studied the influence of Poisson's ratio on natural 

frequencies. Liew et al. (1990) built orthogonal 

polynomials using the Gram-Schmidt process, which 

enables speeding up the process of approximation. The first 

four frequencies were described in the work. Wu et al. 

(2009) chose the approximation function in the form of 

double reduced series with combinations of hyperbolic 

and trigonometric functions (25×25). Eftekhari and 

Jafari (2013; Shi et al., 2014) analyzed the free 

vibrations of Mindlin plates using the method of 

Rayleigh-Ritz. 

Bazley et al. (1967) used the Rayleigh–Ritz method 

for the upper estimate of symmetric vibrations natural 

frequencies in higher approximations and for the lower 

estimate they suggest their own variation method, 

allowing for only a part of the expression of the plate's 

potential energy. 

The Finite Element Method (FEM), initiated, as 

considered, by Courant (1943), was used by Anderson et al. 

(1968; Fu and Price, 1987; Bardell, 1991; Rossi and 

Laura, 1996; Kerboua et al., 2007). Anderson et al. 

(1968) studied the effect of different gridworks on the 

solution. The most acceptable numerical solutions are 

obtained by dividing the plate into 50 triangle elements. 

Fu and Price (1987) considered vibrations of cantilever 

plates in air and water. They used a linear hydroelastic 

theory. The numerical results are obtained for the grid of 

16 and 64 elements. Bardell (1991) also applied FEM. 

The approximation function contains 10×10 polynomials 
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by two coordinates. We use the principle of minimum 

potential energy of the plate and analyzed the 

dependency of natural frequencies on Poisson's ratio. 

Rossi and Laura (1996) used a grid of 100 elements with 

121 nodes. Kerboua et al. (2007) applied semi-analytical 

hybrid FEM with Sanders (1959) shell theory.  

In order to solve the problem, Gorman (1976; 1982; 

1995) used the superposition method of three problems 

with different boundary conditions. The solution is given 

in hyperbolic-trigonometric identities. The author used 

the idea of Timoshenko and Woinowsky-Krieger (1959), 

which they realized when solving the problem of a 

rectangular plate bending, with all edges clamped 

(superposition of two problems) and also when one edge 

is not clamped (superposition of three problems).  

For the solution to the problem, Seok et al. (2004) 

applied a variational approach for approximating the 

transition from a 3D problem to a 2D one. They used 

exponential and trigonometric functions. 

Looker and Sader (2008) obtained a simple analytic 

formula for natural frequencies calculation, using the 

variation principle and the singular perturbation theory. 

The approximating function consists of two items, one 

of which doesn't contain coordinates of y and the 

second one contains y
2 
as a multiplier. Numerical 

results are not available. 

Zhong et al. (2013) used the double finite integral 

transform method for the vibration analysis. In the 

works by (Barton, 1951; Dalley and Ripperger, 1952; 

Lindholm et al., 1965; Leissa, 1969; Singal et al., 1992) 

experimental values of natural frequencies of the 

cantilever plate vibration were obtained. They are also 

given in Table 1. 

The difference of the suggested numerical-analytical 

solution from the well-known solutions is that it can be 

checked by direct substitution into all equations of the 

given boundary-value problem of mathematical physics, 

which cannot be done with solutions in the form of 

arrays of numbers, which were obtained with numerical 

methods (FEM, FDM etc.). This method does not require 

solution superposition of simpler problems and is a 

direct, simpler and more reliable method that allows 

obtaining numerical results with any precision. When 

analyzing numerical series, it enables proving the 

presence of special points on the outline-the ends of the 

clamped edge-where bending moments are infinite. 

Variation methods usually “ignore” this fact. 

Method of Analysis 

Mathematical Formulation 

Let us consider a rectangular cantilever Kirchhoff 

plate of constant thickness h. The relative proportions of 

the plate are -γ/2≤x≤γ/2, 0≤y≤1. The edge y = 0 is 

clamped. Here γ = a/b; a × b are plan proportions of the 

plate; x = X/b, y = Y/b are relative coordinates of the 

plate's median surface. 

The equation of free vibrations of the plate: 

 
2

2 2 2

2
0

W
W

t
η

∂
∇ ∇ + =

∂
 (1) 

 

where, W(x,y,t)-is the sought function of the median 

surface bendings, t is time, ∇
2
-is the 2D Laplace 

operator; η
2 
= ρhb

4
/D, ρ-is the density of the plate's 

material, D = Eh
3
/(12(1-v

2
)) is the cylindrical rigidity of 

the plate, Е is Young's modulus, ν is Poisson's ratio. 

According to the Fourier method, this function can be 

formulated as follows: 
 

( )1 2
( , , ) cos sin ( , )W x y t C pt C pt w x y= +  (2) 

 

Here, С1, С2 are arbitrary constants, which are 

determined from the initial conditions; p is the vibration 

frequency (circular frequency) of the plate, which is to 

be determined; w(x, y) is a coordinate function that must 

satisfy the differential equation: 

 
2 2 2( , ) ( , ) 0w x y w x yω∇ ∇ − =  (3) 

 
2

/p pb h Dω η ρ= =  – is the natural relative 

vibration frequency. Function w(x, y) determines mode 

shapes for the found frequency.  

Then we will solve the problem of determining 

natural frequencies and mode shapes. 

Boundary conditions of the problem (Timoshenko and 

Woinowsky-Krieger, 1959) are: 

 

0; 0 on the edge  0
w

w y
y

∂
= = =

∂
 (4) 

 

 

2 2

2 2

3 3

3 2

0;

on the edge  1

(2 ) 0

w w

y x
y

w w

y x y

ν

ν

∂ ∂
+ =

∂ ∂
=

∂ ∂ + − =
 ∂ ∂ ∂

 (5) 

 
2 2

2 2

3 3

3 2

0;

on the edges / 2

(2 ) 0

w w

x y
x

w w

x x y

ν

γ

ν

∂ ∂
+ =

∂ ∂
= ±

∂ ∂ + − =
 ∂ ∂ ∂

 (6) 

 

The condition of the concentrated forces absence in 

free corner points is added to them: 

 
2

0 with / 2, 1
w

x y
x y

γ
∂

= = ± =
∂ ∂

 (7) 
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Symmetric Solution of the X-Coordinate 

Let us present the sought solution as a sum of three 

functions with undetermined ratios Ak, Bk, Cs, Ds, Es, Fs, 

R1, R2, R3, R4: 

 
1 2 3

( , ) ( , ) ( , ) ( )w x y w x y w x y w y= + +  (8) 

 

1

1,3,...

( , ) ( cosh cosh )sin
k k k k k

k

w x y A x B x yα β λ
∞

=

= +∑  (9) 

 

2

1

( , )

sinh( ( 1)) sinh( ( 1))
( 1) cos

cosh( ( 1)) cosh( ( 1))

s s s ss

s

s s s s s

w x y

C y D y
x

E y F y

ξ η
µ

ξ η

∞

=

− + − 
= −  

+ − + − 
∑

 (10) 

 

 
3 1 * 2 *

3 * 4 *

( ) sinh( ( 1)) sin( ( 1))

cosh( ( 1)) cos( ( 1))

w y R y R y

R y R y

ω ω

ω ω

= − + −

+ − + −

 (11) 

 

where, λk = πk/2, µs = 2πs/γ. 

Subordinating these functions to basic Equation 3, we 

will obtain: 

 

2 2

2 2

*

, ,

, ,

k k k k

s s s s

α λ ω β λ ω

ξ µ ω η µ ω ω ω

= + = −

= + = − =

 (12) 

 

The introduction of the auxiliary function w3(y) is 

stipulated by the fact, that when satisfying the boundary 

conditions, the expansions of hyperbolic functions 

coshαkx and coshβkx into series by cosµsx will be used. 

These expansions contain constant terms that need 

compensating. 

Functions Equation 9-11 satisfy boundary condition 

Equation 7. Let us demand that they satisfy all the 

remaining boundary conditions Equation 4-6. We will 

obtain a system of six equations: 

 

1

1 * 2 *

3 * 4 *

( 1) ( sinh sinh cosh

cosh )cos sinh sin

cosh cos 0

s

s s s s s s

s

s s s

C D E

F x R R

R R

ξ η ξ

η µ ω ω

ω ω

∞

=

− − − +

+ − −

+ + =

∑

 (13) 

 

1,3,..

1

* 1 * 2 * 3 *

4 *

( cosh cosh )

( 1) ( cosh cosh

sinh sinh )cos

( cosh cos sinh

sin ) 0

k k k k k

k

s

s s s s s s

s

s s s s s s s

A x B x

C D

E F x

R R R

R

λ α β

ξ ξ η η

ξ ξ η η µ

ω ω ω ω

ω

∞

=

∞

=

+

+ − +

− −

+ + −

+ =

∑

∑

 (14) 

( )

( )

( )

( )
( )

2 2

2 2
1,3,..

2 2

3 4
2 2

1

cosh
( 1)

cosh

( 1) cos 0

k k k k
k

k
k k k k

s s s
s

s

s
s s s

A x

B x

E

x R R

F

να λ α

νβ λ β

ξ νµ
µ ω

η νµ

∞

=

∞

=

 −
 −
 + − 

 −
 − − − − =
 + − 

∑

∑

ɶ

 (15) 

 

( )

2 2

3

* 1 2
2 2

1

(2 )
( 1) cos 0

(2 )

s s s s
s

s

s
s s s s

C

x R R

D

ξ ν µ ξ
µ ω

η ν µ η

∞

=

  − −   
− + − = 

 + − −   
∑  (16) 

 

( ) ( )

( )( )

( )( )

2 2 2 2

1,3,...

2 2

2 2
1

1 * 2 *

3 * 4 *

cosh cosh

C sinh cosh
sin

sinh cosh

[ sinh sin

cosh cos ] 0

k k k k k k k k

k

s s s s s s

k

s
s s s s s s

A B

y E y
y

D y F y

R y R y

R y R y

α νλ α β νλ β

νξ µ ξ ξ
λ

νη µ η η

ων ω ω

ω ω

∞

=

∞

=

 − + − 

 − +
 +
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∑

∑

ɶɶ

ɶ ɶ

ɶ ɶ

ɶ ɶ
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2 2

2 2
1,3,...

(2 ) sinh
sin 0

(2 ) sinh

k k k k k

k

k
k k k k k

A
y

B

α ν λ α α
λ

β ν λ β β

∞

=

  − −   
= 

 + − −   
∑

ɶ

ɶ
 (18) 

 
It is marked here: 

 

/ 2, / 2, ( 1) / 2, 1
k k k k

k k y yα α γ β β γ= = = + = −
ɶɶɶ ɶ

 

 
Hyperbolic functions of the x argument, which are 

contained in Equation 14 and 15, expand into the Fourier 

series by cosµsx. These known expansions have a form of: 

 

2 2

1

1 4 ( 1)
cosh sinh cos

s

k

k k s

sk k s

x x

α
α α µ

α γ α µ

∞

=

 −
= + 

+ 
∑ɶ

ɶ
 (19) 

 

The expansion of the function cosh
k
хβɶ  is obtained 

after replacing αk with βk and k
αɶ with 

k
βɶ . 

Expansions of Equation 19 contain constant terms 

which are added to free items from the auxiliary function 

Equation 11. 

Then, functions of the y argument, which appear in 

Equation 17, expand into the Fourier series by sinλky: 

 

2 2
1,3,..

( 1) sinh
sinh 2 sin

k

s k s

s k

k k s

y y
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ξ λ
λ ξ

∞

=

− +
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+
∑

ɶ

ɶ  (20) 

 

* *
* 2

1,3,..
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sin 2 sin

k

k

k

k k

y y
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λ ω

∞
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−
∑

ɶ

ɶ  (21) 

 

2 2
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s s k
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y y
λ
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∞
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+
∑ɶ  (22) 

 

* * 2
1,3,..

cos 2cos sin
k

k
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y y
λ

ω ω λ
λ ω

∞

=
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−

∑ɶ  (23) 
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The remaining expansions are obtained by replacing 

ξs with ηs or ωs. 

Demanding that in Equation 13-16 the combinations 

of free items turn into zero, we will obtain a separate 

auxiliary subsystem of four equations for ratios R1, R2, 

R3, R4, the solution to which is: 
 

* * *

1

* *

* * * *

2 1

* *

(cosh cos )

2 (1 cosh cos )

(sinh cos cosh sin )
,

2 (1 cosh cos )

G
R

H
R R

ω ω ω

ω ω ω

ω ω ω ω

ω ω ω

+

= −

+

+

+ =

+

 (24) 

 

* * *

3

* *

* * * *

4 3

* *

(sinh sin )
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(1 sinh sin cosh cos )
,
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G
R

H H
R R

ω ω ω

ω ω ω
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ω ω ω ω
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= −
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+

 (25) 

 
Here: 

 

1,3,..
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k k k

k k k

A B
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γ α β

∞
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 
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sinh
2

( 1)

sinh

k
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k

A

H
B
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α
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νβ λ β

β

∞

=
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ɶ

ɶ
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 (27)  

 
In the remaining system, inner expressions of 

trigonometric series must turn into zero. As a result, we 

obtain the basic system of 6×∞ equations: 

 
 sh sh ch ch 0

s s s s s s s s
C D E Fξ η ξ η− − + + =  (28) 

 

1
ch ch sh sh

s s s s s s s s s s s s s
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 2 2 2 2

2
( ) ( )

s s s s s s s s
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k k k k k

k k k k k

A

B

α ν λ α α

β ν λ β β

 − − 

 + − − = 

ɶ

ɶ
 (33) 

 
Where: 
 

1 2 2 2 2
1,3,...

4 sinh sinh
k k k k

s k k k

k k s k s

S A B
α α β β

λ
γ α µ β µ

∞

=

 
= − + 

+ + 
∑

ɶɶ
 (34) 

 
2 2

2 2

2 2 2
1,3,...

2 2

sinh
4

( 1)

sinh

k k

k k k

k sk

s

k
k k

k k k

k s

A

S

B

να λ
α α

α µ

γ νβ λ
β β

β µ

∞

=

 −
 

+ = −
 −
 +

+  

∑
ɶ

ɶ

ɶ

 (35) 

 
The basic subsystem of six equations for ratios Ak, Bk, 

Cs, Ds, Es, Fs was then reduced to one equation (to one 

infinite system, to be more precise) relative to the ratios 

Ak (k = 1, 3, …): 

3

* * * * * *

1 1 32 2 2 2 2 2 2

*
2 2 2 2

2 2

2 2 2 2

2 2

2 sinh sin cosh cos cos
( 1)

2
(1 )

( 1)2 1
(1 ) (1 )

( )
( coth )( ) s

k

K K

K K K K K K K

K m K s

K s s

s s

K s

s s s K s K

H
R R R

A
u C

C E

ω ω ω ω ω ω
λ λ

α β α β α β ω β
νω

ν ω ν λ µ
ξ

ν µ ω ν µ ω
ν λ µ ω

ξ νλ µ λ

    
− − − + − +    

     

= −  −
− + 

− + − ++  
+ −

− − +

ɶ

1

inh
s

ξ

∞

=

 
 
 
 

  
  
  
  
  

∑

  (36) 

 

where, marked *
sinh

K K K
A A α= ɶ : 

 
2

2

2

2
2

2

(1 ) coth

(1 )

(1 ) coth

(1 )

K K K

K

K K

K K K

K K

u

β ν λ ω α

β ν λ ω

α ν λ ω β

β ν λ ω

 − + = +
 − + 

 − − +
 − + 

ɶ

ɶ

 (37) 

In order not to confuse indices k in and out the 

internal sums, the external index is designated as K. 

To prevent the system Equation 36 from appearing 

bulky, the ratios Cs and Es, that are contained in it, are 

not included into this expression. They were 

determined based on a separate system of two linear 

algebraic equations and then were substituted into 

Equation 36 in computing: 
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2

2

1

sinh
tanh

cosh

cosh
1

cosh (1 )

cosh tanh sinh
cosh

( sinh tanh cosh ) S

s s s

s s s

s s

s S

s s

s s

s s

s s s s s s

s

s s s s s s S

C

S
E

C

E

ξ δ ξ
δ η

η η

ξ
δ

η ν µ ω

δ ξ
ξ ξ η η ξ

η

ξ ξ η η ξ

  
−  

 


 − − = 
− +  


  − − 
 

− − =

 (38) 

 

where 2 2
(1 ) (1 )

s s s
δ ν µ ω ν µ ω   = − − − +    . 

Ratios Bk are expressed through Ak from Equation 33. 

Ratios Ds and Fs are expressed through “basic” ratios Cs 

and Es from Equation 30 and 31 and those after solving 

the system Equation 38 through ratios Ak from Equation 

34, 35 and 32. Therefore the expression Equation 36 is 

an infinite homogeneous system of linear algebraic 

equations relative to one sequence of *

K
A , which can be 

briefly put as follows: 
 

( )* *

1,3,...

1,3
K Kk k

k

A b A K
∞

=

= = …∑  (39) 

 
The basic system Equation 36 also contains an 

unknown frequency ω. 

The determinant of the system Equation 36 must be 
equal to zero for it to have non-trivial solutions. If we 
make and expand the determinant, we will obtain a 
frequency equation, the solution to which will give a 
spectrum of natural frequencies. In this case, obtaining a 
transcendental frequency equation in the expanded form 
and its solution is quite a difficult mathematical problem. 
Here it is suggested to use a very simple method of 
obtaining natural frequencies. 

We will calculate the ratios *

k
A  in the right part of the 

system Equation 39 with the previous iteration and 

similar ratios *

k
A  in the left part with the next iteration. 

It is necessary to select such values of ωi, with which 

the method of successive approximations, organized by 

Equation 36, would lead at some iteration to the 

equations 
( )
* *

1
0

kNk N
A A

+
= ≠  for all subsequent values of N. 

These would be the non-trivial solutions of the 

homogeneous system. As the zeroth-order 

approximation, we can put all *
1

k
A = . The frequencies, 

found with this method, would be the sought frequencies 

of free vibrations and the found ratios *

kN
A  (with the 

accuracy of the multiplier, constant to all *

kN
A ) would 

give the corresponding mode shapes by substituting into 

Equation 8. The equation 
( )
* *

1
0

kNk N
A A

+
= ≠ means that 

vibrations occur with constant amplitude, i.e., they are free 

and undamped. Undoubtedly, finding the natural 

frequencies of ωi will take certain time, but it is not hard to 

choose an optimal strategy for the parameter ω exhaustion. 

Antisymmetric Solution of the X-Coordinate 

Apart from the mode shapes, symmetric about Oy-

axis, there must be antisymmetric ones. 

The sought coordinate function of bendings now will 

look like: 

 

1 2
( , ) ( , ) ( , )w x y w x y w x y= +  (40) 

 

1

1,3,...

( , ) ( sinh sinh )sin
k k k k k

k

w x y A x B x yα β λ
∞

=

= +∑  (41) 

 

( 1) /2

2

1,3,...

( , ) ( 1) [ sinh( ( 1))

sinh( ( 1)) cosh( ( 1))

cosh( ( 1))]sin

s

s s

s

s s s s

s s s

w x y C y

D y E y

F y x

ξ

η ξ

η µ

∞

+

=

= − −

+ − + −

+ −

∑

 (42) 

 

Instead of even functions with x, there are odd 

functions in it with no additional item w3. The ratios of 

the series Ak, Bk, Cs, Ds, Es, Fs are designated with the 

same letters for convenience, although they are different 

from the even-type solution. The ratios: αk, βk, ξs, ηs, λk 
Es are the same, but here µs = πs/γ, in contrast to the 

even-type solution. 

Satisfying the boundary conditions of the problem, 

we will obtain a system of six equations, which we will 

be reduced to one equation: 

 

( )( )

*

2

2

2 2 2

2 2 2 2
21,3,...

2 2

4
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( 1)1

(1 )
( )
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coth sinh
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K s
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A
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C

C E

ω

νω

ν µ ω
ξ
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λ µ ω

ν µ ω

ξ νλ µ λ ξ

∞

=

=

  
  

− +  −  −×   ++ −  − +   
 − − + 

∑

 (43) 

 

Let us note that this expression only differs from the 

series in Equation 36 in the sign and also in odd indices 

s. In Equation 43 (compare with Equation 37): 

 
*

2 2

2

2 2

2

cosh ,

[(1 ) ] tanh

[(1 ) ]

[(1 ) ] tanh

[(1 ) ]

K K K

K K K

K

K K

K K K

K K

A A

u

α

β ν λ ω α

β ν λ ω

α ν λ ω β

β ν λ ω

=

− +

=

− +

− −

+

− +

ɶ

ɶ

ɶ

 (44) 

 

Let us list (in order not to write formulae) the rest of 

similarities and differences. The ratios Cs and Es are 

determined from the system that coincides with Equation 

38. In Equation 33 for Bk hyperbolic sines are replaced 

with hyperbolic cosines. In the expressions for S1s and 
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S2s Equation 34 and35, except for this replacement, their 

signs will also change.  

Results and Discussion 

There was developed a program in the system of 

analytical calculations Maple to calculate natural 

frequencies and to obtain the corresponding mode shapes. 

A square plate was considered as an example; the Poisson 

number was equal to 0.3. From 39 to 99 items were kept 

in the series (this and the size of the reduced resolution 

systems Equation 36 and 43). The number of iterations is 

from 20-180. The word length is 30-500 characters. The 

frequency band 0<ω<65 was studied. 

The first seven of the found frequencies are given in 

the first line of Table 1. The results, obtained by other 

researchers, are given in the next lines for comparison. 

Two lines of the results of Bazley et al. (1967) in the 

table are upper and lower boundaries of frequencies 

correspondingly. Let us note, that the results of Gorman 

(1976) are obtained with ν = 0.333. 

Frequencies of the symmetric vibrations ω1, ω4, ω6 in 

this study were obtained keeping 99 items in the series. 

It took 20 iterations for the coincidence of five 

significant figures. The calculations were made with 300 

significant figures. 

The satisfying value of the frequency ω3 = 21.284 

was only obtained after a considerable increase in the 

number of iterations up to 180. In the series 59 items 

were kept. Because of the bad convergence of the 

process around this value and the accumulation of errors, 

the rise in the number of items in the series (99 and 

more) led to a computing failure even after increasing 

the number of significant figures in calculations (up to 

500). We cannot explain this fact for now. 

Odd frequencies were found keeping 99 items in the 

series. It took 20 iterations for the frequencies ω2 and ω5. 

It took 50 iterations for the frequency ω8. The graphs of 

the corresponding mode shapes were obtained for the 

found frequencies. They are shown in Fig. 1-7. 

Using the developed programs, it is not hard to obtain 

even higher natural frequencies of cantilever plate 

vibrations for different ratios of the plate's sides. 

 

 
 
Fig. 1. The first even free vibration mode shape of the square 

cantilever plate (ω =3.471) 

 
 
Fig. 2. The first odd free vibration mode shape of the square 

cantilever plate (ω = 8.506) 
 

 
 
Fig. 3. The second even free vibration mode shape of the 

square cantilever plate (ω = 21.284) 
 

 
 
Fig. 4. The third even free vibration mode shape of the square 

cantilever plate (ω = 27.199) 
 

 
 
Fig. 5. The second odd free vibration mode shape of the square 

cantilever plate (ω = 30.954) 
 

 
 
Fig. 6. The fourth even free vibration mode shape of the square 

cantilever plate (ω = 54.184) 
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Fig. 7. The third odd free vibration mode shape of the square 

cantilever plate (ω = 64.143) 

 

The comparison with other authors' results shows that 

the results obtained by (Young, 1950; Barton, 1951) with 

the Ritz method are too high. The experimental data of 

Barton (1951; Dalley and Ripperger, 1952; Lindholm et al., 

1965; Leissa, 1969) and also Singal et al. (1992) confirm 

the same. The results of Leissa (1969) are closer (but 

also too high). Let us note that we did not find the 

frequency similar to ω7 in the works of Gorman (1976; 

1982; 1995; Rossi and Laura, 1996) despite the detailed 

study of frequencies close to this value. The results of 

Seok et al. (2004; Kerboua et al., 2007; Bardell, 1991), 

who found the first four frequencies, are the closest to 

the results obtained in this study. The numerical results 

in the work of Rossi and Laura (1996) are almost 

matching with the ones in the given paper. First two 

frequencies with the results of Gorman (1976) are also 

similar. He calculated them separately for ν = 0.3. 

Unfortunately, other frequencies in (1976) for ν = 0.3 

were not calculated (except for ω7 and ω9, which we can 

compare with nothing). Let us note that in the works by 

Wu et al. (2009; Fu and Price, 1987) the frequencies are 

given in Hz. In this study they are recalculated in non-

dimensional quantities. The non-dimensional frequencies 

in the work by Claassen and Thorne (1962), in the 

research by Seok et al. (2004), in the Eftekhari and Jafari 

(2013), in the Shi et al. (2014) were multiplied by π
2
 in 

order to bring them in line with the formula for relative 

frequencies in Table 1. 

Note that all the natural frequencies obtained by 

Eftekhari and Jafari (2013; Shi et al., 2014) for the plate 

of constant thickness Mindlin are slightly less than the 

corresponding values of the Kirchhoff plate, with a more 

marked difference in the overtones. 

The numerical results in this study are in better 

agreement with the experimental data (Barton, 1951; 

Dalley and Ripperger, 1952; Lindholm et al., 1965; 

Leissa, 1969; Singal et al., 1992) than the results of 

some other authors. Besides, it is worth mentioning that 

the difficulties in maintaining the perfect clamping in 

experiments cause too low results for natural frequencies. 

In the work of Lindholm et al. (1965; Singal et al., 1992) 

the natural frequencies are given in Hz. They are 

recalculated in non-dimensional quantities and given in 

Table 1. Let us note that in the paper by Singal et al. 

(1992) the experiment was conducted with aluminum 

plates. The value of the Poisson's ratio is not given (0.32-

0.36 according to the reference-book). It is hard to explain 

why the natural frequencies in the study by Singal et al. 

(1992) turned out the least among all other corresponding 

experimental values (Barton, 1951; Dalley and Ripperger, 

1952; Lindholm et al., 1965; Leissa, 1969). 

Mizusawa (1986; Bardell, 1991; Rossi and Laura, 

1996) researched into the effect of Poisson's ratio on 

values of natural frequencies. Mizusawa (1986) 

calculated the natural frequencies (the first five of them) 

with the values of Poisson's ratio ν= 0, 0.15, 0.3 and 0.5. 

With the increase in this ratio, the decrease of the 

corresponding natural frequencies was observed. For 

instance, the first frequency of a square plate adopted the 

next values: 3.509, 3.499, 3.467 and 3.373. Bardell 

(1991) obtained a graphical dependency of the frequencies 

on Poisson's ratio. The highest frequencies also decreased 

with the increase in Poisson's ratio; the first frequency 

remained constant according to the graph, apparently due to 

a large scale. Unfortunately, there are no numerical results 

in this study. Rossi and Laura (1996) calculated the first 10 

frequencies for the values of Poisson's ratio from 0 to 0.5 

with 0.1 step. In this connection, the corresponding 

values of the frequencies decreased. 
For comparison, the frequencies ω1, ω2 and ω4 were 

calculated with ν= 0.333 according to the given theory. 
They worked out 3.4596, 8.3560 and 27.0645 (other 
frequencies were not calculated). These values coincide 
very accurately with the results of Rossi and Laura 
(1996; Gorman, 1976) and confirm the decrease of 
frequencies when Poisson's ratio increases. 

Earlier it was noted that all ratios of the initial 

estimate in solving the systems Equation 36 and 43 set 

equal to one A
*
k= 1. Since these systems are linear and 

homogeneous, all ratios of the series were calculated up 

to the precision of a constant. The same applies to the 

obtained mode shapes. Some researchers noted that the 

first mode shape (Fig. 1) is similar to the shape of the 

bent plate under the influence of a uniform transverse 

load. Selecting other initial values of A
*
k (with the first 

natural frequency ω = 3.471), we were able to determine 

that if we assume all A
*
k = 0.004025, the iteration 

process led almost accurately to the shape of the bent 

surface of the square cantilever plate under the influence 

of a uniform transverse load. 

Table 2 presents bendings of the free edge opposing 

the clamped one and the bending moments My in the 
clamped section of the square cantilever plate in static 
bending by a uniform unit load and in the first free 
vibration mode shape. The w bending is related to the 
value q0b

4
/D and the bending moments My is to the 

value, where q0 is a uniform transverse load. The values 

of the bendings and the moments of static bending were 
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obtained by the authors using the iterative method of 
hyperbola-trigonometric series superposition. Thus the 
divergence of the numerical series My was established at 
the ends of the clamped edge, where near these points 

the bending moments tend to -∞. Therefore, the ends of 
the clamped edge are stress concentrators due to the 
drastic change of the boundary conditions. If 0.5 is 
added to the values of the bending moments of the first 
mode shape, we will obtain 0.53467; 0.53441; 0.53292; 
0.52646; 0.49666; 0.39856 respectively. The first five 

values in bending and vibration are in line with each 
other. The last value in the corner point naturally has a 
finite value after the summation of the finite series, 
although calculations after the increase in the number of 
members in the series (the increase in the size of the 
reduced system) showed its absolute increase, whereas 

the values in the internal points of the clamped edge did 
not change up to the sixth significant digit. 

Free vibrations of the plate can be produced 

differently, e.g., with impact loads, the termination of 

concentrated or distributed transverse loads etc. In the 

general case, first of all, there will be a transient 

vibration process, which is determined by the nature of the 

initial conditions of the problem. This process is followed 

by the steady-state vibration with a full spectrum of 

natural mode shapes and frequencies (if no damping). If 

the plate was initially bent by a uniform load and then the 

load is removed, there will be no transient process and the 

plate will immediately get into the mode of steady-state 

vibration. When the load is removed, the dynamic bending 

moments will decrease by the value of the even moment 

0.5 in the cylindrical bending. 
 
Table 2. Values of the free edge y =1 bendings and the bending 

moments of the clamped edge of the square plate 

while keeping 79 items in the series under bending 

and vibration 

  [My]y = 0 [W]y - 1 [My]y = 0 

x Bending Bending ω1 = 3.471 ω1 = 3.471 

0 -0.12907 0.5302 -0.12937 0.03467 

0.1 -0.12899 0.5302 -0.12927 0.03441 

0.2 -0.12875 0.52959 -0.12898 0.03292 

0.3 -0.12835 0.52512 -0.12851 0.02646 

0.4 -0.12783 0.49938 -0.12788 -0.00334 

0.5 -0.12724  -∞ -0.12716 -0.60144 

 

 
 
Fig. 8. The dynamical bending moments My in the clamped 

edge at ω = 3. 471 

Figure 8 shows the epure of dynamic bending 

moments in the clamped section of the square plate with 

the first frequency and the largest vibration amplitude. 

Conclusion 

This paper offers an effective method of determining 

natural frequencies and mode shapes of a rectangular 

cantilever Kirchhoff plate using two trigonometric series, 

which contain hyperbolic functions by another 

coordinate. The problem of finding natural frequencies is 

brought to simple exhaustion of frequencies in a 

resolution homogeneous reduced system of linear 

algebraic equations relative to one sequence of 

trigonometric series ratios. The frequency was taken as a 

natural frequency, at which the given ratios of two 

neighbor iterations did not differ from each other, 

ensuring the equality to zero of the system determinant 

and its non-trivial solution. The obtained natural 

frequencies are remarkable for high accuracy and correlate 

with the results of other authors who solved this problem 

with different methods of high accuracy meeting all the 

problem's conditions. The difference of this method from 

others is that an analytically obtained accurate solution is 

an infinite system of linear equations relative to ratios of 

hyperbolic-trigonometric series, which contains 

vibration frequency as a parameter. The obtained natural 

frequencies and series ratios can be checked by forward 

substitution into all the problem's equations. It is not 

hard to enlarge the reduced system and increase the 

calculation accuracy in the numerical implementation.  
It is demonstrated that the first natural frequency 

gives a mode shape, which corresponds with the 
cantilever plate's bending under the influence of a 
uniform transverse load. It is also determined that ends 
of the clamped edge are special points, in which bending 
moments are infinite, therefore tensions are also infinite. 

The given method can also be applied to a plate, all 
edges of which are clamped and also at other 
combinations of clamped and free edges, including 
Reissner-Timoshenko plates. 
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