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Abstract: The article outlines the approach to applying the mechatronic 

technologies and robotic systems in carrying out the brachytherapy 

operations. To calculate the elastic state of the flexible needles of different 

geometry in the prostate model, a mathematical model of the flexible 

needle deformation has been applied which took into account the medium 

reaction and was based on the theory of flexible and elastic rods. The 

numeric calculations for different types of needles have been introduced for 

the first time. Also for the first time the advantages of applying flexible 

needles for brachytherapy procedure have been mathematically justified. 
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Introduction 

Over a span of many decades the basic and, as it 

was, the only one available method of treatment for 

those suffering from prostate cancer used to be the 

surgical approach, implicating complex traumatizing 

operations often resulting in various side-effects: In 19-

45% of cases leading to serious urination problems, in 

60-93% of cases resulting in evident sexual dysfunction 

(D’Amico et al., 1998; Kupelian et al., 1997; 

Oesterling et al., 1995; Gleason and VACURG, 1977; 

Lee et al., 1995). The range of the available 

therapeutic solutions has been diversified 

considerably up to now (Kirschner et al., 2014; 

Skowronek, 2013; Sylvester et al., 1997; Stock et al., 

1998; Tejwani et al., 2012). Notably, for the patients 

with localized-type prostate cancer the radiation 

therapy is considered to be either a good alternative or 

an important supplement to the surgical treatment. The 

task of delivering high tumoricidal doses into the 

prostate and to the tumor, which is located inside it, 

with considerably less radiation load on the 

surrounding tissues, is now successfully solved by 

means of modern methods of interstitial brachytherapy, 

a version of which is represented by High-Dose 

Brachytherapy (HDB) (Fig. 1) (Kanayev and Novikov, 

2013; Khmelyovskiy et al., 2008; Bracarda et al., 2005; 

Jereczek-Fossa and Orecchia, 2007; Kovacs et al., 

2005; Martinez et al., 2011). 

 
 
Fig. 1. High-dose rate brachytherapy complex: a- tridimensional 

(3D) supersonic device; b- endorectal probe; c- stepper 

support; d- 3D planning system Оncentra Prostate; e- 30-

channel device “micro Selectron HDR” 

 

An important advantage of this method is that when 

performing high-dose brachytherapy there are favorable 

conditions for the intrastat needles introduction beyond 

the prostate capsule, which facilitates radiating the 

seminal vesicle and the periprostatic area. However, a 

serious disadvantage to the existing technique of 

implanting the radioactive seeds is the direct trajectory 

of the needle targeting, which is done manually. 
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Fig. 2. A picture of the prostate taken after implanting the 

needles superimposed on the initial radiation plan: a- 

prostate contour; b- urethra contour; c- rectum wall 

contour; d- urinary bladder contour; e- isodose curve 

(100% of the prescribed dose); f- intrastat needle contour 
 
Due to this fact, in the course of an operation a considerable 

alteration of the radiation plan occurs as compared to the 

pre-operation plans (Fig. 2), resulting in an inadequate 

radiation dose distribution on the tumor and, as a 

consequence, in the poor results of treatment in general. 

Mathematical modeling of the physical principles 

constituting the basis of the medical soft/hardware 

complexes is a modern approach to solving complicated 

procedural tasks, including surgery. This study indicates 

the approach to mathematical modeling of the flexible 

needle behavior in the model of the prostate. 

Materials and Methods 

To describe the elastic state of a medical needle, the 

thin flexible rod curvature equations shall be applied 

(Birger and Panovko, 1988; Turner and Ford, 1960; 

Salzmann, 1946; Marçal and Turner, 1961). 

Consider a flexible curved rod in xOy plane, shown 

in Fig. 3.  

The axis of the rod is given in parametric 

representation: 
 

( ) ( ),x x y yα α= =  (1) 

 
The formula for calculating Lame coefficient 

(Birger and Panovko, 1988; Turner and Ford, 1960; 

Salzmann, 1946; Marçal and Turner, 1961) is as follows: 
 

( )
2 2

dx dy
A

d d
α

α α
   = +   
   

 (2) 

 
 
Fig. 3. Flexible curved rod 

 

 
 
Fig. 4. Positive directions of forces and moments 

 

Rod axis curvature shall be computed using the 

following formula: 
 

( )

2 2

2 2

3
2 2 2

κ

dx d y dy d x

d d d d

dx dy

d d

α α α αα

α α

−
=
    +    
     

 (3) 

 
Rod equilibrium equation should be represented as 

follows: 
 

1 1
0, 0,

1
0

T N

dT N dN T
p p

A d R A d R

dM
N

A d

α α

α

+ + = − + =

+ =
 (4) 

 
Here T, N are the tangential and the shear strains; M 

is the moment of deflection; pT(α)и pN(α) are the 

tangential and the normal components of the distributed 

load; A(α)- Lame parameter; R (α) = 1/k(α)- rod 

curvature radius. Positive directions of forces and 

moments are shown in Fig. 4. 

For the rod center line deformation the following 

formulae are applied: 
 

1 1 1 dθ
,θ ,

du w dw u

A d R A d R A d
ε κ

α α α
= + = − + =  (5) 

 

Here, ε and κ are tensile deformation and flexural 

deformation accordingly; θ is the cross section flexion 
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angle; u and w are the tangential and the normal 

displacement components. 

The connection between the forces in the rod section 

(4) and the deformations (5) is set forth by the following 

correlations: 

 

,T B M Gε κ= =  (6) 

 

where, B and G are tensile stiffness and flexural 

stiffness. For continuous annular section rods now we 

have the following: 

 
2 4π π

,
4 64

D D
B E G E= =  

 

Here, D is the section diameter; E is Young’s 

modulus. 

For a annular section rod the following will take place: 

 
2 2 4 4

2 4

π π
1 , 1

4 64

D d D d
B E G E

D D

   
= − = −   

   
 

 

Here, d is the inner diameter of the section. 

The specific character of the task under consideration 

stipulates some extra preconditions for the distributed 

load, which is the response of the medium to the impact 

of the needle. Obviously, the tangential load pT from the 

part of the medium on the lateral surface of the needle is 

a negligibly small value for calculating the strained state, 

as compared to the normal component. Therefore, further 

we assume the following: 
 

( ) 0Tp α ≡  

 

For the normal component of load at the stretch of 

the needle 0< a < α0, which does not get in contact with 

the medium, we also have pN(α) ≡ 0.  

At α0< a < L, that is at the stretch of the needle, 

which gets into contact with the medium, the normal 

component of load is stipulated by the response of the 

medium to the displacement component. As a 

hypothesis, we assume that the response of the medium 

is in direct proportion to the value of this displacement. 

The proportionality factor k is a characteristic of the 

medium. Thus, we have the following: 
 

( ) ( )Np kwα α= −  (7) 

 
For modeling the behavior of the medical needle in a 

patient’s body with the help of the Equation 4-7 we have 

to supplement these with the boundary conditions 

corresponding to the specific conditions of this task. 

The left end of the rod (α = 0) is assumed to be 

rigidly fixed: 

( ) ( ) ( )0 0, 0 0,θ 0 0u w= = =  (8) 

 

At the right end of the rod (α = L) the boundary 

conditions of forces will be set as follows: 

 

( ) ( ) ( )0, 0, LN L M L T L T= = =  (9) 

 

The equation system (4-7) is of the sixth order. 

Together with the boundary conditions (8-9) it makes up 

a boundary value problem, by solving which we shall 

find the shape of the deformed needle. 

Straight Needle 

With a straight needle, which axis is located along x 

axis, the Equation 4 become more simple: α = x, R = ∞, 

A = 1. The equilibrium equations will be as follows: 

 

_ 0, 0, 0T N

dT dN dM
p p N

dx dx dx
= + = + =  (10) 

 

The formula for deformations will be put in the 

following way: 

 

,0 ,
du dw d

dx dx dx

θ
ε κ= = − =  (11) 

 

Thus, the equation of strain and the equation of 

flexion can be solved independently and the 

corresponding systems are of the second and of the forth 

order accordingly. Of course, the correlations (10-11) 

will coincide with the well-recognized equations of 

strain and flexion of the straight rods (Birger and 

Panovko, 1988; Turner and Ford, 1960; Salzmann, 1946; 

Marçal and Turner, 1961). 

Annular Needle 

In case of a annular needle with radius R, a point on 

the center plane will be identified using the angular 

coordinate ϕ. Then A = R and the equilibrium equations 

will be as follows: 

 

0, 0, 0
T N

dT dN dM
N Rp T Rp RN

d d dϕ ϕ ϕ
+ + = − + = + =  

 

For deformations we have the following formula: 

 

1 1 1
,θ ,

du w dw u d

R d R R d R R d

θ
ε κ

ϕ ϕ ϕ
= + = − + =  

 

Thus, the annular needle equations are linear 

differential equations with constant factors. The solution 

for the later system is expressible in an essentially closed 

form in the same way as for the straight rod. 
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Elliptical Needle 

The parametric equations of ellipse are as follows (0≤ 

α≤2π): 

 

( )
( )
α cosα

α sin α

x a

y b

 =


=
 

 

Here, a and b are the long and the short half-axes of 

ellipse. Then, according to the formulae (2-3), we have 

the following: 

 

( )

( )

2 2 2 2

3
2 2 2 2 2

sin α cos

sin cos

A a b

ab

a b

α α

κ α
α α

= +

=
 + 

 

 

Later equations, when put into the formulae (4-5), 

will result in the linear equation system with constant 

factors and this system will have to be solved by 

methods of approximation. 

Boundary Value Problem 

Let us write down the boundary value problem of the 

curved needle deformation in the medium, which models 

a patient’s body. For this purpose we shall enable the 

correlations (4-5) pertaining the derivatives, use the 

correlations (6) and take into account the specific 

features of the distributed load, characteristic for the 

task, using (7). As parameter α we shall choose the curve 

length s of the center line of the needle. Then A ≡ 1. This 

will result in the following: 

 

, θ, ,

, ,

du T w dw u d M

ds B R ds R ds G

dT N dN T dM
kw N

ds R ds R ds

θ
= − = − =

= − = + = −
 (12) 

 

Let us supplement the system (12) with the boundary 

conditions: 

 

( ) ( ) ( )0 0, 0 0, 0 0u w θ= = =  (13a) 

 

( ) ( ) ( )0, 0, LN L M L T L T= = =  (13b) 

 

The system (12-13) can be solved by the sweep 

method, i.e., the solution to the boundary value problem 

shall be found as a linear combination of the solutions 

for three auxiliary initial tasks, satisfying the conditions 

at the left end of the interval of integration (13a). 

To make the numeric solution more convenient, we 

shall write down the system (12) as a matrix: 

dU
MU

ds
=  (14)  

 

Where the following indications are introduced: 

 

0 0 0 0

0 0 0 0

0 0 0 0 0
,

0 0 0 0 0

0 0 0 0

0 0 0 0 0

A A

R B

Au A
Rw

A

U M G
T

A
N

R
M A

Ak
R

A

θ

 − 
 
   −  
  
  
 = = 
  
   −
  
   
 
 
 − 

 

 

Now, U1(s), U2(s), U3(s) are three solutions to the 

system (14), meeting the initial conditions: 

 

1 2 3

0 0 0

0 0 0

0 0 0
(0) , (0) , (0)

1 0 0

0 1 0

0 0 1

U U U

     
     
     
     

= = =     
     
     
     
          

 

 

The boundary value problem will be solved as 

follows: 

 

( ) ( ) ( )1 1 2 2 3 3( )U s cU s c U s c U s= + +  (15) 

 

Obviously, the solution (15) meets the conditions 

(13a) at the left end of the interval of integration. 

To meet the boundary conditions at the right end of 

the interval of integration the following correlation has 

to be valid: 

 

1 2 3 1

1 2 3 2

1 2 3 3

( ) ( ) ( )

( ) ( ) ( ) . 0

( ) ( ) ( ) 0

LT L T L T L c T

N L N L N L c

M L M L M L c

     
     =     
          

 

 

To solve the later system, we shall determine the 

values of the variables ci in the Equation 15. The values 

of displacement and the angular deflection at the right 

end of the interval of integration will be expressed by the 

equations as follows: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

( )

( )

( )

u L c u L c u L c u L

w L c w L c w L c w L

L c L c L c Lθ θ θ θ

= + +

= + +

= + +
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Results 

Straight Needle 

Consider the straight needle with the length L. We 

shall study the deformation of such needle, which takes 

place when the needle is pointed in the medium 

modeling a patient’s body. At the first stage, we shall 

consider the problem occurring when the straight rod 

loses stability at meeting a rigid obstacle. The 

equilibrium Equation 4 have to be related to the 

deformed axis of the rod and they will, as a result, 

contain the terms, accounting for the curvatures, thus 

resulting in a non-linear problem. Neglecting the details, 

we shall assume that the specified computations have 

been carried out and that the linearization of the resulting 

equations has been implemented. The boundary 

conditions will be taken from the form (8-9). Let us find 

the critical force TL. The first equilibrium Equation 10 

shows (provided that no distributed tangential load is 

present) a continuous axial force in the rod: T(x) = TL. 

The second Equation 4 will be as follows: 

 
2

2
0

dN d w
T kw

dx dx
+ − =  

 

Given the third equilibrium equation, we shall get the 

following: 

 
4 2

4 2
0

d w d w
G T kw

dx dx
+ − =  (16) 

 

The later equation coincides with the equation for 

determining the formula of the rod stability loss 

(Birger and Panovko, 1988), but it takes into account the 

supporting force. Characteristic equation has two real-

valued and two pure imaginary solutions: 

 

1 2and iλ λ± ±  

 

Where: 

 

2 2

1 2

4 4
,

2 2

T T kG T T kG

G G
λ λ

− + + + +
= =  (17) 

 

The solution to the Equation 16, meeting the 

conditions (13a) at the left end, will be put as follows: 

 

[ ]
[ ]

1 2 2 2 1

2 1

sin sin

coscos

w A x sh sh x

B x chch x

λ λ λ λ λ

λ λ

= −

+ −
 

 

At the right end the following conditions must be 

valid: 

( ) ( )0 and 0w L M L= =  

 

Therefore: 

 

1 2 2 1 2 1

2 2 3 3 3

2 2 1 1 2 2 1 1

sin cos
0

cos sin

L sh L L ch L

L ch L L sh L

λ λ λ λ λ λ
λ λ λ λ λ λ λ λ

− −
=

− − −
 (18) 

 

Equation 18 together with the correlations (17) make 

it possible to find the value of the critical force TL, at 

which the needle loses stability. Consider an important 

special situation when there is no medium response, i.e., 

when the needle perforates a surface. Thus, 

 

1 20,
T

G
λ λ λ= = =  

 

Then the Equation 18 shall be as follows: 

 

tg L Lλ λ=  

 

The first nonzero root of this equation has the value 

of λL = 4.4934. Therefore, for the critical force the 

following formula is applied: 

 

2
20.2L

G
T

L
= ⋅  

 

For a steel needle with parameters: E = 2.0⋅10
11 

N/m
2
; the outer diameter of the needle, D = 1 mm; the 

inner diameter of the needle, d = 0.8 mm; the graph of 

critical force dependence on the length of the needle 

is shown in Fig. 5. 

Annular Needle 

The computation of the tension state for the 

annular needle has been carried out for the following 

input data: Material of the needle is steel, E = 

2.0⋅1011 N/m
2
; radius of the needle, R = 10 cm; outer 

diameter of the needle, D = 1 mm; inner diameter of 

the needle, d = 0.8 mm; value of the force at the tip of 

the needle, TL = 0.01 N; medium response, k = 10 

N/m
2
. Length of the needle L = 78.5 mm, which 

corresponds to 1/8 of the circumference: 0≤ϕ≤π/4. 

The results of the computation are shown in Fig. 6.  

The maximum value of a tangential displacement is 

reached at the tip of the needle and it amounts to app. 

0.01 mm. The shearing force and the moment of 

deflection are turned to zero at the tip of the needle. Such 

boundary conditions secure the minimum traumatic 

impact on the tissues.  

The second graph shows that the maximum value of 

normal displacement assumes the value of app. 0.07 mm. 
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Fig. 5. Stability loss. Critical force dependence on the length 
 

 
 

Fig. 6. Curvature of the annular needle k = 10 N/m2, 0≤ϕ≤π/4 
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Fig. 7.Curvatureof the elliptical needle a = 1 mm, b = 100 mm 

 

Elliptical Needle 

The computation of the tension state for the elliptical 

needle with wide eccentricity have been carried out for 

the input data as follows: Material of the needle is steel, 

E = 2.0⋅10
11

 N/m; the short and the long half-axis of the 

ellipse, a = 1 mm and d = 100 mm; outer diameter of the 

needle, D = 1 mm; the inner diameter of the needle, d = 

0.8 mm; value of force at the tip of the needle, TL = 0.01 

N; medium response, k = 10 N/m
2
. 0≤ϕ≤π/2. 

The results of the calculations are shown in Fig. 7. It 

could be observed, that close to the right end of the needle 

the displacement and the force graphs have the appearance 

of a characteristic boundary effect, at the same time the 

angle of the section deflection and the moment of deflection 

are altered slowly over the length of the needle. 

Discussion 

As of today, at the stage of theoretical and practical 
research, a scientific and technical basis is formed in the 

area of developing the flexible needles and the methods 
for controlling their movement in the robotic complexes 

for executing brachytherapy operations. With 
mathematical modeling and under the phantom model 
experimental conditions the achieved precision of needle 
implanting is quite high with minimum mistakes at 
targeting. However, under the clinical research 
conditions the loss of targeting precision should be 

expected, as there appear other influencing factors, such 
as physiological movement of the tissue, flows of 
biological liquids and the tissue heterogeneity. The 
functions of the control system can be enhanced up to 
detecting the patient’s movements during the needle 
targeting process (breath, flows of biological liquids). 

Conclusion and Further Researches 

The numerical calculations can be used for solving the 

problem of minimum tissue traumatizing at implanting the 

radioactive seeds, as well as for calculating the controls of 

the needle operating manipulator. 
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It has been found, that in the practically important 

case with the needle of annular shape inserted along the 

annular trajectory, the shearing force and the moment of 

deflection are turned to zero at the tip of the needle, thus 

ensuring the minimum traumatizing effect on the tissues 

and, as a consequence, improving the safety of the 

procedure. With minor deviations this has been also 

confirmed for the elliptical needle. 

In the course of performing the calculations for the 

straight needle a dependency of the critical force on the 

length of the needle has been established, which, 

provided that the input data on the tissue are available, 

makes it possible to determine the value of this force to 

ensure the perforation. 

This article considered the issue of calculating the 

curved needle deformation as a problem of interaction 

between the tissue and the controlled needle. In future, 

additional calculations are planned to be performed to 

formulate the curved trajectory lines with different 

number of inflections. This in turn will bring up the 

question of extra investigations to be performed on 

traumatic effects on the tissue. 
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