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Abstract: Complexity in data structure has led to the rapid development of 

computational statistics methods. Machine learning approaches have been 

introduced and applied to solve complex problems in many fields. This paper 

applies two common machine learning approaches, Random Forest (RF) and 

Support Vector Machine (SVM), in the detection of epilepsy. The diagnosis of 

epilepsy can usually only be made when a seizure is happening, which leads to 

some difficulties in the diagnostic process. The most recent way of 

diagnosing epilepsy is by using an Electroencephalograph (EEG) record. 

However, detecting epilepsy cases through EEG records takes a long time 

and may lead to misleading diagnostic results. The use of machine learning 

approaches is intended to generate fast and accurate classification results. As 

the EEG only generates a signal, direct analysis using RF or SVM cannot be 

carried out and the EEG record needs to be pre-processed. This paper uses 

Discrete Wavelet Transform and Line Length Features in the data pre-

processing stage to decompose the signal by frequency and time. The 

classification results show that both RF and SVM perform very well and are 

able to classify cases of epilepsy accurately. The RF outperforms the SVM in 

the training dataset, while the SVM has a better performance in testing, with 

almost nom is classified cases. Several open problems relating to 

interpretation as well as parameter settings are described.  
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Introduction  

The prevalence of epilepsy is still very high across 

the world. Epilepsy can be diagnosed during an epileptic 

attack. However, the diagnostic check conducted by a 

doctor is usually carried out during the post-attack 

period, without the doctor being able to look at the 

patient’s condition directly while the attack is happening. 

This condition makes the diagnostic process difficult and 

may lead to wrong conclusions. 

The most sophisticated way to recognize epilepsy is 

through an Electroencephalograph (EEG) record. An 

EEG records the electrical activity of neurons in the 

brain. Fluctuations in the electricity are measured from 

the voltage difference of electrodes connected to the 

brain network (Hughes, 2003). The diagnostic process 

using an EEG is carried out by monitoring patients 

continuously over several days. Nevertheless, most of 

the recorded data has to be observed and analyzed 

visually by an expert in order to detect epilepsy 

correctly. This detection procedure is considered to be 

inefficient, as it is time-consuming and costly. Therefore, 

tools or methods that lead to the fast and accurate 

diagnosis of epilepsy are required. In fact, numerous 

methods have been developed to detect cases of epilepsy. 

Recent works on EEG classification are, among others, 

those of Choe et al. (2010), who use statistical spectral 

feature extraction directly to classify the EEG signal, 

Anu and Thomas (2015), who apply k-NN to the spectral 

features of EEG records, and Al Ghayab et al. (2016), 

who perform the classification by simple random 

sampling and feature extraction. Most of the methods 

carry out feature extraction on the signals prior to 

classification and can thus be considered as two-step 

procedures. Although it has advantages, feature 

extraction may lead to some important information in the 

raw features being lost. Moreover, using extracted features 

to predict the class of new cases sometimes leads to poor 

performance, which means that the method per forms well 

in training data but fails to classify the testing data well. 

Hira and Gillies (2015) comprehensively discuss the 

weaknesses and advantages of feature selection and 
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extraction. This situation leads to the suggestion that the 

full features should be used in some cases. 

This research applies two famous statistical methods 

in the classification of epilepsy using EEG signal data: 

Random Forest (RF) and Support Vector Machine 

(SVM), with no feature extraction. Both classification 

methods have been successfully applied in various cases. 

The RF applications can be seen in Diaz-Uriarte and de 

Andres (2006) for gene selection, Svetnik et al. (2003) 

for compound classification and Pal (2005) for remote 

sensing classification, among others, while Vapnik 

(1999; Drucker et al., 1999; Squarcina et al., 2015; Lian 

et al., 2015; Huang and Zhou, 2015) have applied SVM 

to spam categorization, psychosis patients, influenza 

virus classification, etc. 

Because of the nature of the EEG record, the RF and 

SVM methods cannot be directly applied to the signal 

generated from an EEG and the signal therefore has to be 

transformed. This research transforms the signal using 

Discrete Wavelet Transform (DWT) as the pre-

processing method. DWT is a commonly recommended 

approach for analyzing data that have both time and 

frequency. By decomposing the signal into localized 

elements (both time and frequency), Mallat and Hwang 

(1992) argue that DWT is able to characterize the pattern 

well. The classification results generated from RF and 

SVM will be compared to find the best approach to 

diagnosing cases of epilepsy. 

Materials and Methods 

Data and Variables 

The data used in this research come from a secondary 

dataset that has previously been analyzed by Lehnertz et al. 

(2002) and is published online at 

http://ntsa.upf.edu/downloads/andrzejak-rg-et-al-2001. 

The dataset has been used by Guo et al. (2010) to detect 

cases of epilepsy using neural networks. The variables 

used in this research are pre-processed using DWT. The 

number of predictor variables is determined by the 

number of levels used in the sub-band coding procedure. 

The level is chosen so that part of the signal is correlated 

with the frequency, which is represented by the wavelet 

coefficients. In this research, the decomposition levels 

are specified to be four, six and eight levels. 

Furthermore, the data obtained from those three levels is 

classified using RF and SVM. Subasi (2007) proved that 

Daubechies order four (db4) has a smoothing feature that 

fits the changes in the EEG very well. Therefore, the 

wavelet function chosen for this research is 

Daubechiesorder four (db4). 

Signal Transformation and Wavelet Transform 

Mathematical transformation is used to obtain further 

information from a signal through frequency analysis. 

One of the methods used to transform a signal from the 

time domain to the frequency domain is the Fourier 

Transform (FT). However, the FT can only be used when 

the signal is stationary and does not change over time. In 

fact, non stationary signals appear in many cases including 

EEG. Wavelet transform is a method used to transform a 

signal into the frequency as well as the time domain. 

A wavelet transform signal is defined as: 
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where, b is the position of the wavelet and a is the scale 

(Antonini and Barlaud, 1992). Wavelet transform is a 

popular method for transforming any data in the form of 

a signal, such as an acoustic signal from music. Research 

by Daubechies (1990) proved that the wavelet transform 

outperforms any other transformation approach such as a 

Short-time Fourier Transform. This research uses the 

Discrete Wavelet Transform (DWT) as the 

transformation approach. The DWT efficiently passes 

the signal through a low pass and a high pass filter, 

which is known as sub-band coding. The raw signal, 

denoted as x[n], is processed through the high pass filter 

g[n] and the low pass filter h[n]. After the filtering 

process, half of the sample is eliminated by applying the 

Nyquist rule (Akansu et al., 2010). The rest of the signal 

is then divided into two outputs, which is known as the 

one-level decomposition process. This is mathematically 

written as: 
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where, yhigh[k] in (2) and ylow[k] in (3) are the outputs of 

the high pass and low pass filters. The filtering process 

uses a linear convolution method, where ][nx  is a signal 

function for the input filtering, the functions g[2k-n] in 

(2) and h[2k-n] in (3) are the coefficients of the wavelet 

functions for the high pass and the low pass respectively, 

n is the signal length of the input and k is the length of 

the wavelet coefficient. The output of the high pass filter 

is Details (D) and the output of the low pass filter is 

Approximation (A). The one-level decomposition will 

generate as output D1 and A1. At level two, the output 

A1 is re-filtered to generate outputs D2 and A2. This 

process is repeated recursively up to the specified l-level. 

D1, D2,…,Dl and Al are the predictors in the 

classification process. 
Line length is defined as the complexity measure or 

waveform fractal dimension line length, which is 
sensitive to the amplitude and signal frequency. It can be 
used to measure the pathology of the combination between 
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the amplitude and frequency characteristics of the EEG 
signal. Esteller et al. (2001) define the line length as: 
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where, x in Equation 4 is a signal, i represents the 

indices from the signal sample and N is the number of 

the signal used.  

Random Forest 

Random forest is a classification method consisting 

of independent classification trees (CART). The 

prediction of the classification is obtained by the 

majority voting of the classification trees that have 

been formed. Random forest is an extension of a 

collection of methods developed by Breiman (2001) 

and is used to improve the classification accuracy. 

Random forest differs from the bagging process in the 

sense that the bagging process uses a bootstrap to 

generate the classification tree in various versions and then 

combines these versions together to obtain the final 

prediction. In contrast, the randomization process in random 

forest to form the tree is carried out not only on the 

sample data but also on the predictor variables, leading 

to a collection of classification trees with different sizes 

and forms. The expected result is a collection of 

classification trees with very low correlation between the 

trees. This low correlation reduces the classification 

accuracy produced by random forest. 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a very popular 
method in classification. SVM was first introduced by 
Vapnik (1999) in the Annual Workshop on 
Computational Learning Theory. SVM is one of the 
methods that has been developed to solve problems of 
classification and prediction that cannot be solved by the 
classical approach. SVM was developed using the 

principle of the linear classifier. However, most cases do 
not satisfy the linearity assumption and hence SVM has 
been developed to meet the nonlinear case by 
introducing the kernel concept. The study by Hsu et al. 
(2003) showed that classification using SVM will yield 
an accurate mapping. 

The idea of SVM is to find the optimum hyperplane 

on the input space. The function of the hyperplane is 

used as a separator of two classes on the input space. The 

classes are usually denoted by -1 and +1. Fig. 1 

illustrates the hyperplaneon SVM. The pattern on class -

1 is shown by rectangles, while the pattern on class +1 is 

shown by circles. 

Figure 1a shows the separator lines between the two 

classes (discriminant boundaries). The best line is the 

one with the maximum margin hyperplane. The margin 

is the distance between the hyperplane and the closest 

pattern in each class. The closest pattern is called the 

support vector. In Fig. 1b, the circles show the support 

vector for each class. Moreover, the bold line is the best 

hyperplane as it is located in the middle of the classes. 

The process of finding the position of the optimum 

hyperplane is at the core of SVM.  

Evaluation of Classification Accuracy 

Classification accuracy is used to assess how well the 

model represents the true process. One of the ways of 

measuring classification inaccuracy is the Apparent 

Error Rate (APER); the total accuracy rate is (1-APER). 

Table 1 shows how to calculate the APER. 

 
Table 1. Cross-tabulation of classification results 

 Prediction 

 ---------------------------------- 

Observation 1 2 Total 

1 n11 n12 n1 

2 n21 n22 n2 

Total n.1 n.2 N

 

 
 (a) (b) 

 

Fig. 1. Illustration of hyperplane on SVM (Hsu et al., 2003) 
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where, n11 and n22 are the numbers of correct predictions 

in the corresponding class, while n12 and n21 are the 

numbers of incorrect predictions. Efron (1986) defines 

the APER value as: 
 

12 21
100%

n n
APER

N

+

= ×  

 

Results 

This section describes the simple statistics for the 
pre-processed data using DWT and Line Length Feature 
(LLF) extraction. The data used in this research are the 
EEG records of 500 patients, some of whom are 
“normal” patients and some of whom are epileptic.  

Figure 2 depicts the percentages for the data used in 
this research: 80% of the patients (400 patients) are 
“normal” and the rest have been detected to beepileptic. 
The dataset has been further pre-processed with DWT as 
well as Line Length Feature (LLF) extraction to extract 
sub signals with a vector size of 1 x (k+1), where k is the 
specified level of decomposition. 

Classification using Random Forest  

The first step to be conducted in RF analysis is to 

determine the number of predictor variables that will be 

randomly selected during the splitter selection in the 

classification tree. Following Breiman, the number of 

selected predictor variables is p  where p is the total 

number of variables. The number p for the four-level 

decomposition is five, so that the number of selected 

control variables (predictors) is 5 = 2.24  (which we 

round to two variables), the number of predictor 

variables for the six-level decomposition is 7 = 2.64  

(rounded up to three variables) while the number of 

predictors for the eight-level decomposition will be 

exactly 3. Each setting is run with numbers of trees equal 

to 100, 500 and 1,000. Tables 2-4 below display the 

classification results from analyzing the dataset with 

these three different decomposition levels consecutively. 

Table 2 shows good classification accuracy in almost 

all settings. The combinations of data composition 

75%:25%, 85%:15% and 95%:5% consistently have 

100% accuracy on both test and training data. This result 

is observed for all combinations of the number of trees 

(K) and hence it is concluded that the number of trees 

does not significantly influence the classification 

accuracy. The data composition with the lowest accuracy 

(although it is still high enough) is the combination of 

80%:20%, which gives 100% for training data and 

95.83% for the test data. Similar results are obtained for 

the settings specified in Table 3 and 4. 

 

 
 
Fig. 2. Percentage of data in each category 

 
Table 2. Comparison of classification accuracy using random forest for four-level decomposition data  

 Accuracy (1-APER) (in %) 

 -------------------------------------------------------------------------------------------------------------------------------- 

 K = 100  K = 500  K = 1000 

Data combination ----------------------------------------- ------------------------------------- ---------------------------------- 

Train text Data train Data test Data train Data test Data test Data test 

75%:25% 100 100.00 100 100.00 100 100.00 
80%:20% 100 95.83 100 95.83 100 95.83 
85%:15% 100 100.00 100 100.00 100 100.00 
90%:10% 100 97.96 100 95.83 100 95.83 
95%:5% 100 100.00 100 100.00 100 100.00 

 
Table 3. Comparison of classification accuracy using random forest for six-level decomposition data 

 Accuracy (1-APER) (in %) 

 -------------------------------------------------------------------------------------------------------------------------------- 

 K = 100   K = 500  K = 1000 

Data combination ---------------------------------------- --------------------------------------- ------------------------------- 

Train text Data train Data test Data train Data test Data train Data test 

75%:25% 100 99.19 100 99.19 100 99.19 

80%:20% 100 97.96 100 97.96 100 97.96 
85%:15% 100 97.26 100 97.26 100 97.26 
90%:10% 100 97.96 100 97.96 100 97.96 

95%:5% 100 100.00 100 100.00 100 100.00 
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Table 4. Comparison of classification accuracy using Random Forest for eight-level decomposition data 

 Accuracy (1-APER) (in %) 

 --------------------------------------------------------------------------------------------------------------------------------- 

 K = 100  K = 500  K = 1000 

Data combination ------------------------------------- ---------------------------------- ----------------------------------- 

Train: Test Data train Data test Data train Data test Data train Data test 

75%:25% 100 98.37 100 98.37 100 98.37 

80%:20% 100 95.83 100 96.91 100 95.83 

85%:15% 100 98.65  100 98.65 100 98.65 

90%:10% 100 100 100 100 100 100 

95%:5% 100 100 100 100 100 100 

 

Classification using Support Vector Machine  

The first step in SVM analysis is to determine the 

best C and � parameters to use in the kernel function, 

that is, those that generate the lowest error model. The 

choice of C and � will influence the accuracy of the 

constructed model. Among several approaches to 

determining the parameter combination are the uniform 

design and the tune approaches, which are available in R 

software. Huang and Zhou (2015) found that the 

optimum C in SVM should be located within the 

range of 10
−2 

to 10
4
, while the parameter � will be 

found within the range of 10
−2
/ρ and 1.9/ρ, where ρ is 

assumed to be 0.5. This research thus uses the tune 

approach for estimating the best combination of C and �, 

which gives us 91 and 0.302 with an error of 0.008. 
 

Table 5 above shows the comparison of the 

classification accuracy for analyzing the four-level 

decomposition data using SVM. The highest accuracy is 

obtained with the setting of 80% data as training data 

and 20% as testing data, where the accuracy is 99.75%. 

Meanwhile, setting 95% as training data yields the 

lowest accuracy. Tables 6 and 7 perform the accuracy 

results for six- and eight-level decomposition.  

The results for the classification using SVM with 

six- and eight-level decomposition, as shown in Table 

6 and Table 7, are similar to those using the dataset 

with the four-level decomposition. The accuracy for 

all settings is more than 90%. The values presented in 

Table 6 are obtained with the combination of C = 20 

and � = 0.011, while Table 7 uses the parameters C = 

10,000 and � = 0.001. 

 
Table 5. Comparison of classification accuracy using SVM for 

four-level decomposition data 

 Accuracy (1-APER) (in %) 

Data combination ------------------------------------------ 

Train: Test Data train Data test 

75%:25% 99.73 99.19 

80%:20% 99.75 96.90 

85%:15% 99.53 100.00 

90%:10% 99.55 97.96 

95%:5% 99.36 100.00 

Table 6. Comparison of classification accuracy using SVM for 

six-level decomposition data 

 Accuracy (1- APER) (in %) 

Data combination ------------------------------------------ 

Train: Test Data train Data test 

75%:25% 98.37 97.54 

80%:20% 98.73 97.96 

85%:15% 98.81 95.83 

90%:10% 98.65 95.83 

95%:5% 98.50 100.00 

 

Table 7. Comparison of classification accuracy using SVM for 

eight-level decomposition data 

 Accuracy (1- APER) (in %) 

Data combination ------------------------------------------ 

Train: Test Data train Data test 

75%:25% 99.73 99.19 

80%:20% 99.75 98.99 

85%:15% 99.76 100.00 

90%:10% 99.77 100.00 

95%:5% 99.79 100.00 

 

Discussion 

This section discusses the results presented in the 

previous section. One of the focuses of the discussion is 

the process of setting up the proportion of data used for 

the training and testing samples. All the settings 

showed that the data (testing and training) 

combinations lead to high classification accuracy. 

There is no suggestion that using any specific 

combination will lead to a more accurate result. This 

shows that both methods are very suitable for 

classifying whether the EEG records for a particular 

patient show that the patient suffers from epilepsy. 

Another issue is the setting of the tree number (K) in 

the Random Forest classification as reported in Tables 2, 

3 and 4. The tables reveal that the accuracy is only 

slightly different for the different settings of K. 

Meanwhile, the classification using SVM requires the 

parameters C and �to be set. This research uses 

previously published works to determine the domain for 

both parameters. Indeed, we obtain convergent results 

with a high degree of classification accuracy.  

Both RF and SVM have a high accuracy level, which 

means that both procedures are very capable of detecting 
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cases of epilepsy. There is no reason to decide that one 
method outperforms the other in this case. This research 

shows that applying RF and SVM is not a simple matter, 

although both methods are capable of generating high 
classification accuracy. To implement the SVM, several 

parameters, such as C and �, have to be specified and no 
formal procedure has been developed to estimate the 

optimum value of those parameters. Moreover, the exact 

range of the values is also unknown, which may lead to 
under- or over-estimation. A similar problem arises with 

the application of the RF method. The optimum value for 
K can only be found after comparing the RF accuracy for 

several K settings, which seems to be a trivial matter. 
Developing a statistical procedure to deal with the 

optimum parameter setting in SVM and RF is still an 

interesting and challenging problem and will be our future 
research topic. 

Besides the problem of parameter specification, both 
methods suffer from alack of interpretation. As can be 
seen from this research, RF and SVM are purely 
machine learning approaches and they lack information 
about the specification or selection of the variables. To 
detect cases of epilepsy, we need to know if there is any 
clear and specific pattern that can explain the differences 
between the EEG records of epileptic and “normal” 
patients. Developing the RF and SVM methods to make 
them capable of conducting feature selection is also a 
subject for future research. 

Conclusion 

This paper investigates the performance of two 
common statistical methods to detect cases of epilepsy. 
The nature of the raw dataset generated from an 
electroencephalograph requires transformation and the 
DWT has been proven to be an effective procedure to 
decompose the signal into a time domain dataset. Several 
settings of the dataset are examined and the results show 
that both RF and SVM perform very well, with an 
accuracy level approaching 100% for both training and 
testing data. This confirms that the methods are capable 
of being used to detect, from EEG record data, whether 
or not a patient has epilepsy. 
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