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Abstract: The objective of this paper is to use evolutionary algorithm for 

policy making to help in decision support, the Regional Integrated Climate-

Economy (RICE) model for the dynamic climate change is used to optimize 

the tradeoff policy between abating of carbon dioxide emissions to reduce 

global climate change and in the other hand the resulting in economic 

damages. A Constrained Genetic Algorithms (CGAs) is modified to search 

for near global optimal solutions the by searching climate optimum control 

parameters that resulted in optimal CO2 abatement and temperature 

reduction with less economic damages. A Comparison study between 

optimizing the output of GAs with the standard solution revealed that GAs 

successfully found a better solution, in term of finding optimum values for 

the carbon prices that lead to more reduction in carbon emission comparing 

to solutions given by the model developer. 

 

Keywords: Climate Change, RICE Model, Economic Policy, Green House 

Gases, Genetic Algorithm 

 

Introduction 

Green House Gases (GHGs) emissions are presently 

changing the energy balance of our planet, by trapping 

heat that would otherwise be radiated out into space. Our 

planet’s average temperature is determined by a balance that 

is accumulated between the energy coming from the Sun 

and the energy reflected and emitted out into space. 

Human activity caused changes to the greenhouse 

effect causing entrapment of more heat which drives global 

warming. Carbon dioxide CO2 is the gas most discussed. 

Which It is the main human-caused (anthropogenic) 

contributor, but it is not the only one (Richter, 2014). 

Fading carbon dioxide emissions will definite 

reduces global climate change, but it is in other hand 

resulting in economic damages. This can be illustrated in 

Fig. 1, the upper circle shows increasing in the economic 

growth lead to rapidly rising emissions of CO2 into the 

atmosphere. The arrow then moves to the circle at the 

right, where the impacts of increasing CO2 

concentrations lead to major changes in the Earth 

climate. On the lower circle, the changing climate 

produces impacts on human and natural systems. 

In estimating impacts, the potential areas of concern 

have been divided by Nohadous into seven categories: 1. 

Agriculture 2. Sea-level rise. 3. Other market sectors 4. 

Health 5. Nonmarket amenity impacts 

Finally, the circle on the left shows the responses to 
the threat of climate change. The first and most 
simplified climate model taking into account the 
greenhouse effect was made in 1896 by Swedish chemist 
Svante Arrhenius, who went on to win the Nobel Prize in 
Chemistry in 1903. He calculated that reducing the CO2 
in the atmosphere by half would lower the global 
temperature by about 5°C, which is as much as it was 
actually reduced in the last ice age. 

He also calculated that the temperature would 
increase by about 5°C if the CO2 in the atmosphere were 
doubled, not very different from today’s far more 
sophisticated models (Nordhaus, 2014). 

For at least the past 650,000 years the CO2 
concentration levels have been below 300 ppmv at 
business-as-usual scenario BAU (no additional climate 
policy) and it is predicted to increase to 600 ppmv by 2050 
(Gowdy, 2008). If all available fossil fuels were burned CO2 
levels could ultimately reach 2,000 ppmv (Kump, 2002). 
Scientists are uncertain and anticipate that the most likely 
scenario is the atmospheric CO2 will peak at 1,200 ppmv in 
the next century or at 1,400 ppmv in three centuries. 

Policy Making in Decision Support 

Global public policy issues are an extremely complex 
process that is affected by many factors, occur in rapidly 
changing environments characterized by uncertainty and 
involve conflicts among different interests. 
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Fig. 1. The circular flow of global warming 

 

Policymaking in the energy sector interprets the 

crucial aspect of energy production and energy efficiency 

that strongly affect economic development, sustainability 

and social acceptance. The energy production is heavily 

relying on burning fossil fuels, which produce carbon 

emissions that are responsible for climate change. 

Against this background, energy policy making is 

turning attention toward sustainable energy policies and 

low carbon economy, by possibly eliminating the direct 

use of fossil fuels, targeting renewable energy sources, 

promoting energy efficiency and strategically going 

toward the smart grid. 

Computing techniques are important instruments for 

aiding governance and policy making: The literature 

reports attempts to use optimization, visual scenario 

evaluation agent-based simulation and opinion mining to 

support specific cases of this process. However, there is 

still a big gap for improvement. 

Also, there are a number of technologies supporting 

decision making and optimization in the energy planning 

field (Gavanelli et al., 2010), namely Constraint 

Programming, Mixed Integer Linear Programming. 

Gavanelli et al. (2010; 2011) used of constraint 

reasoning techniques to increase the effectiveness of the 

process by enabling the policy maker to analyze various 

aspects and to play with parameters in order to obtain 

alternative solutions along with their environmental 

assessment also proposed a fuzzy model for the Strategic 

Environmental Assessment (SEA). It reported that: While 

being far more expressive than a traditional Constraint 

Logic Programming (CLP) approach, it is less usable 

within a regional planning decision support system. They 

evaluated a previous regional plan with two models and 

proposed the outputs to an environmental expert. Expert 

compared the two outputs and chose the CLP model as 

closest to a human-made assessment. 

Given the amount of financial, human and 

environmental resources that are involved in regional 

plans, even a small improvement can have a huge effect. 

Ruppert et al. (2015) presented a novel approach to 
tackle the challenges of the policy paradox by 
information visualization technologies of the policy 
analysis field. They used visual decision support systems 
as the means to bridge gaps in policy analysis. 

DICE and RICE Model for the Climate Change 

The Dynamic Integrated Climate-Economy (DICE) 

model was first presented in its modern form by 

(Nordhaus, 1994; 1993), who described the new, fully 

dynamic Ramsey-type optimal growth structure of the 

model and the optimal time path of emission reductions 

and associated carbon taxes that emerged from it. 

Nordhaus described the Dice model as an integrator 

and an end-to-end fashion the economics, carbon cycle, 
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climate science and impacts in a highly aggregated 

model that allow[s] a weighing of the costs and benefits 

of taking steps to slow greenhouse warming. 

DICE and RICE models couple a Ramsey-Cass-

Koopmans exogenous growth economy to a model of 

the climate system. The economy produces emissions 

that accumulate in the atmosphere, change the radiative 

forcing in the atmosphere and warm the planet’s 

surface. This warming feeds back into economic 

production and consumption. 

The RICE and DICE models used an empirical 

approach to estimating the CO2 flows, estimating the 

parameters of the emissions concentrations equation 

built from previous data on emissions and 

concentrations. The main purpose of the economic and 

environmental policies is to improve the living standards 

or consumption of people now and in the future, it can 

view climate change in the framework of economic 

growth theory. It also can view concentrations of Green 

House Gases (GHGs) as “negative natural capital” and 

emissions reductions as lowering the quantity of that 

negative capital. Emissions reductions lower 

consumption today by preventing economically harmful 

climate change but, on the other, increase consumption 

possibilities in the future (Nordhaus, 2010). 

The models divide the global world into 12 regions. 

Some are large countries such as the United States or 

China; others are large multi-country regions such as the 

European Union or Latin America. Each region is 

parameterized with a well-defined set of preferences, 

represented by a social welfare function and to optimize 

its consumption, GHG policies and investment over 

time. The social welfare function is increasing in the per 

capita consumption of each generation, with diminishing 

the marginal utility of consumption (Nordhaus, 1993). 

The climate module is unchanged from the original 

DICE and RICE models. In term of both model contains 

a traditional economic sector like that found in many 

economic models and geophysical relationships designed 

for climate-change modeling. The mathematical 

representation of this assumption is that policies are 

chosen to maximize a social welfare function, W, which 

is the discounted sum of the population-weighted utility 

of per capita consumption: 
 

[ ]
0

( ), , ( ) ( )
T

t

W U c t t T t R t

=

 =  ∑   (1) 

 
The notation is that c(t) is per capita consumption, 

L(t) is population as well as labor inputs and R(t) is the 

discount factor which is defined by: 
 

( ) (1 )
t

R t ρ
−

= +   (2) 

 

The Dynamic growth model incorporates a simple 

feedback mechanism between economic activity and 

climate change. The objective in the model is to maximize 

social well-being with a particular set of decisions about 

investment and CO2 abatement over time. Wellbeing is 

represented in the model by a flow of utility U; defined as 

the product of the logarithm of per capita consumption per 

year; and the exogenously given population L: 
 

( ) ( )U L t c t=  (3) 
 

The objective is to identify a policy that maximizes 

the discounted sum of utility U*: 
 

( )
0

( )
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( )
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t

t

c t
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L t
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−

=

  
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Welfare is maximized subject to a number of 

Economic, technological and climatic constraints. 
A list of the RICE model important equation is 

provided in the Appendix A, the model itself is available 
in an Excel version at the author’s webpage at 
http://www.econ.yale.edu/~nordhaus/homepage/RICEm
odels.htm. 

RICE Climate Change Model and Health Impact 

The potential damages from climate change are 

divided into seven categories: Agriculture, sea level rise, 

other market sectors, human health, nonmarket amenity 

impacts, human settlements and ecosystems and 

catastrophes. A full recounting of the derivation of the 

damage functions in all categories is drawn heavily from 

(Keller et al., 2004) which summarized below, Many 

Studies talked about the Climate change impacts on 

human health and indicate the potential for the spread of 

tropical diseases to subtropical or temperate regions if 

warming proceeds more rapidly than improvements in 

health care keep pace. 
They mention that among the major tropical diseases 

that may increase their range are malaria, dengue and 
yellow fever (Gavanelli et al., 2010). Impacts may also 
occur through the interaction of air and water pollution 
with higher temperature and more frequent river floods. 

Unfortunately, there are currently no comprehensive 

studies of the health impacts of global warming. Most 

studies also ignore the impacts of extremes of cold (which 

would be reduced) and focus primarily on extremes of 

heat (which would be increased). In the absence of 

systematic estimates of health impacts, Nordhaus relied 

on estimates based on the current prevalence of 

climate-related diseases. The most comprehensive 

study of the global incidence of disease provides 

estimates of Years of Life Lost (YLLs) and Disability-

Adjusted Lives Lost (DALYs) prepared by Murray and 

Lopez (1997). Based on the data in that study, they have 

classified diseases into climate related and non-climate 

related. The former include malaria, along with a broad 

group of tropical diseases, dengue fever and pollution. 
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Murray and Lopez group sub-regions into eight broad 

regions, which correspond reasonably well with the 

grouping in RICE model.  

Optimization of the Model  

The optimization of climate change model is a 

nontrivial task, that introduces non-smooth gradients and 

local optima, which limit the modified Newton algorithm 

and other methods based on explicit or implicit 

derivative information. The numerical problems 

introduced by the local optima are typically addressed by 

the choice of a global optimization method such as 

simulated annealing or a genetic algorithm (Pierre, 2012; 

Keller et al., 2004). 

To overcome the computational problems caused by 

the climate change problem, global optimization 

algorithm specifically genetic algorithm method is used, 

which does not rely on gradient Information is used and 

modified to find multiple sub-optimal solutions Instead 

of single Global optimum solution. 

Constrained Genetic Algorithm 

The genetic algorithm method has been proven to be 

successful in complex optimization problems such as 

wire routing, scheduling, adaptive control, game playing, 

cognitive modeling, transportation problems, traveling 

salesman problems, optimal control problems and 

database query optimization. Nordhaus optimized the 

Excel model, by using proprietary software called “Risk 

Solver Platform,” developed by Frontline Solvers. His 

Excel sheet ships with optimized numbers, but Risk 

Solver (or GAMS, or another solver) is required for 

doing new optimizations, it can be used to alter the 

model. The optimization proprietary software used 

Monte Carlo simulation trials in parallel with 

algebraically formulas analysis, with a computation for 

function gradient and curvature. 

 The genetic algorithm selects the best solutions 

among a population of evolving candidate by using the 

fitness function to evaluate each solution to decide 

whether it will contribute to the next generation of 

solutions. With operations analogous to gene crossover 

and mutation and then reproduction, the algorithm 

creates a new population of candidate solutions 

(Goldberg, 1989). The most important genetic operators 

are the initialization (a different set of populations are 

used each run), crossover, mutation, selection and 

termination) Fig. 2 and 4.  

Unfortunately, there is no guarantee that the 

algorithm can find the global optima without sticking in 

the local optima. 
However, the method is modified as follows to test at 

least approaching near global optimum solutions: 
Different set of population member are used each run, 

increasing the number of iterations, increasing the 
mutation rate in the evolutionary algorithm and 
graphically inspecting the utility function along selected 
sections of the solution space, as it can be seen in Fig. 3. 

The following is the general specifications of SGAs 
are applied to optimize RICE Model carbon price. 

Chromosome encoding: The control decision 
variables are encoded using the binary system; the CO2 
pricing encoded as 16 bit in chromosome length. 

Fitness assignment: After the objective function is 
calculated the fitness function is scaled in the range then 
the Population are ranked related to their fitness value. 

Genetic operators: The single point crossover with a 
probability of Pc = 0.95 is chosen as it proved to work in 
the most difficult optimization problem, the single point 
mutation with Pm = 0.01 is used and the size population 
is 100 individuals.  

Objective function: The task of the optimal policy is 
to balance the costs and benefits of CO2 abatement the 
welfare function in Equation 3 is to be maximized. 

Constraints enforce the policy of reducing maximum 

increase of temperature to 2°C  

The control variables are used as the price of the CO2 up 

to the year 2055, to examine the impact of changing the 

price in the period in climate change up to the year 2055. 
The algorithm is run in Intel core i5 and 4GB ram, 

with 200 generation stopping criteria, consumed about 
15 min and 23 sec. The resulted solutions are plotted. 

Dataset available in reference ‘Economic aspects of 
global warming in a post-Copenhagen environment’ 
(Nordhaus, 2010). 

The objective is to maximize the discount sum of 
individuals utility U as defined in the A. 

The decision variables are the CO2 abatement over the 
time, the reported period is from the year 1995 until 2155, a 
shorter time horizon of 50 years is used to study the impact 
of using the stochastic method on the policy, this resulted in 
10 decision variables. Researchers reported that even for a 
stabilization of emissions within the next 7 years, the 
atmospheric carbon content will need about 400 years to 
reach its steady state. The relations between the objective 
function and the decision variables is very nonlinear. 
 

 
 
Fig. 2. Representation for the chromosome encoding, 

genetic operators 



Haitham Osman / American Journal of Applied Sciences 2017, 14 (10): 945.954 

DOI: 10.3844/ajassp.2017.945.954 

 

949 

The policy is to reduce the ppm concentration; 

Researchers (Richter, 2014) reported that the truly 

optimal Policies should keep the CO2 peak much 

closer to the deterministic policy. The optimal mean 

peakCO2 concentration is only 12 ppm higher under 

uncertainty over the damage coefficient. 
Dataset available in reference ‘Economic aspects of 

global warming in a post-Copenhagen environment’ 
(Nordhaus, 2010). 

Results and Discussion 

This study differs from previous studies of optimal 

CO2 abatement mostly in the representation of the 

climate optimizing control parameters and the effects 

of parameter uncertainty on optimal CO2 abatement 

and temperature reduction. Table 1. Shows that 

Carbon prices in the different runs compared with the 

original Nordhaus results Fig. 3 shows temperature 

profile presenting slight reduction obtained by the 

GA. In Fig. 4 the carbon total emissions are 

oscillating in comparison with the optimum values 

obtained by Nordhaus, on the other hand, Fig. 5 shows 

that the percentage of climate damage has been 

reduced when using the GAs optimizer of carbon 

pricing in comparison to the Nordhaus optimized 

results. Figure 6 and 7 shows the maximum 

concentration is slightly less than 600 ppmv for GA 

but it is equal to 600 pmv for the Nordhaus results. 

Comparison to Previous Studies 

This study differs from previous studies of optimal 

CO2 abatement mostly in the representation of the 

climate optimizing control parameters and the effects 

of parameter uncertainty on optimal CO2 abatement 

and temperature reduction. Nordhaus used excel 

solver to optimize Carbon price for the 50 years. 

Constrained GA is compared with excel solver 

revealed that better abatement and temperature 

reduction can be achieved see Fig. 8 and 9, but it is 

oscillatory in the Emissions control rate for all countries. 

 

 
 
Fig. 3. Modified routine for finding optimum solution 

 

 

 

 

Fig. 4. Simple genetic algorithm chart 
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Table 1. Carbon prices in the different runs 

Carbon prices per ton 2005 2015 2025 2035 2055 

GA optimal carbon cost 0.0 41 160 30 22 

Nordhaus optimal carbon cost * 0.0 37.9 65.5 89.5 117.7 
 

 
 

Fig. 5. Temperature profile 
 

 
 

Fig. 6. Total carbon emissions 
 

 
 

Fig. 7. Percentage of climate change 
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Fig. 8. Price of climate damage in trillion 
 

 
 

Fig. 9. C02 concentration 

 

 
 

Fig. 10. Emissions control rate for selected countries 
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Conclusion 

Results presented in this article were successfully 

attained by optimizing carbon price policy by taking into 

account the Welfare with minimum environmental 

damage using constrained GAs. The algorithm has 

succeeded in optimizing the model, thus outperformed 

all previous results, the temperature is kept at 0.2°C less 

than comparing to Nordhaus previous results. 

Due to the instability of pricing during the 5 periods, 

the total carbon emission oscillates. Such oscillation can 

lead to huge economic problems not to mention CO2 

concentration oscillation accordingly. 

Further Recommendations 

With a given global environment under a strict 

climate policy, economic changes cannot predict with 

certainty, but they can be guided and controlled within 

boundaries. As it can be noted that in Fig. 8 the 

oscillatory in Emissions control rate caused by the policy 

change in the carbon pricing if a severe climate policy 

turns out to create too high economic costs and too much 

instability, the policy should be modified or adapted. 

However, governments will be unable to avoid extreme 

impacts on the world economy and economic policy will 

have a very hard time stabilizing economic responses to 

severe climate change. 

Ethics 

This article is original and to the best knowledge of 

the author has not been published before. The author 

confirm that there are no ethical issues involved. 
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Appendix 

RICE 2010 Model Major Equations 

The following lists the major equations in the 
RICE‐2010 model developed by Nordhaus. Only 
important equations are considered. Note that the 
subscript k represents regions. 

(A1) Welfare: 
 

12 max

1 1

( [ ( ), ( )] ( ))
T

k k

kt

k t

W u c t L t R tφ
= =

=∑∑  

 
(A2) Discount factor: 

 

( ) (1 )
t

R t p
−

= +  
 

(A3) Utility function: 
 

1
[ ( ), ( )] ( )[ ( ) / (1 )]
k k k k

U c t L t L t c t
α

α
−

= −  
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(A4) Output before damages and abatement: 
 

1
( ) ( ) ( ) ( )

k k k k
Y t A t K t L t

γ γ−
=  

 
(A5) Abatement cost as a fraction of output: 

 
2( ) ( ) ( ) ( )k k k

I
t Y t t t

θθ µΛ =  

 
(A6) Climate damages as a fraction of output: 

 

( ) [ ( ), ( ), ( )]

/(1 [ ( ), ( ), ( )])

k k

AT

k

AT

t g T t SLR t M t

g T t SLR t M t

Ω =

+

 

 

(A7) Output after damages and abatement: 
 

( ) ( ) 1 ( )] ( )
k k k k

Q t t f t Y t= Ω − Λ  

 
(A8) Composition of output 

 

( ) ( ) ( )
k k k

Q t C t I t= +  

 
(A9) Per capita consumption 

 

( ) ( ) / ( )
k k k
c t C t L t=  

 

(A10) Law of motion of capital stock: 
 

( ) ( ) ( 1)k k k

K
K t I t K tδ= − −  

 

(All) Industrial emissions: 

 

( ) ( ) 1 ( )] ( )k k k k

Ind
E t t f t Y tσ µ= −  

 

(A12) Carbon fuel limitations: 

 
max 12

1 1

( )
T

k

lnd

t k

CC E tum

= =

≥
 
 
 
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(A13) Total carbon emissions: 

( ) ( ) ( )k k k

lnd Land
E t E t E t= +  

 

(A14) Dynamics of atmospheric carbon concentrations: 

 

11 21
( ) ( ) ( 1)  ( 1)

AT AT uP
M t E t M tt M= +∅ − +∅ ‐  

 

(A15) Dynamics of carbon concentrations in the 

biosphere and upper oceans: 

 

( )12 22 32
( ) ( 1) ( 1 1)

UP AT UP LO
M t M t M t M t= ∅ − +∅ − + −∅  

 

(A16) Dynamics of carbon concentrations lower oceans: 

 

23 33
( ) ( 1) ( 1)

LO UP LO
M t M t M t= ∅ − +∅ ‐  

(A17) Radiative forcings: 
 

2
( ) { ( ) / (1750) } ( )

AT AT EX
F t log fM t M J F tη= +  

 
(A18) Global mean surface temperature: 

 

1

2 3
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( 1) [ ( 1) ( 1) }
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T t T t F t

T t T t T t J

ξ

ξ ξ
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(A19) Temperature lower oceans: 
 

4
( ) ( 1) { ( 1) ( 1) }

LO LO AT LO
T t T t T t T t Jξ= − + − − −  

 
(A20) Sea level rise (thermal expansion, glaciers, 

ice sheets): 
 

5

1, 2, 2,

1

( ) ( 1)

( 1) ( 1)j j AT j AT

j

SLR t SLR t

T t T t Tπ π π

=

= −

 
 + + − + − −  

 
∑

 

 
Variable Definitions and Units 

A(t) = Total factor productivity (productivity 

units) 

*e(t) = Per capita consumption of goods and 

services (2005 U.S. dollars per 

person) 

*C(t) = Consumption of goods and services 

(trillions of 2005 U.S. dollars) 

*D(t) = Damages from climate change 

(trillions of 2005 U.S. dollars) 

Eland(t) = Emissions of carbon from land use 

(billions of metric tons C per period) 

*E1nd(f) = Industrial carbon emissions (billion 

metric tons C per period) 

*E(t) = Total carbon emissions (billion metric 

tons C per period) 

*F(t), FEX(t) = Total and exogenous radiative forcing 

(watts per square meter from 1900) 

*g
k
[T(t),  

SLR(t), MAT(t)] = Damage function 

*I(t) = Investment (trillions of 2005 U.S. 

dollars) 

*K(t) = Capital stock (trillions of 2005 U.S. 

dollars) 

L(t) = Population and proportional to labor 

inputs (millions) 

*Λ(t) = Abatement cost as fraction of output 

*MAT(t),  

MUP(t), MLO(t) = Mass of carbon in reservoir for 

atmosphere, upper oceans and lower 

oceans (billions of metric tons C, 

beginning of period) 

*µ(t) = Emissions‐control rate (fraction of 

uncontrolled emissions) 
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σ(t) = Ratio of uncontrolled industrial 
emissions to output (metric tons C per 
output in 2005 prices) 

*Ω(t) = Damage function (climate damages as 
fraction of regional output) 

*Λ(t) = Abatement cost function (abatement 
costs as fraction of regional output) 

*Q(t) = Output of goods and services, net of 
abatement and damages (trillions of 
2005 U.S. international dollars) 

SLR(t) = Sea level rise (relative to 1990), meters 
t = Time (decades from 2001-2010,2011-

2020,…) 

*τAT(t),TLO(t) = Global mean surface temperature, 

temperature upper oceans, temperature 

lower oceans (°C from 1900) 
*U[c(t), L(t)] = Instantaneous utility function (utility 

per period) 
*W = Objective function in present value of 

utility (utility units) 
*Y(t) = Output of goods and services, gross of 

abatement and damages (trillions of 
2005 U.S. dollars) 

 

Parameters 

α = Elasticity of marginal utility of 

consumption (pure number) 

CCum = Maximum consumption of fossil fuels 

(billions metric tons carbon)  

γ = Elasticity of output with respect to 

capital (pure number) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ = Rate of depreciation of capital (per 

period) 

η = Temperature‐forcing parameter (°C per 

watts per meter squared) 

∅11,∅21,∅22, 

∅32,∅12,∅33,∅23 = Parameters of the carbon cycle (flows 

per period) 

ξ1,ξ2,ξ3,ξ4 = Parameters of climate equations (flows 

per period) 

ψ1, ψ2 = Parameters of damage function 

p = Pure rate of social time preference 

(per year) 

R(t) = Social time preference discount factor 

(per time period) 

Tmax = Length of estimate period for model (60 

periods = 600 years for most variables) 

( )T t  = Threshold temperatures for ice sheets 

in SLR equation (°C) 

θ1(t), θ2 = Parameters of the abatement cost 

function 

φkf = Negishi parameters of the social 

welfare function 

Time steps. The current model runs on10‐year 

time‐steps. 


