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exact and numerical solution computed using  finite element. 
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Introduction 

Ordinary differential equations frequently occur as 

mathematical models in many branches of science, 

physics, chemistry, biology, engineering and economy. In 

the  finite element method for the numerical solution of 

elliptic partial differential equations, the stiffness matrix 

represents the system of linear equations. That must be 

solved in order to ascertain an approximate solution to the 

differential equation (Chniti et al., 2016; Gavin, 2014;   Ye 

and Lim, 2015). The stiffness matrix for other PDE follows 

essentially the same procedure, but it can be complicated by 

the choice of boundary conditions. In order to implement 

the finite element method on a computer, one must first 

choose a set of basis functions and then compute the 

integrals defining the stiffness matrix. Usually, the domain 

Ω is discredited by some form of mesh generation, where it 

is divided into non-overlapping triangles or quadrilaterals, 

which are generally referred to as elements. The basis 

functions are then chosen to be polynomials of some order 

with in each element and continuous across element 

boundaries. The simplest choices are piecewise linear for 

triangular elements and piecewise bilinear for 

rectangular elements. In linear algebra, a Toeplitz matrix 

or diagonal-const ant matrix, named after Otto Toeplitz, 

is a matrix in which each descending diagonal from left 

to right is constant. A ma- trix equation of the form Ax = 

b is called a Toeplitz system if A is a Toeplitz matrix. If 

A is an n × n Toeplitz matrix, then the system has only 

2n-1 degrees of freedom, rather than n
2
. We might 

therefore expect that the solution of a Toeplitz system 

would be easier and indeed that is the case. Toeplitz 

systems can be solved by the Levinson algorithm in 

 Θ(n
2
) time. Variants of this algorithm have been shown 

to be weakly stable (i.e., they exhibit numerical stability 

for well-conditioned linear systems). The algorithm can 

also be used to find the determinant of a Toeplitz matrix 

in O(n
2
) (mathematical notation that describes the 

limiting behaviour of a function) time (Saoudi et al., 

2018; Agarwal and El-Sayed, 2018; Zhou and Agarwal, 

2017; Ruzhansky et al., 2017). A Toeplitz matrix can 

also be decomposed (i.e., factored) in O(n
2
) time. The 

Bareiss algorithm for an LU decomposition is stable. An 

LU decomposition (where 'LU' stands for 'lower upper' 

and also called LU factorization) gives a quick method 

for solving a Toeplitz system and also for computing the 

determinant. Algorithms that are asymptotically faster 

than those of Bareiss and Levinson ha ve been described 

in the literature, but their accuracy cannot be relied upon 

(Cheb-Terrab et al., 1988; Altoum et al., 2017; 

Mukherjee and Maiti, 1988; Altoum, 2018a). In this 

study we introduce solution of second order ordinary 

differential equations. The fundamental idea based on 

Toeplitz matrices with absolutely summable elements and 

stiffness matrix. By limiting the generality of the matrices 

considered, the essential ideas and results can be conveyed 

in a more intuitive manner without the mathematical 

machinery required for the most general cases. As an 

application the results are applied to the study of the 

covariance matrices and their factors of linear models of 

discrete time random processes (Wazwaz, 2002; Altoum, 

2018c; Gupta et al., 1995; Altoum, 2018b). In this study 

we consider the following equation: 

 

( )
( )

( ),
dT xd

k x f x L x L
dx dx

 
− = − < < 

 
 (1) 

 

k: kernel conductivity of the material and f(x) is the heat 

source for simplicity we work with k(x) = k = constant. 
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Weak Formulation 

From Equation (1) we get: 
 

( )
( ) ( ) ( )

L L

L L

dT xd
k v x dx f x v x dx

dx dx− −

 
− = 

 
∫ ∫  (2) 

 
where, v is a test function. Let v such that v(-L) = v(L) = 

0; then integrating by parts, the left hand side of 

Equation (2) becomes: 
 

( )
( )

( )
( )

( ) ( )

( )
( )

( ) ( )
.

L

L

L

L

L

L

L L

L L

dT x dT xd
k v x dx k v x

dx dx dx

dT x dv x
k dx

dx dx

dT x dT x dv xd
k v x dx k dx

dx dx dx dx

−

−

−

− −

   
− = −   

   

− −

 
− = 

 

∫

∫

∫ ∫

 

 
Now the weak formulation is: 

 

( ) ( )
( ) ( )

L L

L L

dT x dv x
k dx f x v x dx

dx dx− −

=∫ ∫  

 

we look now for T and Vh = Span{φj}: 
 

( )

1

1

1

1

,

,

0 ,

j

j j

j

j

j j j

j

x x
x x x

x

x x
x x x x

x

otherwise

φ

−

−

+

+

 −
≤ ≤

∆


−
= ≤ ≤

∆




 

 
∆xj = h: uniform spacing: 
 

( )

1 1

1 1

,

1
,

0 ,

j j j

j j j j

x x x x x

x x x x x x
h

otherwise

φ

− −

+ +

 − ≤ ≤


= − ≤ ≤



 

 
and it is derivative is given by: 
 

( )

1

1

1,

1
1,

0, .

j j

j j j

x x x

x x x x
h

otherwise

φ

−

+

 ≤ ≤
′ = − ≤ ≤



 

 

Let v = φj(x) then we have: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1

1 1

,

j j

j j

L Lj

j
L L

x x
j

j
x x

d xdT x
k dx f x x dx T T

dx dx

d xdT x
k dx f x x dx

dx dx

φ
φ

φ
φ

+ +

− −

− −

=

=

∫ ∫

∫ ∫

ɶ ≃

ɶ
 (3) 

where, Tɶ  is the approximate solution. Then Equation (3) 

becomes: 
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

1

1

1

1

1 1

1 1

1 1
.

j j

j j

j

j

j j j

j j j

x x
j j

x x

x

j
x

x x x

j
x x x

d x d xdT x dT x
k dx k dx

dx dx dx dx

f x x dx

dT x dT x
k dx k dx f x x dx

h dx h dx

φ φ

φ

φ

+

−

+

−

+ +

− −

+

=

− =

∫ ∫

∫

∫ ∫ ∫

ɶ ɶ

ɶ ɶ

 

 
N: linear elements and N + 1 degree of freedom and 

therefore N + 1 basis functions: 
 

( ) ( )

1 1

1 1

1

1

1 1j j j

j j j

N

j j

j

x x x
j

x x x

T x a x

d dT dT dT
k dx k dx k dx
dx dx h dx h dx

φ

φ
+ +

− −

+

=

=

= −

∑

∫ ∫ ∫

ɶ

ɶ ɶ ɶ
 (4) 

 
using: 
 

( ) ( )1

1

N
j

j

j

d xdT x
a

dx dx

φ+

=

=∑
ɶ

 

 
we have: 
 

( ) ( )

1

1

1

1

1 1

1 1

j

j

j j

j j

x j

x

N Nx x
i i

i i
x x

i i

d dT
k dx
dx dx

d x d xk
a dx a dx

h dx dx

φ

φ φ

+

−

+

−

+ +

= =

 
= − 

 

∫

∑ ∑∫ ∫

ɶ

 (5) 

 
we use only: 
 

( ) ( ) ( )1

1

1

1

N
j ji

i j j

i

d x d xd x
a a a

dx dx dx

φ φφ+

−

−

=

= +∑  

 
and: 
 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

j j

j j

j

j

j j

j j

N
j ji

i j j

k

x x
j j j

j j
x x

x
j j

j j
x

x xj j j j

x x

j j

d x d xd x
a a a

dx dx dx

d d x d xdT k
h dx a dx a dx
dx dx h dx dx

d x d xk
a dx a dx

h dx dx

a a a ak
dx dx

h h h

a ak

h h

φ φφ

φ φ φ

φ φ

− −

+

+

−

+

+

+

=

−

−

+

+

− +

−

= +

 
= + − 

  

 
+ 

  

 − −
 = −
  

−
=

∑

∫ ∫

∫

∫ ∫

ɶ

( )1

1 1
2

j j

j j j

a a
h h

h

k
a a a

h

+

− +

 −
 −
  

 = − − 

 

 
we conclude the following: 
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( ) ( )
1

1

1 1
2

j

j

x

j j j j
x

k
a a a f x x dx

h
φ

+

−

− +
 − − =  ∫  (6) 

 

for given function f we compute this part of our problem. 

Now let j = 1,...,N our unknowns: a1, a2,...,aN+1. 

 

( ) ( )

( )

( )

( )

1

1

1
1

22

1
1

2 1 0 0 0

1 2 1 0 0

0 0 1 2 1

N

j j

j

N
N

T x a x

L
a

Lak

h

a
L

φ

φ

φ

φ

+

=

+

+

=

 
    
    −    =  
    
    −        

∑ɶ

⋮ ⋱ ⋱ ⋮ ⋮ ⋮

 

 

where the left matrix is Stiffness matrix and L(φj) = 

( ) ( )
1

1

j

j

x

j
x

f x x dxφ
+

−

∫ . 

Example 1 

Let L = 1, x∈[-1, 1] and f(x) = 50e
x
, T(-1) = 100, T(1) 

= 100 boundary condition 100T =
ɶ , we will compute the 

value of T at each nodes: x(1) = -1,...,x(N + 1) = 1: 

 

( ) ( ) ( ) ( )

1 2 1

1 2 1

N N
T

T T T N T N

+ 
=  + 

⋯
ɶ

⋯
 

 

where, Tɶ : vector ( )1Tɶ  and ( )1T N +
ɶ : are knows, so we 

will determine only ( ) ( )2 ,...,T T Nɶ ɶ corresponding to the 

value of Tɶ  at nodes x(2),...,x(N), using j = 2,...,N: 

 

( )

( )

( )

( )

1 1

1 2

2

3

1

1

2

2 1 0 0 0 0 0

1 2 1 0 0 0 0

0 0 1 2 1 0 0

j j j j

N

N

N N

k
a a a L

h

k
a L

ha

ak

Lh

a k
a L

h

k
AY b

h

φ

φ

φ

φ

− +

−

+

 − − = 

 
+         −    =          −       

 

=

⋯

⋮⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

⋯

 

 
where: 

 

( )

( )

( )

( )

( )

( )

( )

( )

2 21

1

3 3

1 1

1

1

0 0

0 0
N N

N

N N N

k
L La

ah

L L

k
b

h

L L

k a
a L L

h

φ φ

φ φ

φ φ

φ φ

− −

+

+

     
      
      
      
      = + = +
      
      
      

           

⋮ ⋮ ⋮⋮  

In matlab, we can calculate A: 

 

[ ] [ ]( )2, 1,0,...,0 , 2, 1,0,...,0A Toeplitz= − −  

 

size of A = N-1 because we have a2,...,aN unknowns, 

so how many zeros Toeplitz matrix we have (N-1)-(2) 

= N-3, because we have two known coefficients 2 and 

1: 

 

( ) ( )( )2, 1, 1, 3 , 2, 1, 1, 3A Toeplitz zeros N zero N=  − −   − −      

 

Boundary condition: 

 

( )

( )

1

1

1,1

00

00

1,1
N

Ta

T Na
+

  
  
  
   =
  
  
   +   

⋮⋮  

 

nodes = [T(1,1); zero (N-3,1); T(N +1,1)]; L(�j) must 

computed using integration by parts or Trapezoidal 

method. 

First method: integration by parts: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1

1

1

1

1

1

1

1

1 1

1 1

1 1

1 1

50 50

50

50
2

1
2

j

j

j j

j j

j j

j j

j j

j j

j j j

x

j j
x

x x

j j
x x

x xj jx x

x x

x x
x x

j j
x x

x x x

j j j

L f x x dx

f x x dx f x x dx

x x x x
e e

x x

e x x dx e x x dx
x

e e e
h

fx fx fx
h

φ φ

φ φ

+

−

+

−

+

−

+

−

− +

− +

− +

− +

=

= +

− −
= +

∆ ∆

 = − + − ∆  

 = − +  

 = − + 

∫

∫ ∫

∫ ∫

∫ ∫
 

 

Second method: We can use direct approximation 

of the integral without integral by parts (Trapezoidal): 

 

( ) ( ) ( )( )

( ) ( ) ( )
( )

( )

( )

1

1 11

1

2

2

0
2

.
2

j

j

b

a

x j jj

j j
x

j

j

b a
f x f a f b

x xx x x x
f x f x f x

x x x

x
f x

x
f x

−

− −
−

−

−
+

 −− ∆ ∆
 +

∆ ∆ ∆  

∆
 = + 

∆
=

∫

∫

≃

≃

 

 

And: 
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( )
( )

( )
( ) ( )( )

( )

( )

1 1 1 1 1

1

2

0
2

.
2

j

j

x j j j j j j

j
x

j

x x x x f x x xx
f x dx f x

x x x

x x
f x

x

x
f x

+ + + + +

+

 − − −∆
 = +

∆ ∆ ∆  

∆ ∆ 
= + ∆ 

∆
=

∫

 

 

Then: 

 

( ) ( ) ( ) ( )

( )

1

1 2 2

.

j

j

x

j j j
x

j

x x
f x x dx f x f x

xf x

φ
+

−

∆ ∆
+

= ∆

∫ ≃

 

 

Conclusion second approximation of the integral: 

 

( )
( ) ( ) ( )

( )

1 1

1
2 ,

,
2

j j j

j

j

f x f x f x integratingby parts
h

L
h
f x Trapezedal rule

φ
− +

  − +  
= 



 

 

Finally: 

 

( ) ( ) ( ) ( ) ( )1,1 , 2,1 , 3,1 ,..., ,1 , 1,1T T T T T N T N=  +    

where, the values of N at T(1,1) and T(N +1,1) are 

knows the value of N at T(1,1) = -L = x1 and T(N +1) 

= L = xN+1 respectively. We need only calculate 

[T(2,1),...,T(N,1)] where: 

 

( ) 1
2 : ,1 .

h
T N A b

k

−
 

=  
 

 

 

Numerical Results 

To certify the proposed method, we consider the case 

where the data f(x) is the following: 

 

( ) ( ) ( )50 50 sinh 1 50cosh 1 100
xf x e x= − + + +  

 

Figure 1 presents the behavior the exact and 

numerical solution. Whereas Fig. 2 present the error 

between exact and numerical solution computed using 

finite element. The error is defined as: error = |uAnalytical-

unumerical|, for a fixed value of N, we get an error about 

10
−3

. This confirm that the proposed method converge 

well with error about 10
−3

. Her, we limit ourselves to 

numerical convergence, Fig. 1-4 present the behavior of 

error for different value of N, its noticed that the error is 

sharp decreasing versus N. 

 

 

 
Fig. 1: Analytical solution and numerical solution using finite element 
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Fig. 2: Error = |uAnalytical-unumerical| 

 

 

 
Fig. 3: Behavior of error for different value of N 
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Fig. 4: log10(error), for different value of N 
 

Discussion and Conclusion 

The strategy proposed using Stiffness and Toeplitz 
matrices is more exible and more faster computed to other 
methods, i.e., Finite element. The structure of the system 
obtained (Toeplitz matrix) permit to use faster matrix vector 
product. This method will be extended and applied for other 
equation, i,e. Dif- fusion problem in two dimensional case. 
In practice, we will obtain a very large system with Toeplitz 
structure. This will be solved using the main properties of 
the Toeplitz matrix. Finally, this paper is one of a list of 
papers that will be published to show the importance of 
Toeplitz matrices to get the system. 
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