American Journal of Applied Sciences

Original Research Paper

g-Euler Lagrange Equation

L2ZAmna Hasan, **Hakeem A. Othman and >®Sami H. Altoum

!Department of Mathematics, College of Sciences, Albaha University, KSA, Saudi Arabia

2Department of Mathematics, Al Neelain University, Sudan

3Department of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, Mecca, KSA, Saudi Arabia
“Department of Mathematics, Rada’a College of Education and Science, University Albaydha, Albaydha, Yemen
SAL-Qunfudhah University College, Umm Al-Qura University, Mecca. KSA, Saudi Arabia

5Academy of Engineering Sciences, Khartoum, Sudan

Article history
Received: 03-10-2019
Revised: 04-11-2019
Accepted: 22-11-2019

Corresponding Author:
Hakeem A. Othman
Department of Mathematics,
AL-Qunfudhah University
College, Umm Al-Qura
University, Mecca, KSA and
Department of Mathematics,
Rada’a College of Education
and Science, University
Albaydha, Albaydha, Yemen
Email: hakim_albdoie@yahoo.com

Introduction

The calculus of variation is a one of the most
important division of classical mathematical analysis as
regards application. The aim of this study is to supply
the reader with a certain minimum of problems
covering the basic divisions of classical calculus of
variation. In Euler; s methods, the values of the
functional see Equation 1 are considered not on
arbitrary curves admissible in the given variational
problem, but only on polygonal curves composed of a
given number n of straight-line segments with specified
abscissas of the vertices. If we have a certain class M of
function y(x) and each function y € M there is
associated, by some law, a definite number J, then we
say a functional J is defined in the class M and we write
J = J[y(x)]. The class M of function y(x) on which the
functional J[y(x)] is called the definition of functional.
In mathematics, a g-analog of a theorem identity or
expression is a generalization involving a new
parameter q that returns the original theorem, identity
or expression in the limit as g — 1, see (Altoum, 2018a;
2018b; Rguigui, 2015a; 2015b; Bangerezako, 2004).

The Euler-Lagrange D.E is the essential equation of
variational principle. It is defined by an integral of the form:
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Abstract: In this work, for q € (0, 1), the g-deformation of Euler-
Lagrange equation is studied; we use g-derivative (or Jackson
derivative) to deduce a new formula of Euler- Lagrange equation. Some
examples are presented.
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J :j f(t,y,y )t 1)
Where:

gy
Y=

Then J has a stationary value if the Euler-Lagrange
differential equation:

of _dfaf|_,
oy dt\oy)

is satisfied. If time-derivative notation is replaced instead
by space-derivative notation, the equation becomes:

o _dfa ) _,
o dxloy, )

The Euler-Lagrange differential  equation s
implemented as Euler equations [f, u[x], x] in the
Wolfram Language package variational methods. In
many physical problems, the partial derivative of with
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respect to turns out to be 0, in which case a manipulation
of the Euler-Lagrange differential equation reduces to
the greatly simplified and partially integrated form
known as the Beltrami identity:

f-y i—c
"oy,

For three
generalizes to:

independent variables, the equation

This paper organized as follows: Section 1 and 2
introduce the basic concepts of the study. In next section,
we present an analogous of the classical Euler Lagrange
equation, finally we deduce some theorems.

Preliminaries

We introduce the g-Derivative, we recall some basic
notations used in g-calculus. The natural number n has
the following g deformation:

[n], =1+0a+g°+-+q"" with[0] =0.

Occasionally, we shall write [«]q for the limit of

these numbers: o
(1-0a)

coefficients are defined naturally as:

[n], =4, 2], [3], ],

. The q factorials and g binomial

With:
[0]q =0.

Here is a decent redirection for any individual who
knows what the derivative of a simple function is f(x). The
modern theory of differential and integral calculus began in
the 20th century with the works of Newton and Leibniz. As
it is well known, see (Altoum et al., 2017), the derivative of
a function f(x) w.r.t the variable x is by definition:

() =tim = 1)

h—0

Now, let us consider the following expression:

i F @) (1)
P =tim— =

284

Of course, this is not valid when g = 1 or x = 0 but
otherwise this alternative formula is equivalent to the
usual derivative. You can convince yourself by
f(x+(q-1)x)- f(x)

(a-1)x

writing , the term (g-1)x playing
the role of h.

At the beginning of the 20th century, F.H. Jackson
studied this modified derivative and many of its
consequences, see (Rguigui, 2016a; 2016b; Rguigui,
2018a; 2018b). The key concept is the g-derivative
operator defined as follows when 0 < q < 1:

(09 ()

gx — X

=lim

(Dq f )qql(x)

This g-derivative can be applied to functions not
containing O in their domain of definition. Then it
reduces to the ordinary derivative when q goes to:

Lim(qu)(x)z f'(x).

As an example, we compute the g-derivative of x?

+2x +1:

[(qx)2 +2(qx) +1} -[ %+ 2x+1] |

Dq(x2+2x+l)= -

One can easily check that the g-derivative operator
is linear:
D,(f+g)=D,f +D,gD,
(DA(f)=2(D,(f),

the product rule is slightly modified but it approaches the
usual product rule when g goes to one:

(D, (fg))(x) = f (ax)(Dya)(x)+(D, F)(x)g(x).

g-Euler Lagrange Equation

As analogous of the classical Euler Lagrange
equation:
AR 2
oy dtloy’
Where:
gy
"

We introduce the g-Euler Lagrange equation as follows:
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D, f=Dy(D,, 1)=0 (3) (=B Y(0) = F(Ly(©).y(a)
” Y, ((1-a) |
Where:
ore .Then,'for qe .(0, 1) the g-Euler Lagrange Equation
fo f(t,y, Y. ) (3) is equivalent to:
y, (1)=D,,y(t)= y(ttzl_yq(;t) 4) S (g y(a).y; (a'1)) - f (@t y (@ ).y, (o))
y(at)
F(ty(t).ys (1)) F(ty().y, (6)
Dq,yf(t,y(t),y; ( )): ( o).y ;(2;(1_2;/( )y ()) _I(t)—l(q”t)
= t ,
d:
o Proof
D fo Fty(0).ys (1) - f(Ly(t).y, (qt)). 5) Let q-Euler Lagrange equation is given by
i Yo ((1-q) D,,f - qut(quy‘,] f) = 0. Let | given by:
From the above discussion, we obtain the following , )
theorem. I(t)= F(ty(t)y'(t) - f(ty(t).y'(ar)
Th v, (D(-a)
eorem 3.1
Let | given by: Then, we substitute (4) and (5) in (3), we get:
FEY (). v (8) - F(ty(at)ye (1)) 1(0)-1(at) _
y(t)(L-a) t(1-a)
f(at.y(at). v, (at) = f (at.y(at).y; (at)| 1(at)-1(q*) .
y(at)(1-q) ql-q)t

[f((q”%)-v(q”%),vé ()= ((a™t).y(a"t). ¥, (q"lt))]_ (at) -1 ()

y(a™t)(1-q)

Then, we obtain:

[f(t,y(t).y; (1) - F(ty(at).v; (t))] I()-1(at) _,

y(t)

q[ f (qt,y(qt),yg1 (qt))— f (qt,y(qzt),y,; (qt))}_ I(qt)—l(qzt) 0

y(at)

y(a™™)

q{ (@ t)y(a™t) e (a7%))- 1 ((Q“’.lt)’y(q%)vy; (q“lt))J_ (a1

This leads to:

nlqk{ f (qkt,y(qkt),y;4 (qkt))— f (qkt,y(qk*lt),y(4 (qkt))} I(t)—l(q”t).

y(a't)

k
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Which completes the proof. D,. (Dq . f): 0.
Remark 1
Using Theorem 3.1, for n — 1, the g-Euler Lagrange Therefore, we obtain:
Equation (3) is equivalent to:
D,,f=c
k k ’ k. k k+:
iqk Fat y(a't).¥; (o)) - f ("t y(a*"t). ¥; (a't) Then, we get:
y(a't)
(Y J-ve - Lrayy
t Y, (1-0)
Examples This gives:
Recall that, the classical standard example, for f - - )
given by: JE+YE =+ ayg =cy; (1-0)

N \/1+q v =cqy, (1-q)

f(tyy)= \/l+ y?

\/1+ g™ty —\/1+ q"yy =cq™ly; (1-q).
We get:

From which we get:

‘f i ‘fl+q yi: =cq™ty, (1-q)+...+cy; (1-q).

Then, we deduce:

y=At+B

That is, the function must have constant first
derivative and thus it is graph is a straight line.

Now, we will study the g-analogue of this standard
example.

Theorem 4.1 ‘W_ Ay =e(t-a)y, :Z:)qk
Let f given by: _cl-q)y, [11__qu
ft Yoy, )= ieve =c[n], (1-a)y,
Satisfying the g-Euler Lagrange equation: As n — oo, We obtain:
D, f -D,(D,,, T)=0. (7) JrvE -1=oy,
Then, we get yq = At + C, for constants A and C. Which implies:

Proof
‘/1+ yy =1+cy,.

Using equation (5), we obtain:

) \/H_Y[f—m This gives:
¥ _W' 1+y? =1+C%y7 +2cy, .
Since, we have: Finally, we get:
D,,f=0 y¢ (1-¢*)=2cy,
Then, by Equation (7), we get: Which gives:
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, , 2c
Yo SO0 Yo S
Let ZCZ =A. Then yq = Ax + C, this completes the
1-c
proof.

Using Euler-Lagrange Equation (2) to find the
extremals for the following function:

) ) ’
x(&y(x)]+(&y(xﬂ )
We obtain the following solution:

(8)

y(x):%lx2+clx+c2

As g-deformation of this example, we get the
following theorem.

Theorem 4.2
Let f given by:

F(t Yo Yy )=t +Vy

Satisfying the g-Euler Lagrange equation:

D, f ~Dy(D,,, T)=0. ©)
Then, we get:
y( )=—i2t2 +gt+c,.
[2],
Proof

Using Equation 5, we obtain:

F(tYg Ve )= T (tYeay; )
Yo (1-q)

(e + i)~ (taye +a’y;’)

Dq,y.; f(t’yq‘y:l ):

=(1—1qj(t +Yy —at-g’y; )

=t+(1+q)y, :t+[2]q Yo -
Since, we have:

Dq,yf(t'yq’y& ):O

287

Then:
D“'V(quya 1 (t,y, Yo )):O
Therefore, we get:
D,,, f(tLy.y)=c
This gives:
t+ [2]q y, =¢

Which is equivalent to:

This implies that:

2], [y(:zl_y;)qt)} =c-t.

Then, we get:
(C-t-9) (2, 174
y(t) y( )_ [2]q _(t t){[z]qJ
y(at)-y(a’t)=( qztz—cqt)[l[;]?}

y(at) - y(a't) = (~a"* Mt* cq“”’t){l[z_]q],

We deduce:

k-1

y(t)-y(d't)= 3 (-a*t*+ cqit)[l[;qj.

i=0

lq
But:
k-1 sia Zk—l i
=5 (o)
i=0 i=0
19"
1-¢°
In addition:
k-1 k-1
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Then, we get:
e L
- y(a't)- (1[2‘]‘;)t2 +c(1[2 ]‘zk)t.

As k — o, we obtain:

y(t)= y(o)_[;]f,tz [;]

1
=———t’+qt+c,

[2],

where, ¢, = ZL and c; = y(0).

q
Remark 2

As q — oo, Equation (10) becomes:

y(t)= ;—zltz +ct+c,

1,
——t°+ct+c
4 1 2

Which gives the classical case studied see Equation
(8).
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