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Abstract: In the absence or infeasibility of experiments, matching 

methods have increasingly been used in making causal claims using 

observational data. This paper conducts a Monte Carlo simulation 

study, based on a household panel survey, to compare the performance 

of some widely used subset matching methods. The methods include the 

propensity score caliper matching, Mahalanobis distance matching, and 

coarsened exact matching. Comparisons were made in terms of the 

ability to reduce covariate imbalances, as well as effective recovery of 

the real treatment effect. Numerical results from our simulations 

provided evidence of coarsened exact matching outperforming the other 

methods. Our results also showed that, except for the Mahalanobis 

distance matching method, the efficiency of treatment effect estimates 

decreases with an increasing proportion of treated units. 
 
Keywords: Matching, Balance, Monte Carlo Simulation, Observational 

Studies, Propensity Score 
 

Introduction 

Randomized experiments are the gold standard for 

estimating causal effects: They guarantee that the treated 

and control groups are only randomly different from one 

another with respect to the background covariates. Many 

matching methods have been proposed for replicating 

this scenario as much as possible for observed covariates 

with observational data. 
Several methods serve as alternatives to matching, 

including adjusting for background variables in a 

regression model, instrumental variables, structural 

equation models and regression discontinuity designs. 

However, matching methods have been paid more 

attention and widely used because of its intuitiveness and 

more importantly, straightforward diagnostics, by which 

the performance is evaluated. 

Matching is a nonparametric method for taking 

control of the confounding influence of background 

covariates or pretreatment control variables in 

observational or non-experimental data. The main aim 

of matching is to selectively prune observations from 

the data so that a better balance between the treated and 

control groups is achieved with the remaining data, 

which in other words means that the empirical 

distributions of the covariates in the two groups are 

then more similar. Statistical modelling assumptions 

handle any residual imbalance. The primary merit of 

matching is that it significantly reduces model 

dependence (King et al., 2011).  

There are several matching methods existing in the 

literature, and they employ different distance measures, 

algorithms and rules for selecting control group 

members. Each technique could potentially choose 

different control group members from the overall control 

pool to create the matched group. The matched control 

group composition could, therefore, vary considerably 

depending on the particular matching algorithm used 

(Jacovidis, 2017). Matching techniques have been 

applied either using covariate (Miksch et al., 2010) or 

propensity score matching (Stock et al., 2010; Windt and 

Glaeske, 2010; Drabik et al., 2012) with some authors 

providing evidence for the superiority of propensity 

score matching (Drabik et al., 2012). The literature has 

shown that propensity score matching is not necessarily 

the gold standard (Fullerton et al., 2016). Depending on 

the scenario, other matching techniques can induce a 

better balance on the covariates and furthermore, the 

performance of propensity score matching highly 

depends on the correct specification of the propensity 

score model, choice of covariates and the matching 

algorithm used (Dehejia and Wahba, 2002; King et al., 
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2011; Rosenbaum and Rubin, 1984). While many 

simulation studies have compared the performance of 

different matching methods, it cannot be taken for granted 

that their findings are transferrable to another data 

situation (Franklin et al., 2014). Consequently, there is a 

need for extensive research on identifying which matching 

methods perform best in several scenarios. Even though 

there have been a few notable studies that have examined 

the performance of matching techniques in terms of how 

well they balance the groups on the covariates, only a few 

of them have extended the evaluation of the matching 

techniques to the outcome analyses (Jacovidis, 2017; 

Austin, 2014; Stone and Tang, 2013).  

Accordingly, this study aims to compare the 

performance of three (3) matching methods that are 

widely used in applied studies, under systematically 

manipulated conditions. The performance of each 

matching method was evaluated in terms of the ability to 

balance covariates between treated and control groups and 

efficient recovery of the real treatment effect. The 

abundance of subset matching methods and their 

variations is too large to be all compared in one study; 

without loss of generality, we studied the Propensity Score 

Caliper Matching (PSCM), Mahalanobis Distance 

Matching (MDM) and Coarsened Exact Matching (CEM).  

Materials and Methods 

Matching Methods 

In this section, we briefly describe the matching 

methods we focused on in this study, each of which is 

commonly used in the applied literature. For the 

Mahalanobis distance and propensity score matching 

methods, we assumed a 1-1 matching without 

replacement, with the greedy matching algorithm 

being used to define the matched pairs. In matching 

without replacement, an already matched control unit 

is no longer available as a potential match for other 

treated units. In the case of greedy matching, a treated 

unit is chosen randomly, and the nearest control unit 

is then selected for matching to this treated unit 

(Austin, 2009). 

Consider the unit i (i = 1,..., n), where Ti denotes a 

treatment variable coded 1 and 0 for the treated and 

control groups respectively. Let {Yi(t): t Є (0,1)} be the 

potential outcome variable value, also known as a 

counterfactual outcome (Rubin, 1974). This implies that 

Yi = TiYi(1) + (1-Ti)Yi (0) is observed. Let Xi be a vector 

of pretreatment covariates; while, let mT and mC be the 

number of matched treated and control units 

respectively, for the methods. In estimating the average 

treatment effects, the Sample Average Treatment effect 

on the Treated units (SATT) was utilized. SATT = 

1

iiЄT

t

TE
n
∑ , where TEi = Yi (1)-Yi (0). 

Propensity Score Caliper Matching 

Propensity score caliper matching is by far the most 

widely used matching method in the applied literature 

(Amusa, 2018). As the name of this method implies, it 

matches treated and control groups, based on the 

corresponding propensity scores, which weight 

covariates by how well they predict group membership. 

The propensity score was defined by Rosenbaum (1983) 

as the probability of treatment assignment, given the 

observed baseline covariates, stated mathematically as: 
 

( )1| ,
i i i
e P T X= =   (1) 

 

where, it is assumed that, given the X’s, the Ti’s are 

independent: 
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Let πt and πc and be the propensity scores for the 

treated and control group respectively, I1 be the set of 

units in the treated group and I0 be the set of units in the 

control group. A neighbourhood C (πc) is defined to 

contain the c units control group (cЄIo) as a match for 

the treated group t (t Є I1), where the absolute difference 

of propensity scores is the smallest among all possible 

pairs of propensity scores between t and c, i.e.: 

 

( ) min || ||,
t t c o

C cЄIπ π π= −   (3) 

 

Once a particular value for c is found to match t, c is 

removed from Io, without replacement. There is a further 

restriction imposed on the distance between πt and πc, 

and as such, c is selected as a match for t, only if the 

absolute difference of propensity scores between the two 

groups meets the following condition: 

 

|| || , ,
t c o

kЄIπ π ξ− <   (4) 

 

where, ξ is a caliper or a pre-specified tolerance for 

matching.  

This procedure is known as propensity score caliper 

matching. A caliper size of a quarter of the estimated 

propensity scores' standard deviation has been suggested 

in the literature (Rosenbaum and Rubin, 1985). 

Mahalanobis Distance Matching 

Similar to PSCM, the Mahalanobis distance 

matching method is built on specific notions of 

between observations of pretreatment covariates. MDM 

is unlike PSM which matches are made based on a 

scalar “Propensity Score”, known as a balancing score; 

MDM matches on covariates by a specified distance, 
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which consequently ensures that covariates have equal 

weights. MDM measures the distance between two 

units, Xt and Xc as: 

 

( ) ( ) ( )1
,

t c t c t c
M X X X X S X X

−′
= − −   (5) 

 

Where Xt, Xc denote the treated group and control group 

covariates respectively; S is the sample covariance 

matrix of X. Once the distance metric d is selected, a 

matching algorithm can then be applied. The procedure 

is known as the Mahalanobis distance matching. 

Coarsened Exact Matching 

The earlier mentioned methods are known as Equal 

Percent Bias Reduction (EBPR) methods, where 

improvements in the bound of balance for one covariate 

will affect each of the other covariates. To avoid this and 

other shortcomings of the EPBR methods, a new 

generalized class of matching methods known as 

Monotonic Imbalance Bounding (MIB), which has 

Coarsened Exact Matching (CEM) as a particular case, 

was introduced (Iacus et al., 2011; 2012). The strength of 

this method lies in the fact that, unlike other matching 

methods where balance is being continually checked until 

it is improved, CEM inverts the process and thus 

guarantees that the covariate imbalances between the 

matched treated and control groups will not be more than 

the user’s pre-chosen level. MIB methods, therefore, 

improve bounds in the balance of one covariate in 

isolation as it will not affect the maximum imbalance of 

each of the other covariates (Iacus et al., 2012).  

The essential thought of CEM is to coarsen each 

variable as reasonably as possible temporarily, through 

automated choices of coarsening using the Sturges rule 

(Scott, 2009), or any user-defined coarsening could be 

used. The automated approach was adopted for this 

study because of its ease and intuition. The exact 

matching algorithm is then applied to the coarsened data 

to determine the matches and to prune unmatched units. 

Finally, the coarsened data are left out, and the original 

values of the matched data are retained. In other words, 

after coarsening, the CEM algorithm creates a set of 

strata, say sЄS, each with same coarsened values of X. 

Units in strata containing at least one treated and one 

control unit are retained, while units in the remaining 

strata are then removed from this sample. 

We denote by Ts and Cs, the treated and control units, 

respectively in stratum s; s

T
m  as the number of matched 

units in Ts; 
s

C
m  is the number of matched units in Cs. The 

number of matched units are, respectively, mT = s

sЄS T
U m  

and mC = s

sЄS C
U m , for the treated and control units. 

Unmatched units receive zero weight, while to each 

matched unit i in stratum s, CEM assigns the weights: 

1,

,

s

s

i SC T

s

T C

iЄT

W m m
iЄC

m m




= 



 (6) 

 

Simulation Scheme 

In this section, we describe the design of the Monte 

Carlo simulations which were used for data generation 

and to compare the performance of the considered 

matching methods. The performance was assessed 

using the following criteria: (a) Quality of matches: 

The ability to induce balance on measured background 

covariates; (b) Absolute bias of estimated treatment 

effects; (c) Root Mean Squared Error (RMSE) of 

estimated treatment effects. 

The data-generating process and analyses were 

conducted with R packages, “MatchIt” (Ho et al., 2011) 

and “Matching” (Sekhon, 2011), in the environment of R 

version 3.4.1 (R Core Team, 2016).  

We replicate previous simulation designs that had 

been used to evaluate matching methods (Iacus et al., 

2012; Jacovidis, 2017; Austin, 2011), with slight 

modifications – the proportion of treated units where 

varied. Data were generated to mimic the Lalonde non-

experimental data described in the next section.  

Data Generation – Covariates Balance  

Data were generated to mimic the structure and 
properties of the famous non-experimental Lalonde-
PSID data. A small portion of the data is a U.S. job 
training program provided to participants for 12-18 
months to help them find a job (Lalonde, 1986). The 
dataset comprises the original Lalonde’s experimental 
treated units and non-experimental control units from the 
Panel Study of Income Dynamics (PSID), which 
includes 185 treated and 2490 control units. The choice 
of this dataset is driven by its importance in the 
evaluation literature since there has been considerable 
knowledge accumulated on evaluating non-experimental 
estimators, using this data. 

The dataset comprises ten covariates: Four 
continuous covariates including age (age), years of 
education (education), real earnings in 1974 (re74) 
and 1975 (re75); as well as six binary covariates 
including marital status (married), black race (black), 
Hispanic race (Hispanic), lack of a high school 
diploma (nodegree) and indicator variables for 
unemployment in 1974 (u74) and 1975 (u75). 

Using the idea of Austin (2011), we related the ten 

covariates with the probability of treatment selection via 

the following logistic regression model: 
 

( ), 0, 1 2 3

4 5 6 7

8 9 10

74

75

74 75

i t t
Logit age education re

re married black hispanic

nodegree u u

π α α α α

α α α α

α α α

= + + +

+ + + +

+ +

  (7) 
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The treatment group membership was regressed on 

the covariates for the study data and was used as 

coefficients (α1, α2,…, α10) above. The intercept α0,t was 

modified such that the proportion of treated units is 

varied at four different levels: 0.17, 0.20, 0.25, 0.33. For 

each unit i, in each of 1000 replications from this 

process, treatment status (denoted by T) was generated 

from a Bernoulli distribution with parameter πi,t, i.e., Ti ~ 

Ber (πi,t), so that the number of pre-match treated and 

control units in the sample varies over replications. 

Data Generation – Recovery of the True Treatment 
Effect  

Next, outcome scores (Y) were generated as follows: 
 

1 2 3

4 5 6 7

8 9 10

1000 74

75

74 75

Y T age education re

re married black hispanic

nodegree u u

β β β

β β β β

β β β ε

= + + +

+ + + +

+ + + +

  (8) 

 
ATT was fixed at 1000 and ε ~ N (0,10) as assumed 

by Iacus et al. (2012). Also, like Jacovidis (2017), the 
covariances between the covariates and outcome variable 
were obtained for the study data and were used to 
calculate the coefficients (β1, β1,…, β10) above. A total 
of 1000 replications of each dataset were generated and 
matched with each method. 

Performance Assessment 

As stated in Section 1, the performance of the matching 
methods were evaluated relative to the unmatched data, 
under two criteria: (i) quality of matches and (ii) recovery of 
the true treatment effect. For each criterion, we varied the 
proportion of units who received the treatment 
(subsequently referred to as proportion of treated) at 17%, 
20%, 25% and 33% levels, which corresponds to treatment-
to-control ratios of 1:5, 1:4, 1:3 and 1:2, respectively.  

Quality of Matches 

In terms of the quality of matches, the methods were 
compared in terms of their ability to induce covariates 
balance between treated and control groups. This was 
achieved using the absolute standardized mean difference 
and percent bias reduction for all the covariates. The 
Absolute Standardized Mean Difference (ASMD), 
according to Rosenbaum and Rubin (1985), is defined as: 
 

( ) ( )

2 2

*100%,

2

ˆ ˆ
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ˆ ˆ ˆ ˆ1 1

2

k

t c

t c

t c c c
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
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−
 +


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
 −

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where, 
t
x and 

c
x  denote the sample mean of the treated 

and control units, respectively for the kth covariate; s
2
t 

and s
2
c denote the sample variance of the treated and 

control units, respectively for the kth covariate; ˆ
t
p  and 

ˆ
c
p  denote the mean of the kth dichotomous variable in 

the treated and control units, respectively. 

It has been suggested that a standardized mean 

difference of at most 10% is quite sufficient at balancing 

a given covariate between the treatment groups (Austin, 

2007; Normand et al., 2001). 

Following the convention, the Percent Bias Reduction 

(PBR) for each covariate was also utilized. A threshold 

value of at least 80% is acceptable for judging the 

effectiveness of a matching method in reducing covariate 

imbalances (Cochran and Rubin, 1973; Pan and Bai, 2015). 

The percent bias reduction is defined as follows: 

 

, ,

,

| | | |
*100%,

| |

k beforematching k after matching

k

k beforematching

B B
PBR

B

−

=  (10) 

 

where, Bk,befor matching and Bk,after matching denote the mean 

difference in the kth covariate between the treated and 

control units, before and matching respectively. 

For each of the ten covariates, the absolute 

standardized mean difference and percent bias reduction 

values were averaged across the 1000 simulated datasets. 

Recovery of the True Treatment Effect  

In each of the matched sets, we estimated the SATT 

estimators based on the difference in means between the 

observed outcome in the treated units and the control 

units. The performance of estimated treatment effects 

was assessed by its absolute bias, calculated as ˆ| |γ γ−  

and root mean square error (RMSE), calculated as 

( ) ( )
2

ˆ ˆvarγ γ γ− + , where γ̂   is the mean of the 1000 

estimated treatment effects. 

Results 

In this section, we present results from the simulation 
study. We compared the matching methods in terms of 
covariates balance and the performance of treatment 
effect estimates. 

Covariates Balance 

The covariates balance assessment was varied at 
17%, 20%, 25% and 33% proportions of treated units, as 
shown respectively in Table 1 to 4. As confirmed by the 
balance metrics, the raw data which we simulated from, 
is highly imbalanced - all the covariates have high 
standardized mean difference values - more substantial 
than the recommended 10% threshold value (Austin, 
2007; Normand et al., 2001; Stuart, 2010).  
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Table 1: Balance assessment of covariates for 33% proportion of treated units (treatment-control ratio of 1:2)  

 ASMD    PBR (%) 
 ----------------------------------------------------------------------- -------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM MAH CEM 

Age 0.56 0.06 0.45 0.01 89.84 18.91 97.81 
Education 0.57 0.04 0.24 0.01 92.42 57.78 98.22 
re74 2.01 0.07 1.40 0.06 96.57 30.63 97.17 
re75 2.86 0.09 2.00 0.34 97.00 30.05 88.14 
Black 0.86 0.05 0.55 0.00 94.61 36.49 100.00 
Hispanic 0.14 0.04 0.03 0.00 73.62 76.90 100.00 
Married 0.64 0.04 0.49 0.00 93.16 24.50 100.00 
Nodegree 0.53 0.04 0.25 0.00 92.02 53.35 100.00 
u74 0.66 0.03 0.61 0.00 95.07 8.22 100.00 
u75 0.67 0.03 0.60 0.00  95.56 10.16 100.00 

Note: The presented values are averages from each of the 1000 replications  
 
Table 2: Balance assessment of covariates for 25% proportion of treated units (treatment-control ratio of 1:3)  

 ASMD    PBR (%) 
 -------------------------------------------------------------------- ----------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM MAH CEM 

Age 0.59 0.06 0.45 0.01 90.52 23.75 97.90 
Education 0.58 0.04 0.22 0.01 92.36 61.95 98.09 
re74 2.16 0.06 1.26 0.05 97.23 41.35 97.57 
re75 3.17 0.08 1.91 0.36 97.62 39.56 88.49 
Black 0.92 0.05 0.45 0.00 94.90 50.89 100.00 
Hispanic 0.14 0.04 0.00 0.00 72.57 99.79 100.00 
Married 0.73 0.04 0.46 0.00 94.35 37.44 100.00 
Nodegree 0.57 0.04 0.26 0.00 92.82 53.79 100.00 
u74 0.73 0.03 0.59 0.00 95.89 19.51 100.00 
u75 0.71 0.03 0.55 0.00 95.37 21.83 100.00 

Note: The presented values are averages from each of the 1000 replications 
 
Table 3: Balance assessment of covariates for 20% proportion of treated units (treatment-control ratio of 1:4)  

 ASMD    PBR (%) 
 ---------------------------------------------------------------------- ----------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM  MAH  CEM 

Age 0.63 0.06 0.48 0.01 91.01 24.85 97.96 
Education 0.59 0.05 0.22 0.01 91.57 63.41 97.89 
re74 2.29 0.06 1.16 0.05 97.19 49.53 97.71 
re75 3.43 0.08 1.84 0.40 97.55 46.15 88.30 
Black 0.98 0.05 0.48 0.00 94.84 50.69 100.00 
Hispanic 0.14 0.04 0.00 0.00 71.86 100.00 100.00 
Married 0.81 0.04 0.47 0.00 95.03 42.18 100.00 
Nodegree 0.61 0.04 0.27 0.00 92.58 56.00 100.00 
u74 0.79 0.04 0.55 0.00 95.49 30.67 100.00 
u75 0.74 0.04 0.51 0.00 94.92 30.20 100.00 

Note: The presented values are averages from each of the 1000 replications 
 
Table 4: Balance assessment of covariates for 17% proportion of treated units (treatment-control ratio of 1:5)  

 ASMD    PBR (%) 
 ---------------------------------------------------------------------- ----------------------------------------------------- 
Covariates RAW  PSCM MAH CEM PSCM  MAH  CEM 

Age 0.69 0.06 0.55 0.01 91.51 20.13 98.13 
Education 0.61 0.05 0.21 0.01 91.58 65.77 97.67 
re74 2.46 0.07 1.01 0.06 97.08 58.82 97.51 
re75 3.75 0.10 1.73 0.44 97.45 53.88 88.23 
Black 1.06 0.05 0.53 0.00 95.04 50.36 100.00 
Hispanic 0.14 0.04 0.00 0.00 66.70 100.00 100.00 
Married 0.91 0.04 0.53 0.00 95.25 42.28 100.00 
Nodegree 0.65 0.05 0.26 0.00 92.76 60.16 100.00 
u74 0.85 0.04 0.46 0.00 95.44 45.43 100.00 
u75 0.77 0.04 0.44 0.00 94.77 43.08 100.00 

Note: The presented values are averages from each of the 1000 replications 
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In terms of the absolute standardized mean 

difference, except for the Mahalanobis distance matching 

method - which resulted in values extremely above the 

10% threshold for almost all covariates, propensity score 

and coarsened exact matching methods had qualitatively 

comparable balance in the measured covariates. This 

pattern was consistent across the proportion of treated 

units. It is however worthy of note that coarsened exact 

matching had absolute standardized mean difference 

values of zero for the six continuous covariates across all 

treatment-control ratios considered. 

In terms of the PBR, the performance of coarsened 
exact matching was excellent - all ten covariates had the 
Cochran and Rubin’s acceptable threshold value of at least 
80% PBR value. Mahalanobis distance matching had the 
worst performance. Propensity score caliper matching also 
had close to such an excellent performance, barring one 
covariate which consistently had PBR values below the 
80% threshold. CEM further consistently had quantitatively 
higher PBR values. This pattern was consistent across the 
considered proportion of treated units. Overall, 
coarsened exact matching performed best in balancing 
covariates between the treated and control groups.  
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Fig. 1: Top panel: Root mean square error of estimated treatment effects; Bottom panel: Absolute bias of estimated treatment effects 
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Table 5: Absolute Bias and Root mean square of the matching methods relative to the unmatched data 

 Proportion of treated: 17% Proportion of treated: 20% Proportion of treated: 25% Proportion of treated: 33% 

 --------------------------------- ---------------------------------- --------------------------------- -------------------------------- 

Method AB RMSE AB RMSE AB RMSE AB RMSE 

Unmatched  524.49 618.07 518.24 600.94 507.63 581.37 498.95 555.44 

PSCM 72.60 246.62 59.46 211.75 55.33 186.13 75.98 161.54 

MAH 218.59 246.14 235.35 260.59 271.01 290.81 371.49 392.15 
CEM 4.33 35.19 2.30 33.16 2.22 29.28 1.80 27.91 

AB means absolute bias  
Note: values were averaged over 1000 Monte Carlo replications 

 

Performance of Treatment Effect Estimates 

The absolute bias (AB) and root mean square error 
(RMSE) of mean difference in outcomes between treated 
and control units of the matched data, across the 
considered proportion of treated units, are reported in 
Table 5 and Fig. 1.  

Relative to the unmatched data, all the three matching 

methods had lower absolute bias and RMSE values. 

Regardless of the proportion of treated units, coarsened 

exact matching (CEM) produced the least absolute bias 

and RMSE values - absolute bias ranged from 1.80 to 

4.33; RMSE ranged from 27.91 to 35.19. Also, the 

absolute bias and RMSE values of CEM reduced as the 

proportion of treated units increased from 17% to 33%. 

The same pattern was, however, not observed for the other 

two methods, while only the RMSE values for propensity 

score caliper matching (PSCM) followed the same pattern. 

Unlike the other methods, Mahalanobis Distance 

Matching (MDM) produced absolute bias and RMSE 

values, which increased as the proportion of treated units 

increased from 17% to 33%. 

Discussion 

In this study, we presented a Monte Carlo simulation 

study of three subset matching methods, namely; 

propensity score caliper matching, Mahalanobis 

distance matching and coarsened exact matching. We 

evaluated the performance of these methods based on 

the ability to induce balance on measured background 

covariates, as well as the performance of treatment effect 

estimates via the assessment of their absolute biases and 

root mean square errors. 

This study revealed that coarsened exact matching is 

the most effective in balancing covariates. As effective 

as CEM appears to be, the choice of coarsening can 

make or mar its performance: If the elements of the 

coarsening values are too small, then too many 

observations may be discarded. It may then lead to 

inefficient solutions in the analysis stage: if they are set 

too high, more observations will be retained, but more 

covariate imbalances, model dependence and statistical 

bias, will be introduced (Iacus et al., 2012). It is fine if 

there is a constant treatment effect (discarding units will 

not change the estimand of interest) but discarding units 

in the case of heterogeneous treatment effects may 

dramatically shift the estimand being estimated.  

In assessing the recovery of the true treatment effect, 

Mahalanobis distance matching was the most biased. 

Mahalanobis distance matching also resulted in the 

highest RMSE across all considered proportions of 

treated units. Overall, coarsened exact matching had the 

least absolute bias and RMSE across all considered 

proportions of treated units.  

Matching based on propensity score methods is by 

far the most widely used in applied studies to date. 

Previous research findings reveal that propensity score 

caliper matching was the best PSM technique (Bai, 

2011). However, it is worthy of note that when the 

sample size is small or violates the statistical 

assumptions, caliper matching will possibly become 

problematic, because it usually ignores the cases when 

they do not have matched pairs or do not meet the 

caliper’s criterion. Thus, it requires larger sample sizes 

to be very effective. Also worthy of note about 

matching on propensity scores is the correct 

specification of the propensity score model. In practice, 

an excellent alternative to distance driven matching 

methods may be to estimate the propensity score using a 

more flexible approach than logistic regression, for 

example, by using ensemble methods (Lee et al., 2010). 

A significant strength of this study is the utilization 
of a real data set that has been used to evaluate the 

performance of matching methods and to provide a 
suitable structure for simulating the 1,000 data sets. It 
has the advantage of simplifying data generation 
procedures and avoiding making arbitrary choices. This 
study has a few limitations: Firstly, we have not 
exhausted all possible matching methods that have been 

described in the literature. Secondly, we assumed a one-
to-one pair matching and therefore did not consider the 
many-to-one or many-to-many matching methods. 
Thirdly, we only assumed matching without 
replacement. Lastly, Optimal matching (Rosenbaum, 
1989) - another alternative to the utilized greedy, nearest 

neighbour matching method, was not considered in this 
study. The results of our simulation study are limited to 
scenarios represented by the simulated data, which are 
typical in the applied social sciences. Parameters of the 
data generation model were based on model coefficients 
of a widely used panel study of income dynamics survey. 
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Conclusion 

In comparison to the other subset matching methods, 

the utilized simulation study has provided sufficient 

evidence for the outperformance of coarsened exact 

matching method to the other considered methods, in 

terms of balancing covariates and efficiency in estimation 

of treatment effects. Future studies should include more 

matching methods; simulations should be expanded to 

consider a broader range of settings, including a non-

linear model and heterogeneous treatment effects. 
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