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Introduction 

Statistical distributions are of vital importance in 

fitting data in real phenomena. It is widely applied to 

model and analyze data in different disciplines such as 

engineering, biology, economics, finance and medical 

sciences. They, occasionally, work well with different 

types of data; however, in many instances, they are 

not flexible enough to analyze the complex behaviour 

displayed by data. Therefore, the attention has, 

recently, been drawn to suggest more flexible 

distributions, which have the ability to fit any kind of 

data with any degree of complexity. Adding an extra 

parameter to any existing distribution is one way to 

obtain more flexible and adaptable distribution. This 

method proposed by (Gupta et al., 1998) and named 

the exponentiated method as the Cumulative 

Distribution Function (cdf) of any distribution has 

been raised to a parameter; hence, a new flexible 

distribution is generated. Let X be a random variable 

for any continuous distribution with cdf G(x), thus the 

cdf of the exponentiated distribution is given by: 

 

 ( )F x G x


     (1) 

 

where, α is an extra shape (power) parameter. Many 

researchers have started to apply the exponentiated 

method on different traditional distributions. For 

example, (Gupta and Kundu, 2001) presented the 

exponentiated exponential (also called generalized 

exponential) distribution, (Nadarajah and Kotz, 2006) 

introduced some new exponentiated distributions, 

such as Gumbel, Weibull and Gamma distributions, 

(El-Gohary et al., 2013) proposed the generalized 

Gompertz distribution, (Sarhan and Apaloo, 2013) 

suggested the exponentiated modified Weibull 

extension distribution, (Abu-Zinadah and Aloufi, 

2014) introduced the exponentiated Gompertz 

distribution and (Rather and Subramanian, 2018) 

considered the exponentiated Mukhrejee-Islam 

distribution; among others.  

Generating new families of distributions is another 

powerful technique to develop more flexible 

distributions. For any continuous distribution, 

different types of generators can be applied to obtain 

new families of distributions. Alzaatreh et al. (2013) 

proposed transformed-transformer T-X family which has 

become increasingly used due to its flexibility as any 

continuous distribution can be chosen as a generator. Let X 

be a random variable for any continuous distribution, then 

the cdf for the T-X family is given by: 

 

 
  ,

, ( )
W G x

a
F x r t dt



    

 
where, G(x, ζ) is the cdf of any baseline distribution with 

vector parameters ζ, W(·) is a function of the cdf G(x, ζ) 

and r(t) is the pdf of a random variable T. By using 

different forms of the transformer W(G(x,ζ)), new class 

of T-X family of distributions will be obtained. Recently, 

Some attempts have been made to generate new 

distributions with different form of W(G(x, ζ)). For 

example, (Bourguignon et al., 2014) proposed the 
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Weibull-G family of probability distributions, (Torabi and 

Montazeri, 2014) introduced the logistic-G family, 

(Tahir et al., 2015) constructed the logistic-G family, 

(Hassan and Elgarhy, 2016) obtained the Kumaraswamy 

Weibull-G family, (Klakattawi, 2019) proposed Weibull-

gamma distribution and (Afify et al., 2020) generated the 

Weibull Marshall-Olkin Lindley distribution. 

Weibull distribution is considered the most popular 

statistical distributions for modelling lifetime data. If 

X is a random variable from Weibull distribution with 

parameters c, β > 0, then the pdf and cdf are 

respectively given by: 

 
1

( ; , ) ; 0

c
c x

c x
g x c e x


 

  
 
 

 
  

 
 (2) 

 

  ( ; , ) 1

c

x
G x c e



  
   

 
 (3) 

 

Weibull distribution is widely preferable in reliability 

studies although its monotonic hazard function is not 

suitable for many lifetime data. Hence, a modification of 

Weibull distribution has been suggested by many 

researchers. For instance, (Mudholkar and Srivastava, 1993) 

proposed the Exponentiated Weibull family, (Lai et al., 

2003) and (Sarhan and Zaindin, 2009) introduced 

modified Weibull distribution, (Lee et al., 2007) 

studied Beta-Weibull distribution, (Bebbington et al., 

2007) suggested a flexible Weibull distribution, 

(Carrasco et al., 2008) proposed generalized modified 

Weibull distribution, (Silva et al., 2010) and 

(Nadarajah et al., 2011) suggested Beta modified 

Weibull distribution and (Singla et al., 2012) studied 

the mathematical properties of the Beta generalized 

Weibull distribution. 

In this study, we propose an Exponentiated 

Exponential Weibull Distribution (EEWD) based on the 

idea of (Alzaatreh et al., 2013) with W(G(x,ζ)) = 

−log[1−G(x,ζ)]. The rest of this paper is organized as 

follows. Section (2) discusses the EEWD with some 

special cases. The statistical properties of the proposed 

model are given in section (3). The distribution of the 

order statistics of the EEWD discussed in section (4). 

The maximum likelihood estimates of the EEWD's 

parameters are given in section (5). The performance of 

the proposed model is studied in section (6) using a 

Monte Carlo simulation study and a real data to 

illustrates the flexibility of the new distribution 

compared to some distributions in literature. Finally, 

section (7) concludes. 

Construction of the Exponentiated 

Exponential Distribution 

In this section, we introduce the EEWD. If t is a 

random variable from the exponential distribution, then 

cdf of the exponential Weibull distribution is given by: 

 

 
 log 1 ,

0
,

G x
tH x e dt


 

       (4) 

 

where G(x, ζ) is the cdf of the Weibull distribution given 

by Equation (3). To complete constructing the EEWD, 

the cdf in (4) will be raised to a parameter α. Thus, the 

EEWD has a cdf given by: 
 

 ; , , , 1 ; 0, 0, 0, 0, 0

c
x

F x c e x c




     

 
  

 

 
       
 
 

 (5) 

 

and the corresponding pdf takes the form: 
 

 

1
1

; , , , 1

; 0, 0, 0, 0, 0

c c
c x x

c x
f x c e e

x c



 
 

  
 

  


    

    
   

 
     

  
 

    

 (6)  

 

The survival function and hazard rate function of the 

random variable X are respectively given by: 

 

 

 

1
1

; , , , 1 1

1

; , , ,

1 1

c

c

x

c c c

x

S x c e

c x x x
e e

h x c

e








 






  



   
  

 
  

 




 

 
  

 

 
   
 
 

      
      

       
 
  
 
 

 

 
The pdf, cdf, survival and hazard function for 

different parameters values are provided in Fig. 1. 

Special Cases of the EEWD 

The four parameters EEWD include some known 

distributions as special cases. Here we introduced some 

special cases from the proposed EEWD. In Equation (6): 

 

1. If α = λ = 1, the Weibull distribution is obtained 

2. If c = β = 1, the exponentiated exponential Weibull 

distribution is reduced to the generalized 

exponential distribution 

3. If α = c = β = 1, we get the exponential distribution 

4. If λ = 1, the generalized Weibull distribution yields 

5. If c = 2, λ = 1, we obtain Burr type X distribution 
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Fig. 1: Plot of: (a) pdf, (b) cdf, (c) hazard function and (d) survival function with different values of c, , ,  

 

Statistical Properties 

This section provides some mathematical properties of 

the proposed EEWD. Studying the mathematical properties 

gives a clear insight about the distribution. In particular, the 

quantile, median, moments, incomplete moments and 

moments generating function are obtained in this section. 

Quantile and Median  

For the random variable X from the EEWD, the 

quantile F(xq) = q;0 < q < 1 can be written in an explicit 

form and is given by F(xq) = q, thus: 
 

1

1
1

1
log

1

c

qx

q






 
 
 
 
 

   
   

 

 
and, hence, the median is obtained by taking q = 0.5, 

therefore: 

 

 

1

0.5 1
1

1
log

1 0.5

c

x






 
 
 

  
  

  
  

 

 

Moments and Generating Function 

Moments are of great importance to understand the 

most important characteristics of the statistical 

distribution. They are helpful to get a deep idea about 

the mean, variance, skewness and kurtosis of the 

lifetime data. In this subsection, the moments, 

including mean and variance, of the EEWD as well as 

the incomplete moment are obtained. Moreover, the 

moment generating function is introduced. 

Moments 

If X is a random variable from the EEWD, the rth 

moments is given by: 

x 
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 

 
 

1
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1
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ccc x x
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 
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
 
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


    

    
   





 
       

  
 

   
      

   





 

 

Now let: 

 

   
 

1
0

1 1
1

1

i

r r
i c

c
i

i









 
   

  
  (7) 

 

then the rth moment of the EEWD is given by: 

 

     1
r r

r W rc c
r r r

r
a c a c E x

c
     

  
     

 
 (8) 

 

where, EW(xr) is the rth moment of the Weibull 

distribution. Therefore, the mean of the EEWD takes 

the form: 

 

   
 

 

1 1
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   




 (9)  

 

where, EW(x) is the mean of Weibull distribution. The 

variance of the EEWD is calculated from the following 

relation: 

 

     
22Var X E X E X      

 

where, E(x2) is the second moment obtained by putting r 

= 2 in (8), thus: 
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      

   




 (10)  

 

Thus, from (9) and (10), the variance is expressed as: 

 

 
2

2 1

2

2 1( ) ( ) ( ) ( )W Wc cVar X c E x c E x   
  
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 

 (11) 

 

Incomplete Moments 

The rth incomplete moments of the EEWD is written as: 

 

 
 

 

1
1

10

1

1
1 1,

1

1,

c c
c x x

r

X
a

cr
i

r r
i c c

cr

rc
r

c x
t x e e dx

r a

i c
i

r a
c

c



 
 


 

 





   



    

    
   







 
     

  
 

    
            

  
        



  (12) 

 

Moment Generating Function 

The moment generating function of the EEWD can 

be obtained as: 
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Order Statistics 

Let x1:n, x2:n,..., xn:n be the order statistics obtained 

from a random sample x1, x2,..., xn from the EEWD 

with pdf f(x) and cdf F(x), respectively, given by (6) 

and (5). Then the pdf of the rth order statistics can be 

expressed as: 
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by using binomail expansion: 
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Thus, by substituting (6) and (5) into (14) and using 

the binomial expansion, the pdf of the rth order statistics 

of the EEWD is written as: 
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Therefore, the pdf of the smallest order statistic x(1) is 

given by: 
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Moreover, the pdf of the largest order statistic x(n) is 

given by: 
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Parameters Estimation 

In this section, the Maximum Likelihood (ML) 

method will be applied to estimate the parameters c, β, λ 

and α of the EEWD. For a random sample x1, x2,..., xn 

from a EEWD, the likelihood function is given by: 
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Now by substituting from (6) into (18) and taking the 

log, the log likelihood function is expressed as:  
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The derivative of Equation (19) with respect to 

parameters c, β, λ, α is; respectively, given by: 
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The maximum likelihood estimates MLEs of the 

parameters c, β, λ, α, can be obtained by setting the 

Equations (20)-(23) to zero and solving them numerically 

by iterative methods, such as Newton-Raphson method as 

there is no closed form solution to theses equations. 

Performance of EEWD 

In this section, the proposed model is assessed from 

two aspects. firstly, the performance of the MLE's is 

checked using a simulation study. Secondly, the 

goodness of fit of the EEWD is evaluated comparing to 

other existing distributions. 

Simulation Study 

To evaluate the performance of the MLEs of the 

EEWD obtained in section (5), we provide a Monte 

Carlo simulation study. The simulation is done on 1000 

iteration with four different sample sizes n = 100, 150, 

300, 500 for the following two cases: 
 

 Case I: α = 0.9, β = 2, λ = 1.2, c = 0.5 

 Case II: α = 1.6, β = 1.8, λ = 2, c = 0.9 

 

For each sample size n, the MLEs are evaluated using 

two accuracy measures: Bias and the Mean Squared 

Error (MSE). Table 1 presents the MLEs together with 

the bias and MSE for the vector of parameters γ = (α, β, 

λ, c). It is clear that the MLEs are improved for all 

parameters when the sample size increases as both bias 

and MSE decrease on average. 

Real Application 

For more illustration, this section compares the 

efficiency of the goodness-of-fit for the EEWD distribution 

with some selected distributions in literature. In particular, a 

data set is used to compare the proposed model with: 

Exponential Distribution (ED), Weibull Distribution (WD), 

Generalized Exponential Distribution (GED), Linear 

Exponential Distribution (LED), A New Generalized Linear 

Exponential Distribution (NGLED), Modified Weibull 

Distribution (MWD), Exponential Weibull Distribution 

(EWD), Transmuted Exponential Distribution (TED) and 

Transmuted Linear Exponential Distribution (TLED). The 

data set used in comparison is provided by (Aarset, 1987) 
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and represents the failure times of a sample of 50 devices. 

For each distribution, the MLEs and the log-likelihood 

function together with the Akike Information Criterion 

(AIC) are calculated. The data set is presented in Table 2. 

Table 3 shows the results for the EEWD together 

with some selected distribution. It is clear that the 

proposed EEWD gives the minimum AIC and hence fits 

the data better than other distributions. Figure 2 shows 

the observed and expected frequencies and the cdf for 

the EEWD together with other distributions and it is 

plain to see that it is better at representing the data. 

 

 
 (a) (b) 
 
Fig. 2: Comparison of EEWD distribution with other distributions: (a) the observed and expected frequencies. (b) The cdf for each 

distribution 

 

Table 1: MLEs, bias and MSE for the EEWD parameters with four different sample sizes for two different cases 

  Case I   Case II 

  --------------------------------------------------- ---------------------------------------------------- 

Sample Size Parameters MLE            Bias    MSE MLE Bias MSE 

n = 100 α 1.0198 0.1198 0.4158 1.8957 0.2957 1.9410 

 β 2.1121 0.1121 0.5874 1.8000 3.663×10−5 0.4740 

 λ 1.2123 0.0123 0.1557 1.1734 -0.0265 0.1809 

 c 0.5524 0.0524 0.0413 0.9728 0.0728 0.0935 

n = 150 α 0.9752 0.0752 0.1741 1.7657 0.1657 0.7769 

 β 2.0987 0.0987 0.4507 1.8296 0.0296 0.3381 

 λ 1.2289 0.0289 0.1031 1.1940 -0.0059 0.1131 

 c 0.5275 0.0275 0.0184 0.9490 0.0490 0.0553 

n = 300 α 0.9234 0.0234 0.0620 1.6795 0.0795 0.3090 

 β 2.1269 0.1269 0.2421 1.8515 0.0515 0.1625 

 λ 1.2237 0.0237 0.0373 1.2182 0.0182 0.0377 

 c 0.5160 0.0160 0.0075 0.9222 0.0222 0.0220 

n = 500 α 0.9057 0.0057 0.0344 1.6672 0.0672 0.1688 

 β 2.1409 0.1409 0.1649 1.8385 0.0385 0.0928 

 λ 1.2281 0.0281 0.0241 1.2302 0.0302 0.0271 

 c 0.5116 0.0116 0.0040 0.9083 0.0083 0.0125 

 

Table 2: Failure times of a sample of 50 devices 

Device No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Failure Time 0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 

Device No. 21.0 22.0 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Failure Time 36.0 40.0 45 46 47 50 55 60 63 63 67 67 67 67 72 75 79 82 82 83 

Device No. 41.0 42.0 43 44 45 46 47 48 49 50 

Failure Time 84.0 84.0 84 85 85 85 85 85 86 86 
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Table 3: MLEs of parameters for the EEWD and SE in parentheses and some selected distributions together with the log-likelihood 

function and AIC for the dataset 

Distribution Parameter`s Estimation -ℓ AIC 

EEED ( β  c) a  = 0.1525(0.0716)  229.4115 466.832 

   = 67.7950(16.999) 

   = 0.2548(0.0845) 

 c  = 4.4488(2.027) 

ED (β)   = 0.00219 241.08 484.16 

WD ( )   = 0.0235 241.04 486.08 

   = 0.9826 

GED ( β)   = 0.7798 239.99 483.98 

   = 0.0187 

LED (β )   = 0.0135 238.06 480.12 

   = 20425×104 

NGLED ( β  )   = 0.7231  239.49 486.98 

   = 0.0012 

   = 0.0127 

   = 0.1.0682 

MWD (β,  )   = 0.0042 241.03 488.06 

   = 0.0196 

   = 0.9759 

EWD (  )   = 0.6553 238.71 483.42 

   = 0.0076 

   = 0.1.1768 

TED (β )   = 0.0243 240.67 485.34 

   = -0.2436 

TLED (β  )   = 0.0145 238.01 482.02 

   = 2.4186×104 

   = -0.0948 

 

Conclusion 

In this study, an EEWD is proposed. The 

distribution is constructed by compining the T-X 

method along with the exponentiated method. The 

mathematical properties of the proposed distribution 

are studied. For parameters estimation, the method of 

ML is applied. To assess the performance of the 

MLEs a simulation study is conducted under various 

sample sizes. It is clear that the ML methods is 

appropriate in estimating the EEWD parameters. 

Moreover, real application is provided to compare the 

effectiveness of the EEWD compared to other known 

distributions in literature in terms of goodness-of-fit. 

The results demonstrated the efficiency of the new 

distribution in fitting these data accurately as it gives 

the minimum AIC. For future work, another 

estimation method can be used to estimate the model 

parameters; such as, Bayesian method. Moreover, 

other data set in different fields can be used to test the 

distribution's flexibility. 
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