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Abstract: The purpose of this study was to find out the challenges facing 

Machine Learning (ML) software development and create a design 

architecture and a workflow for successful deployment. Despite the promise 

in ML technology, more than 80% of ML software projects never make it to 

production. As a result, majority of companies around the world with 

investments in ML software are making significant losses. Current studies show 

that data scientists and software engineers are concerned by the challenges 

involved in these systems such as: Limited qualified and experienced ML 

software experts, lack of collaboration between experts from the two 

domains, lack of published literature in ML software development using 

established platforms such as Django Rest Framework, as well as 

existence of cloud software tools that are difficult use. Several attempts 

have been made to address these issues such as: Coming up with new 

software models and architectures, frameworks and design patterns. 

However, with the lack of a clear breakthrough in overcoming the 

challenges, this study proposes to investigate further into the conundrum 

with the view of proposing an ML software design architecture and a 

development workflow. In the end, the study gives a conclusion on how 

the remedies provided helps to meet the objectives of study. 

 

Keywords: Machine Learning, Data Science, Software Engineering, 

Development, Deployment, Django REST Framework, Architecture, Workflow 

 

Introduction 

Artificial Intelligence (AI) has become an important area 

of research in the 21st Century in many fields including: 

Marketing, education, banking, finance, agriculture, 

healthcare, space exploration, autonomous vehicles, law 

and so forth (Keshari, 2020; Hull, 2020). Besides, AI 

has also long been a major focus for tech leaders such 

as: Facebook, Amazon, Microsoft, Google and Apple 

(FAMGA) who have all been aggressively acquiring AI 

startups by trying to integrate machine learning into 

their products and services (Pathak, 2017). 

It is noteworthy that FAMGA have announced 

shifting from a mobile-first world to an AI-first world 

(Allad, 2016). The shift implies that Information and 

Communication Technology (ICT) focus has moved 

from optimizing user experience through mobile phone 

inter faces to maximizing predictive accuracy through 

the use of AI.  

The AI domain consists of several subfields, such as 

Machine Learning (ML), Deep Learning (DL), natural 

language processing, image processing and data mining 

which are also important topics in computing research and 

technology industries (Zhang and Tsai, 2005; Zhang et al., 

2019).  ML is an application of AI that provides systems with 

the ability to automatically learn and improve from 

experience without being explicitly programmed. 

Despite the interest caused by ML due to its wide 

applications and benefits in computing technology, DL, 

a subfield of machine learning is attracting much 

attention as well. DL uses artificial neural networks to 

mimic the workings of the human brain in processing 

data and creating patterns for use in decision making. 

However, despite the potential created by both ML and 

DL in data science projects, there is evidence that 

majority of the projects do not make it to production 

(Redapt Marketing, 2019; Ameisen, 2020) with a high 

failure rate of approximately up to 90% being reported. 
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Motivation 

Although significant strides have been made in the field 

of ML software development, there is still a considerable 

amount of pitfalls that slow down the application of the 

technology in investments worldwide. Some of the issues 

that have motivated this study are stated below. 

Most papers on ML published by students 

undertaking masters and PhD studies in computer 

science and Information Technology have been 

implemented using Python programming language and 

deployed using Tkinter (Grayson, 2000), graphical user 

interface for python desktop application. 

Secondly, the use of REST frameworks (Django or 

Flask) for Machine learning web applications is quite 

complex and requires a good architecture and a clear 

workflow which are currently lacking (Jordon, 2019). 

Thirdly, there is generally lack of clear software 

engineering principles for successfully integrating ML 

models and web applications.  

Finally, the reportedly high failure rate of ML software 

projects of up to 80% calls for further research into how 

the design, development and deployment maybe be 

enhanced to improve the ML software engineering. 

Background 

Despite the perceived benefits of ML applications, the 

process of developing, deploying and continuously 

improving them is more complex compared to the 

traditional software, such as a web services and mobile 

applications (Geron, 2019; Chen, 2015). Deployment, or 

simply, putting models into production implies making it 

available to others, whether that be users, management, or 

other systems. When successfully deployed, ML projects 

enables users to send data and get their predictions 

accurately via web or mobile interfaces. 

During the development of an ML software, there 

are three major tasks undertaken by the developers: The 

creation of ML model, the design of web application for 

running the model and the successful deployment of the 

product as an intelligent software (Chen et al., 2020; Li et al., 

2015; Washizaki et al., 2019). These tasks are quite complex 

and demanding and require the relevant skills and inputs of 

from both ML Engineers and Software Engineers. 

Task one requires a thorough knowledge of ML 

modeling using a machine learning programing 

language such as python. Task two requires the 

knowledge of web development using a REST 

framework and the integration of the model with the 

web application. Finally, task three involves successful 

deployment of the application with reliable outputs. 

The challenges faced by ML engineers have resulted 

into more research being conducted in this area with the 

view of alleviating the challenges mentioned. As a result, 

new software design patterns and new platforms for 

development have emerged (Ameisen, 2020; Zhang and 

Tsai, 2005; Zhang et al., 2019; Geron, 2019). However, 

these platforms both advantages and disadvantages. 

The advantages include: Better data visualization, 

scalability, pipelining and code debugging options. On the 

flipside, the use of these tools requires fundamental 

knowledge of advanced calculus and linear algebra along 

with a good understanding of web based software 

engineering in order to create a sustainable ML software. 

Secondly, the field of data science is known to mainly 

focus on ML algorithm writing and model development 

using data mining software’s such as WEKA, Rapid 

Mining and Orange (Mikut and Reischl, 2011) and or ML 

programming languages such as python and R (Moroney, 

2020), with preferably labeled data, having minimal 

dimensionality and optimizing performance and accuracy 

of the model (Schröer et al., 2021). 

Another cause of concern in ML software development 

is that the principles used in software engineering and ML 

modeling are quite divergent: While ML is concerned more 

with algorithm writing, testing and accuracy issues, software 

engineering deals mainly with scalability, extensibility, 

configuration, consistency, modularity and security 

issues etc., (Sculley et al., 2015). It is thus difficult to 

produce a software that seamlessly combines 

constraints from both domains. 

Lastly, there is no clear formula or procedure on the 

integration of ML models with web applications created 

with Django or Flask. This is to imply that while a 

majority of data scientists are good at creating ML models 

using datamining tools, very few are good at creating the 

same models using languages such as R or Python.  

The problem is further compounded by the need to 

design and develop a web application and merge it with 

an ML application as one application (Plonski, 2019; 

Bajpai, 2020). 

Purpose 

The purpose of the study was to Identify the challenges 

that hinder the Development and Deployment of Machine 

Learning Software Models and thereafter create a Software 

Architecture and a Deployment Workflow implementable 

using Pythons Django Rest Framework (DRF). 

Study Objectives 

Identify the challenges facing data scientists and 

software engineers during Machine Learning Software 

Development and Deployment: 

 

i) Develop a suitable Machine Learning Software 

Architecture that is deployable with Python’s DRF 
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ii) Integrate a Machine Learning Software Deployment 

Workflow based on the software architecture created 

in objective (i) 
 

In order to answer the study objectives, we propose to 

come up with a Software Design Architecture (SDA) to 

better understand the basic structure of a ML software and 

a Software Deployment Workflow (SDW) to guide the 

development and deployment of ML software and help 

overcome the challenges identified in the study. 

Literature Review 

The study reviewed the literature relevant to the study 

by using the Framework by proposed by Murad (2020) 

and illustrated in Fig. 1. By applying this framework, 

we decided to use a systematic literature review and 

scoped the existing literature on ML software to help 

us define the Research Problem (RP). Once this was 

done, the RP was specified in a clear and structured 

manner by framing it using specific keywords. 

Some of the keywords used included machine 

learning software development, machine learning 

software deployment, machine learning engineering, 

machine learning web applications, data science 

engineering, machine learning software architecture, 

machine learning software workflow, Django REST 

framework and the challenges of deploying machine 

learning models. 

To capture as many relevant articles as possible, a 

range of journals, books and grey literature in the 

mentioned areas were searched extensively to identify 

whether they contained articles having these key words. 

In total, twenty-five journals (25), sixteen books (16) and 

thirteen (13) grey literature were scoped. Out of these, 

only 18 journals, 15 books and 8 grey literature were 

found to be relevant for review 

Some of journals included were: Journal of Systems 

and Software, SSRN Electronic Journal, International 

Journal for Research in Applied Science and Engineering 

Technology, Journal of Data Warehousing and Journal of 

Systems, Software and Willy online Library. The review 

enabled us to identify some of the processes, models, 

frameworks and related work within the scope of the study 

topic as described in the next sections. 

 

 

 

Fig. 1: Literature review flowchart (Murad, 2020) 

Start 
Decide on type 

of review 

Scope the existing 

literature 

Define study 

purpose 

Submit manuscript 

for publication 
Stop 

Select your 

resources: 

databases and 

grey literature 

Write up your 

findings 

Choose your 

search terms: 

Keywords and 

subject heading 

Title and abstract 

screening 

Make a note of 

how many results 

are found from 

each resource 

Test 

results: 

have you 

found all 

the 

records? 

Yes No 



Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164 

DOI: 10.3844/ajassp.2021.152.164 

 

155 

Machine Learning as a Model (MLaaM) 

MLaaM is the output of writing ML algorithms that 

run on data and represents what was learned by the 

algorithm on training data. An algorithm in ML is a 

procedure that is run on data to create a machine learning 

model. Examples of ML algorithms include: K-nearest 

neighbors for classification, linear regression for 

regression and k-means for clustering (McClendon and 

Meghanathan, 2015).  

The model is a file that is saved after running the 

algorithm and represents the data, the rules and the 

procedures for using the data to make a prediction (Geron, 

2019). The most popular programming language for 

MLaaM is Python while Tensor Flow (TS) is the most 

preferred software framework by developers for both DL 

and ML (Jaxenter, 2018).  

ML models can be created using three techniques: 

Supervised learning, unsupervised learning and 

reinforced learning. Supervised learning algorithms 

which are the most common are trained using labeled 

examples, such as an input where the desired output is 

known, while unsupervised learning is used against 

data that has no historical labels (Sharma, 2020). 

Machine Learning as a Service(MLaaS) 

Machine learning as a service (MLaaS) refers to a 

number of services that offer machine learning tools as 

part of cloud computing services (Singh, 2021; Geron, 

2019). The main benefits of these tools is that 

customers can get started with machine learning 

applications quickly without installing specific 

software or provisioning their own servers. MLaaS 

providers offer services for the development and 

deployment of ML software projects that allow: Data 

transformation, predictive analytics, data visualization 

and advanced ML algorithms (Geron, 2019; Zhang and 

Tsai, 2005; Zhang et al., 2019; Singh, 2021).  

MLaaS providers normally guarantee to their clients 

all stages of the machine learning process, including data 

storage and management, model development and 

deployment, performance monitoring and support and 

ensuring maximum efficiency of the whole machine learning 

process (Zhang and Tsai, 2005; Zhang et al., 2019). 

Different providers may vary slightly in their cloud 

services, however most of them offer environments that 

can be used to: Prepare data, train, test, deploy and 

provide performance monitoring. Some of the popular 

providers include Amazon Web Services (Bankar, 

2018), Google (Sanderson, 2012), IBM (Miller, 2019), 

Microsoft Azure (Ranjeetsingh, 2014) and Uber 

(Oppegaard, 2021). 

ML Model Software Deployment 

Software deployment is all of the activities that 

make a software system available for use. It is the 

mechanism through which applications modules are 

delivered from developers to users. The methods used 

by developers to build, test and deploy new code will 

impact how fast a product can respond to changes in 

customer preferences or requirements and the quality 

of each change (Fitzgerald and Stol, 2017). 

In the context of ML, the process of taking a trained 

model and making its predictions available to users is 

known as deployment. As such, ML deployment is not 

very well understood amongst data scientists who lack 

backgrounds in software engineering. Alternatively, 

most software engineers are not good in ML model 

development. Plonski (2019) highlighted the four 

methods of deployment, outlining the requirements, 

merits and the demerits of each. The methods are 

summarized in Table 1. 

 

Table 1: Different ways of deploying ML models. Adopted from Plonski (2019) 

SN Deployment Method Requirements Advantage Disadvantages Comment 

1 Locally -Jupiter notebook Simple to implement Hard to govern, monitor, Not recommended 

 (Laptop or computer) - R studio or  Predictions on ML code scale and collaborate for production 

  -Weka 

2 Hard-code the ML algorithm -Jupiter notebook Can be used with simple ML Hard to govern, monitor, Not recommended 

 in the system's code - R studio or  algorithms, like decision scale and collaborate for production 

  -Weka Trees or linear regression 

  -Software program  

3 Use of REST API -Jupiter notebook, All requirements for the Requires data scientist Recommended 

 or Web Sockets -R studio or ML production system and software engineer for production 

  -Weka. can be fulfilled. 

  -Software framework 

4 Use of a commercial cloud Colab PDE or jupiter All requirements for the ML Requires data scientist Recommended 

 vendor for Deployment notebook on laptop production system can be fulfilled and Software Engineer for production 
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Django REST Framework (DRF) 

Django Representational State Transfer (REST) 

Framework is a free and open source high-level Python 

web framework that encourages rapid development and 

clean, pragmatic design. DRF is a powerful and flexible 

toolkit used for rapidly building web applications based 

on Django database models (Jordon, 2019; Bajpai, 2020) 

with the following advantages: Secure, scalable, 

customizable application with serialization that supports 

both the Object Relational Mapping (ORM) and non-

ORM data sources (Jordon, 2019; Bajpai, 2020).  

Given that most ML models are created using Python 

programing language makes DRF a preferred platform for 

ML software development. 

ML Model Software Architecture (MMSA) 

The ML software application building process is a 

complex process that brings together several components 

constituting the software engineering life cycle: Requirement 

engineering, analysis, design, development, testing 

deployment and maintenance (McGovern et al., 2004).  

Thus, there is need for a software architecture that 

supports the ML model component and the web 

application components and without negatively affecting 

the performance of the software (Binge, 2020).  

IEEE CS (2000) defines Software Architecture (SA), 

SA as the fundamental organization of a software 

embodied in its components, their relationships to each 

other and the principles guiding its design and evolution. 

The SA for this study will consist of the following 

components: The architectural pattern which defines the 

granularity of a component, system Interaction which defines 

how the components communicate with each other and 

software quality attributes such as: Scalability, extensibility, 

maintainability, portability, adaptability and resilience, etc. 

However, it is important to note that the type of 

architecture used in a software is normally determined by 

the project objectives, the proposed budget, the developer 

team skillset, infrastructure limits and the stakeholders 

interest (Binge, 2020). 

Machine Learning Operations 

Machine Learning Operations or “MLOps” is defined 

as the practice for collaboration between data scientists 

and software engineers in automatically managing the 

deployment of ML and DL software lifecycles (Wang, 

2019). MLOps can be manual or automatic 

The manual MLOps processes as illustrated by Fig. 2 is 

an entirely manual process that includes data analysis, data 

preparation, model training and validation in Jupiter 

Notebook by data scientists. The data scientists hand over a 

trained model as an artifact to the software engineering team 

for deployment by putting the trained model in a code 

repository (Singh, 2021). The software engineers deploy the 

model as a prediction service using a micro service 

architecture with REST APIs. The workflow of this process 

is illustrated in Fig. 2. 

Related Work 

A study by Runyu (2020) to create a design pattern for 

ML deployment ascertained that although data scientists 

have come up with many good algorithms and trained 

models, putting those models is still a challenge. The key 

obstacles hindering ML software production are: Lack of 

a clear methodology for moving ML models to 

production, use of monolithic programming or lack of 

modularization when writing ML code and obscure best 

practices in ML software development.  

Runyu (2020) developed a system design pattern 

named Model-Service-Client + Retraining (MSC/R) in 

order to overcome these challenges (Fig. 3). This design 

pattern incorporates the principles of modularization and 

separation of concerns and uses a micro service RESTful 

API architecture. Figure 3 illustrates the architecture. 

The MSC/R design pattern works by using three teams 

of distinct developers: Data scientists-working on the 

model, MLOps engineers-working on the service and 

client developers-working on the front end. Then the next 

important part of the design illustrates connectors linking 

the four main system components: Model, service, 

retraining and client. The connectors main function is to 

provide guidelines for collaborations between the system 

components during development. 

In a related study by O’Leary and Uchida (2020) to 

identify the common problems with creating ML 

pipelines from existing code, data was collected via face 

to face meetings in coding workshop settings averaging 

100 companies, data scientists, researchers, ML platform 

owners and software engineers. The companies 

interviewed were in the process of transforming their 

business through the use of ML. 

The projects involved migrating existing ML models 

to MLaaS using Kube Flow Pipelines (KFP) and Tensor 

Flow Extended (TFX). The study identified three problems: 

Firstly, due to the highly iterative nature of ML model 

development, the coding does not usually follow object 

oriented principles such as modularization and code re-

use making it unsuitable for deployment using software 

engineering principles. As a result, engineers often 

need to re-implement the model from scratch into a 

deployable software. During the re-implementation, 

many of the implicit assumptions made by data 

scientists for modeling get lost, resulting in unexpected 

inconsistencies and issues in production. 
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Secondly, most ML model developments use 
“monolithic programming approaches” i.e., building 
applications that are “single-tiered” in nature. Single-tier 
architecture when used in ML combines data with 
business logic and user interface codes in a single logical 
structure. This results into a tightly coupled application 
that becomes inefficient to run and difficult to maintain. 

In a related study by Sculley et al. (2015) that set 
out to explore the several specific design risk factors to 
account for in ML software deployment, the output was 
the Technical Debt Framework (TDF) illustrated in 
Fig. 4. Technical debt is an analogy used to describe a 
situation in software development where a workaround 
is used to solve a software problem (Kruchten et al., 
2012; Zazworka et al., 2011). Several technical 
problems (debts) and potential workarounds 
(repayment approaches) were identified and used to 
create the TDF (Fig. 4). 

Default in payment of technical debts may hinder 

successful deployment. The debts include issues related 

to: Design, coding, testing, documentation, versioning 

and infrastructure. Repayment can be done via: 

Automation, re-writing, refactoring, re-engineering, re-

packaging, bug fixing and improving documentation. 

Repayment results into an improved software quality. ML 

systems have a tendency for incurring technical debts 

because of the already stated problems related to the 

domains of ML and software engineering. 

Another study that set out to identify the challenges in 

deploying DL software by Chen et al. (2020), proposed 

an ML deployment process consisting of four phases: DL 

data collection, DL model training, Model conversion and 

exportation to TS and Platform configuration and 

deployment (Fig. 5). 

The DDDM has two facets: DL software 

development and DL software Deployment. The first 

facet makes use of TF and Keras to integrate models 

into software applications for real usage after 

validation and testing. The second facet involves 

deploying the model on a cloud-based server platform 

such as AWS Sage Maker or Google Cloud. 

 

 
 

Fig. 2: Manual MLOps deployment process Singh (2020) 
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Fig. 4: The technical debt framework source: Adopted from Li et al. (2015) 
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the model software. To obtain the data relevant for the 

study, over 3,023 posts from (Stack Overflow, 2020), 

specifically from TS serving, Google cloud ML and 

Amazon sageMaker were collected and analyzed. 

In another related study, Esmaeilzadeh (2017), 

designed an architecture and developed a testable, 

scalable and efficient web-based application that 

models and implements machine learning applications 

in cancer prediction. The main components that formed 

the architecture of the system included a server, a 

database, a programming language, Django web 

framework, front-end design, testability, scalability, 

performance and design pattern (Fig. 6). 

The data set for the study’s application was a subset of 

the Surveillance, Epidemiology and End Results (SEER) 

Program of the National Cancer Institute. The application 

was implemented with Python as the back-end 

programming language, Django as the web framework 

and MYSQL as the database server. The front layer of the 
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The study used Automated testing approaches to ensure 
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functionalities do not change the behavior of application in 
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Washizaki et al. (2019) embarked on a study with 
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By using a questionnaire-based survey, the study 
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Fig. 5: DL software Development and Deployment Model (DDDM). Source (Adopted form: Chen et al., 2020) 

 

 

 

Fig. 6: ML software deployment architecture adopted from Esmaeilzadeh (2017) 

 

 

 

Fig. 7: Software engineering design pattern ML software systems. Adopted from Washizaki et al. (2019) 
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Table 2: Summary of literature review 

SN Model/pattern/framework and author Advantages Disadvantages 

1 Model-Service-Client + Retraining This design pattern incorporates the Does not clearly how the model, service and 
 (MSC/R) design pattern (Runyu, 2020) principles of modularization and separation client component are integrated 

  of concerns and uses a micro service 

2 A test driven approach to develop Use of automated testing approaches to ensure No clear explanation how the rest of the 

 web-based machine learning the following: Making sure the application application was developed using Python, 

 applications (Esmaeilzadeh, 2017)  is working as expected before deployment Django, MYSQL CSS and JavaScript 

   No mention of how deployment was done 

3 DL software deployment Uses tensor flow and Keras to integrate No clear methodology on how Tensor Flow 
 model: Chen et al. (2020) models into software applications deploying and Keras was used 

  the model on a cloud based server platform No clarity on how deployment was done 

  such as AWS sage maker 

3 Software engineering design pattern Exposed lack of expertise by ML engineers No clear methodology on how the logic, the 

 for designing machine learning on ML software development data and the presentation layers were created, 

 Systems (Washizaki et al., 2019) created an MVC for ML software integrated and deployed together with the ML model 

4 The Technical Debt Framework (Adopted Identified some of the risks in ML software No mention of an architecture or a deployment 

 from (Li et al., 2015) deployment called technical debts workflow 
  Identified debt repayment approaches 

5 Common problems with creating machine Used KubeFlow Pipelines (KFP) and Methodology on both development and 

 learning pipelines from existing code TensorFlow Extended (TFX) Deployment not clear 

 (O’Leary and Uchida, 2020) 

 

Summary of Literature Review 

After a comprehensive literature review, the results are 

summarized based on the model or framework reviewed, 

in terms of the advantages and disadvantages of each 

framework and model (Table 2). 

Proposed ML Software Model Deployment 

Architecture (DFMSA) 

The proposed architecture describes the major 

components of both the ML model and the Django part, 

their relationships (structures) and how they interact 

with each other. This architecture is known as the 

Django Framework ML Software Architecture 

(DFMSA). The DFMSA consists of six sub 

architectures (SAs): The user interface component, the 

Serialization/De-Serialization component, the 

server/repository component and the application 

component, configuration files component and the 

command line utility component (Fig. 8). 

SA1: User Interface 

The user interface provides a connection between 
the Admin and normal user with the system through the 
Admin Panel and the Client Interface. Beneath this SA 
lies the static and template folders containing the CSS, 
HTML, JavaScript and JSON files. The SA connects 
with the rest of the application through the application 
URLS file. 

SA2: Django API 

The Django API is made up of the files: View.py for 
logic, models.py for database code, apps.py for 
application configuration, urls.py for providing paths, 
admin.py for administrative functions and tests.py for 
writing tests. All the files work in conjunction to make 
the application accept user data and give predictions. 

SA3: System Configuration Files 

The configuration files such as the settings.py and 

urls.py are vital in linking the system files together. For 

example, they are useful in creating paths and importing. 

For example, they are useful in creating paths and 

importing files, linking the static and template files, defining 

database credentials and middleware components and 

linking the installed apps and security key. 

SA 4: Serialization/De-Serialization 

Object serialization is the process of saving a ML Model 

as a Pickle, a Joblib or manually saving and restoring using 

a JSON approach. Serialization represents an object with a 

stream of bytes, in order to store it on disk, send it over a 

network or save to a database. Deserialization is the process 

of restoring and reloading the pickled ML Model back to the 

Jupiter Notebooks (IPYNB) format. 

SA 5: Server and Repository 

Heroku is a Cloud Platform as a Service (PaaS) 

supporting several programming languages such as: Ruby, 

Java, Node.js, Scala, Python and PHP. One advantage with 

Heroku is that If the project is already pushed to GitHub, 

automatic deployments can easily be set from the project's 

repository in GitHub from the Heroku dashboard. 

SA 6: Command Line Utility 

The command line utility contains two major utilities: 

Manage.py, a command-line utility that lets you interact with 

this Django project in various ways and django-admin.py, a 

Django’s command-line utility for administrative tasks. 

Proposed ML Software Model Deployment 

Workflow (SMDW) 

The proposed SMDW is arrived based on the proposed 

architecture and Literature Review summary (Table 2). 
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From this table, there are six factors which we turned into six 

phases: Start, build ML Model, Build Django App, integrate 

Model into Application or App, Make Predictions and test 

user response tests using two variants: Variant A vs variant 

B, also known as A/B testing (Fig. 9). 

Phase 1: Start 

During this phase, the software engineer is supposed to 

start by setting up a GitHub account, installing the Python 

virtual environment, creating a Django project and adding 

applications files into the project followed by committing the 

code into the GitHub Repository (GHR). This is in 

preparation for the software engineering part of the project. 

Phase 2: Build ML Model 

During this phase, an ML engineer or a data 

scientist installs Jupiter Notebook and installs and 

loads all the initial packages required for the project. 

This is followed by the loading and pre-processing of 

the data file, writing, training and saving the algorithms 

before adding the code into the GHR.
 

 
 

Fig. 8: Proposed system DFMSA using Plonski (2019) 
 

 
 

Fig. 9: Proposed ML model deployment workflow Plonski (2019)
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Phase 3: Build Django App 

During this phase, the software engineer continues 

with what was started in Phase 1 by adding the database 

models, creating the REST APIs for the models, adding 

DRF serializes, adding views and URLS and adding the 

code into the GHR. 

Phase 4: Integrate ML Model in Django App 

During this phase, the software engineer continues 

with what was done in Phase 3 by writing ML server 

code for the model, write Test codes, creates a registry 

and add algorithms into the registry and then add the 

code into the GHR. 

Phase 5: Make Predictions 

During this phase, the software engineer continues 

with what was done in Phase 4 by creating views for 

predictions, creating DB models for Tests, create REST 

APIS for Tests, write scripts for sending Requests and add 

the code into the GHR. 

Phase 6: A/B Testing 

A/B testing in the context of this study is the process 

of comparing two outputs of the ML software predictions 

and concluding which of the two outputs or variants is 

more effective or accurate. The other parts of the project 

are repeated such as creating views for predictions, 

creating DB models for Tests, creating REST APIS for 

Tests, writing scripts for sending Requests and adding the 

code into the GHR. 

Conclusion and Recommendation 

This study investigated challenges that hinder the 

Development and Deployment of ML software models in 

order to create an architecture and a deployment workflow 

implementable using Pythons DRF. After a systematic 

literature review, the main challenges were found to be: 

Unethical programming practices, lack of software 

development skills that integrate both data science and 

software engineering, difficulty in using software’s and 

tools for developing ML software and a lack of clear 

methodology for deployment. A suitable ML software 

architecture and model workflow and are also 

presented as a solution to deployment problems within 

the ML engineering. This study aims to benefit ML 

software engineers in industry to help increase the rate 

of production as well as masters and PhD students in 

IT and computer science to help them in wring their 

thesis regarding ML software. It is recommended that 

there I need to use the created architecture and 

deployment workflow to try and deploy an ML 

software as a test. 
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