

 © 2021 Kennedy Ochilo Hadullo and Daniel Makini Getuno. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

American Journal of Applied Sciences

Literature Reviews

Machine Learning Software Architecture and Model

Workflow. A Case of Django REST Framework

1Kennedy Ochilo Hadullo and 2Daniel Makini Getuno

1Institute of Computing and Informatics, Technical University of Mombasa, Mombasa, Kenya
2Department of E-learning, School of Education, Egerton University, Njoro, Kenya

Article history

Received: 15-02-2021

Revised: 24-05-2021

Accepted: 04-06-2021

Corresponding Author:

Kennedy Ochilo Hadullo

Institute of Computing and

Informatics, Technical

University of Mombasa,

Mombasa, Kenya

Email: khadullo@gmail.com

Abstract: The purpose of this study was to find out the challenges facing

Machine Learning (ML) software development and create a design

architecture and a workflow for successful deployment. Despite the promise

in ML technology, more than 80% of ML software projects never make it to

production. As a result, majority of companies around the world with

investments in ML software are making significant losses. Current studies show

that data scientists and software engineers are concerned by the challenges

involved in these systems such as: Limited qualified and experienced ML

software experts, lack of collaboration between experts from the two

domains, lack of published literature in ML software development using

established platforms such as Django Rest Framework, as well as

existence of cloud software tools that are difficult use. Several attempts

have been made to address these issues such as: Coming up with new

software models and architectures, frameworks and design patterns.

However, with the lack of a clear breakthrough in overcoming the

challenges, this study proposes to investigate further into the conundrum

with the view of proposing an ML software design architecture and a

development workflow. In the end, the study gives a conclusion on how

the remedies provided helps to meet the objectives of study.

Keywords: Machine Learning, Data Science, Software Engineering,

Development, Deployment, Django REST Framework, Architecture, Workflow

Introduction

Artificial Intelligence (AI) has become an important area

of research in the 21st Century in many fields including:

Marketing, education, banking, finance, agriculture,

healthcare, space exploration, autonomous vehicles, law

and so forth (Keshari, 2020; Hull, 2020). Besides, AI

has also long been a major focus for tech leaders such

as: Facebook, Amazon, Microsoft, Google and Apple

(FAMGA) who have all been aggressively acquiring AI

startups by trying to integrate machine learning into

their products and services (Pathak, 2017).

It is noteworthy that FAMGA have announced

shifting from a mobile-first world to an AI-first world

(Allad, 2016). The shift implies that Information and

Communication Technology (ICT) focus has moved

from optimizing user experience through mobile phone

inter faces to maximizing predictive accuracy through

the use of AI.

The AI domain consists of several subfields, such as

Machine Learning (ML), Deep Learning (DL), natural

language processing, image processing and data mining

which are also important topics in computing research and

technology industries (Zhang and Tsai, 2005; Zhang et al.,

2019). ML is an application of AI that provides systems with

the ability to automatically learn and improve from

experience without being explicitly programmed.

Despite the interest caused by ML due to its wide

applications and benefits in computing technology, DL,

a subfield of machine learning is attracting much

attention as well. DL uses artificial neural networks to

mimic the workings of the human brain in processing

data and creating patterns for use in decision making.

However, despite the potential created by both ML and

DL in data science projects, there is evidence that

majority of the projects do not make it to production

(Redapt Marketing, 2019; Ameisen, 2020) with a high

failure rate of approximately up to 90% being reported.

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

153

Motivation

Although significant strides have been made in the field

of ML software development, there is still a considerable

amount of pitfalls that slow down the application of the

technology in investments worldwide. Some of the issues

that have motivated this study are stated below.

Most papers on ML published by students

undertaking masters and PhD studies in computer

science and Information Technology have been

implemented using Python programming language and

deployed using Tkinter (Grayson, 2000), graphical user

interface for python desktop application.

Secondly, the use of REST frameworks (Django or

Flask) for Machine learning web applications is quite

complex and requires a good architecture and a clear

workflow which are currently lacking (Jordon, 2019).

Thirdly, there is generally lack of clear software

engineering principles for successfully integrating ML

models and web applications.

Finally, the reportedly high failure rate of ML software

projects of up to 80% calls for further research into how

the design, development and deployment maybe be

enhanced to improve the ML software engineering.

Background

Despite the perceived benefits of ML applications, the

process of developing, deploying and continuously

improving them is more complex compared to the

traditional software, such as a web services and mobile

applications (Geron, 2019; Chen, 2015). Deployment, or

simply, putting models into production implies making it

available to others, whether that be users, management, or

other systems. When successfully deployed, ML projects

enables users to send data and get their predictions

accurately via web or mobile interfaces.

During the development of an ML software, there

are three major tasks undertaken by the developers: The

creation of ML model, the design of web application for

running the model and the successful deployment of the

product as an intelligent software (Chen et al., 2020; Li et al.,

2015; Washizaki et al., 2019). These tasks are quite complex

and demanding and require the relevant skills and inputs of

from both ML Engineers and Software Engineers.

Task one requires a thorough knowledge of ML

modeling using a machine learning programing

language such as python. Task two requires the

knowledge of web development using a REST

framework and the integration of the model with the

web application. Finally, task three involves successful

deployment of the application with reliable outputs.

The challenges faced by ML engineers have resulted

into more research being conducted in this area with the

view of alleviating the challenges mentioned. As a result,

new software design patterns and new platforms for

development have emerged (Ameisen, 2020; Zhang and

Tsai, 2005; Zhang et al., 2019; Geron, 2019). However,

these platforms both advantages and disadvantages.

The advantages include: Better data visualization,

scalability, pipelining and code debugging options. On the

flipside, the use of these tools requires fundamental

knowledge of advanced calculus and linear algebra along

with a good understanding of web based software

engineering in order to create a sustainable ML software.

Secondly, the field of data science is known to mainly

focus on ML algorithm writing and model development

using data mining software’s such as WEKA, Rapid

Mining and Orange (Mikut and Reischl, 2011) and or ML

programming languages such as python and R (Moroney,

2020), with preferably labeled data, having minimal

dimensionality and optimizing performance and accuracy

of the model (Schröer et al., 2021).

Another cause of concern in ML software development

is that the principles used in software engineering and ML

modeling are quite divergent: While ML is concerned more

with algorithm writing, testing and accuracy issues, software

engineering deals mainly with scalability, extensibility,

configuration, consistency, modularity and security

issues etc., (Sculley et al., 2015). It is thus difficult to

produce a software that seamlessly combines

constraints from both domains.

Lastly, there is no clear formula or procedure on the

integration of ML models with web applications created

with Django or Flask. This is to imply that while a

majority of data scientists are good at creating ML models

using datamining tools, very few are good at creating the

same models using languages such as R or Python.

The problem is further compounded by the need to

design and develop a web application and merge it with

an ML application as one application (Plonski, 2019;

Bajpai, 2020).

Purpose

The purpose of the study was to Identify the challenges

that hinder the Development and Deployment of Machine

Learning Software Models and thereafter create a Software

Architecture and a Deployment Workflow implementable

using Pythons Django Rest Framework (DRF).

Study Objectives

Identify the challenges facing data scientists and

software engineers during Machine Learning Software

Development and Deployment:

i) Develop a suitable Machine Learning Software

Architecture that is deployable with Python’s DRF

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

154

ii) Integrate a Machine Learning Software Deployment

Workflow based on the software architecture created

in objective (i)

In order to answer the study objectives, we propose to

come up with a Software Design Architecture (SDA) to

better understand the basic structure of a ML software and

a Software Deployment Workflow (SDW) to guide the

development and deployment of ML software and help

overcome the challenges identified in the study.

Literature Review

The study reviewed the literature relevant to the study

by using the Framework by proposed by Murad (2020)

and illustrated in Fig. 1. By applying this framework,

we decided to use a systematic literature review and

scoped the existing literature on ML software to help

us define the Research Problem (RP). Once this was

done, the RP was specified in a clear and structured

manner by framing it using specific keywords.

Some of the keywords used included machine

learning software development, machine learning

software deployment, machine learning engineering,

machine learning web applications, data science

engineering, machine learning software architecture,

machine learning software workflow, Django REST

framework and the challenges of deploying machine

learning models.

To capture as many relevant articles as possible, a

range of journals, books and grey literature in the

mentioned areas were searched extensively to identify

whether they contained articles having these key words.

In total, twenty-five journals (25), sixteen books (16) and

thirteen (13) grey literature were scoped. Out of these,

only 18 journals, 15 books and 8 grey literature were

found to be relevant for review

Some of journals included were: Journal of Systems

and Software, SSRN Electronic Journal, International

Journal for Research in Applied Science and Engineering

Technology, Journal of Data Warehousing and Journal of

Systems, Software and Willy online Library. The review

enabled us to identify some of the processes, models,

frameworks and related work within the scope of the study

topic as described in the next sections.

Fig. 1: Literature review flowchart (Murad, 2020)

Start
Decide on type

of review

Scope the existing

literature

Define study

purpose

Submit manuscript

for publication
Stop

Select your

resources:

databases and

grey literature

Write up your

findings

Choose your

search terms:

Keywords and

subject heading

Title and abstract

screening

Make a note of

how many results

are found from

each resource

Test

results:

have you

found all

the

records?

Yes No

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

155

Machine Learning as a Model (MLaaM)

MLaaM is the output of writing ML algorithms that

run on data and represents what was learned by the

algorithm on training data. An algorithm in ML is a

procedure that is run on data to create a machine learning

model. Examples of ML algorithms include: K-nearest

neighbors for classification, linear regression for

regression and k-means for clustering (McClendon and

Meghanathan, 2015).

The model is a file that is saved after running the

algorithm and represents the data, the rules and the

procedures for using the data to make a prediction (Geron,

2019). The most popular programming language for

MLaaM is Python while Tensor Flow (TS) is the most

preferred software framework by developers for both DL

and ML (Jaxenter, 2018).

ML models can be created using three techniques:

Supervised learning, unsupervised learning and

reinforced learning. Supervised learning algorithms

which are the most common are trained using labeled

examples, such as an input where the desired output is

known, while unsupervised learning is used against

data that has no historical labels (Sharma, 2020).

Machine Learning as a Service(MLaaS)

Machine learning as a service (MLaaS) refers to a

number of services that offer machine learning tools as

part of cloud computing services (Singh, 2021; Geron,

2019). The main benefits of these tools is that

customers can get started with machine learning

applications quickly without installing specific

software or provisioning their own servers. MLaaS

providers offer services for the development and

deployment of ML software projects that allow: Data

transformation, predictive analytics, data visualization

and advanced ML algorithms (Geron, 2019; Zhang and

Tsai, 2005; Zhang et al., 2019; Singh, 2021).

MLaaS providers normally guarantee to their clients

all stages of the machine learning process, including data

storage and management, model development and

deployment, performance monitoring and support and

ensuring maximum efficiency of the whole machine learning

process (Zhang and Tsai, 2005; Zhang et al., 2019).

Different providers may vary slightly in their cloud

services, however most of them offer environments that

can be used to: Prepare data, train, test, deploy and

provide performance monitoring. Some of the popular

providers include Amazon Web Services (Bankar,

2018), Google (Sanderson, 2012), IBM (Miller, 2019),

Microsoft Azure (Ranjeetsingh, 2014) and Uber

(Oppegaard, 2021).

ML Model Software Deployment

Software deployment is all of the activities that

make a software system available for use. It is the

mechanism through which applications modules are

delivered from developers to users. The methods used

by developers to build, test and deploy new code will

impact how fast a product can respond to changes in

customer preferences or requirements and the quality

of each change (Fitzgerald and Stol, 2017).

In the context of ML, the process of taking a trained

model and making its predictions available to users is

known as deployment. As such, ML deployment is not

very well understood amongst data scientists who lack

backgrounds in software engineering. Alternatively,

most software engineers are not good in ML model

development. Plonski (2019) highlighted the four

methods of deployment, outlining the requirements,

merits and the demerits of each. The methods are

summarized in Table 1.

Table 1: Different ways of deploying ML models. Adopted from Plonski (2019)

SN Deployment Method Requirements Advantage Disadvantages Comment

1 Locally -Jupiter notebook Simple to implement Hard to govern, monitor, Not recommended

 (Laptop or computer) - R studio or Predictions on ML code scale and collaborate for production

 -Weka

2 Hard-code the ML algorithm -Jupiter notebook Can be used with simple ML Hard to govern, monitor, Not recommended

 in the system's code - R studio or algorithms, like decision scale and collaborate for production

 -Weka Trees or linear regression

 -Software program

3 Use of REST API -Jupiter notebook, All requirements for the Requires data scientist Recommended

 or Web Sockets -R studio or ML production system and software engineer for production

 -Weka. can be fulfilled.

 -Software framework

4 Use of a commercial cloud Colab PDE or jupiter All requirements for the ML Requires data scientist Recommended

 vendor for Deployment notebook on laptop production system can be fulfilled and Software Engineer for production

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

156

Django REST Framework (DRF)

Django Representational State Transfer (REST)

Framework is a free and open source high-level Python

web framework that encourages rapid development and

clean, pragmatic design. DRF is a powerful and flexible

toolkit used for rapidly building web applications based

on Django database models (Jordon, 2019; Bajpai, 2020)

with the following advantages: Secure, scalable,

customizable application with serialization that supports

both the Object Relational Mapping (ORM) and non-

ORM data sources (Jordon, 2019; Bajpai, 2020).

Given that most ML models are created using Python

programing language makes DRF a preferred platform for

ML software development.

ML Model Software Architecture (MMSA)

The ML software application building process is a

complex process that brings together several components

constituting the software engineering life cycle: Requirement

engineering, analysis, design, development, testing

deployment and maintenance (McGovern et al., 2004).

Thus, there is need for a software architecture that

supports the ML model component and the web

application components and without negatively affecting

the performance of the software (Binge, 2020).

IEEE CS (2000) defines Software Architecture (SA),

SA as the fundamental organization of a software

embodied in its components, their relationships to each

other and the principles guiding its design and evolution.

The SA for this study will consist of the following

components: The architectural pattern which defines the

granularity of a component, system Interaction which defines

how the components communicate with each other and

software quality attributes such as: Scalability, extensibility,

maintainability, portability, adaptability and resilience, etc.

However, it is important to note that the type of

architecture used in a software is normally determined by

the project objectives, the proposed budget, the developer

team skillset, infrastructure limits and the stakeholders

interest (Binge, 2020).

Machine Learning Operations

Machine Learning Operations or “MLOps” is defined

as the practice for collaboration between data scientists

and software engineers in automatically managing the

deployment of ML and DL software lifecycles (Wang,

2019). MLOps can be manual or automatic

The manual MLOps processes as illustrated by Fig. 2 is

an entirely manual process that includes data analysis, data

preparation, model training and validation in Jupiter

Notebook by data scientists. The data scientists hand over a

trained model as an artifact to the software engineering team

for deployment by putting the trained model in a code

repository (Singh, 2021). The software engineers deploy the

model as a prediction service using a micro service

architecture with REST APIs. The workflow of this process

is illustrated in Fig. 2.

Related Work

A study by Runyu (2020) to create a design pattern for

ML deployment ascertained that although data scientists

have come up with many good algorithms and trained

models, putting those models is still a challenge. The key

obstacles hindering ML software production are: Lack of

a clear methodology for moving ML models to

production, use of monolithic programming or lack of

modularization when writing ML code and obscure best

practices in ML software development.

Runyu (2020) developed a system design pattern

named Model-Service-Client + Retraining (MSC/R) in

order to overcome these challenges (Fig. 3). This design

pattern incorporates the principles of modularization and

separation of concerns and uses a micro service RESTful

API architecture. Figure 3 illustrates the architecture.

The MSC/R design pattern works by using three teams

of distinct developers: Data scientists-working on the

model, MLOps engineers-working on the service and

client developers-working on the front end. Then the next

important part of the design illustrates connectors linking

the four main system components: Model, service,

retraining and client. The connectors main function is to

provide guidelines for collaborations between the system

components during development.

In a related study by O’Leary and Uchida (2020) to

identify the common problems with creating ML

pipelines from existing code, data was collected via face

to face meetings in coding workshop settings averaging

100 companies, data scientists, researchers, ML platform

owners and software engineers. The companies

interviewed were in the process of transforming their

business through the use of ML.

The projects involved migrating existing ML models

to MLaaS using Kube Flow Pipelines (KFP) and Tensor

Flow Extended (TFX). The study identified three problems:

Firstly, due to the highly iterative nature of ML model

development, the coding does not usually follow object

oriented principles such as modularization and code re-

use making it unsuitable for deployment using software

engineering principles. As a result, engineers often

need to re-implement the model from scratch into a

deployable software. During the re-implementation,

many of the implicit assumptions made by data

scientists for modeling get lost, resulting in unexpected

inconsistencies and issues in production.

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

157

Secondly, most ML model developments use
“monolithic programming approaches” i.e., building
applications that are “single-tiered” in nature. Single-tier
architecture when used in ML combines data with
business logic and user interface codes in a single logical
structure. This results into a tightly coupled application
that becomes inefficient to run and difficult to maintain.

In a related study by Sculley et al. (2015) that set
out to explore the several specific design risk factors to
account for in ML software deployment, the output was
the Technical Debt Framework (TDF) illustrated in
Fig. 4. Technical debt is an analogy used to describe a
situation in software development where a workaround
is used to solve a software problem (Kruchten et al.,
2012; Zazworka et al., 2011). Several technical
problems (debts) and potential workarounds
(repayment approaches) were identified and used to
create the TDF (Fig. 4).

Default in payment of technical debts may hinder

successful deployment. The debts include issues related

to: Design, coding, testing, documentation, versioning

and infrastructure. Repayment can be done via:

Automation, re-writing, refactoring, re-engineering, re-

packaging, bug fixing and improving documentation.

Repayment results into an improved software quality. ML

systems have a tendency for incurring technical debts

because of the already stated problems related to the

domains of ML and software engineering.

Another study that set out to identify the challenges in

deploying DL software by Chen et al. (2020), proposed

an ML deployment process consisting of four phases: DL

data collection, DL model training, Model conversion and

exportation to TS and Platform configuration and

deployment (Fig. 5).

The DDDM has two facets: DL software

development and DL software Deployment. The first

facet makes use of TF and Keras to integrate models

into software applications for real usage after

validation and testing. The second facet involves

deploying the model on a cloud-based server platform

such as AWS Sage Maker or Google Cloud.

Fig. 2: Manual MLOps deployment process Singh (2020)

Model Service Client

Retraining

MS
 Connector

SC
 Connector

Data Scientists MLOps Engineers Client Developers
User User User

Fig. 3: The Model-Service-Client + Retraining (MSC/R) design pattern. Source (Adopted from Runyu, 2020)

Trained
Model

Model
 Registry

Model
Serving

Prediction
Service

Data
Extraction

and
Analysis

Data
Preparation

Model
Training

Model
Evaluation

and
Validation

Offline
Data

ML Ops

Experimentation/Development/Test

Staging/Preproduction/Production

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

158

Fig. 4: The technical debt framework source: Adopted from Li et al. (2015)

The deployment challenges identified include:

Converting models to platform formats, configuration

errors encountered during integration, limited skills in ML

software development and data processing challenges

when converting raw data into the input format needed by

the model software. To obtain the data relevant for the

study, over 3,023 posts from (Stack Overflow, 2020),

specifically from TS serving, Google cloud ML and

Amazon sageMaker were collected and analyzed.

In another related study, Esmaeilzadeh (2017),

designed an architecture and developed a testable,

scalable and efficient web-based application that

models and implements machine learning applications

in cancer prediction. The main components that formed

the architecture of the system included a server, a

database, a programming language, Django web

framework, front-end design, testability, scalability,

performance and design pattern (Fig. 6).

The data set for the study’s application was a subset of

the Surveillance, Epidemiology and End Results (SEER)

Program of the National Cancer Institute. The application

was implemented with Python as the back-end

programming language, Django as the web framework

and MYSQL as the database server. The front layer of the

application was built using HTML CSS and JavaScript.

The study used Automated testing approaches to ensure

the following: Making sure the application is working as

expected before deployment, ensuring that new

functionalities do not change the behavior of application in

unexpected way, finding and fixing bugs and testing the

performance of the application under heavy loads.

Washizaki et al. (2019) embarked on a study with

the purpose of collecting, classifying and discussing

the best practices for designing quality and complex

ML systems (Fig. 7).

The study set out to collect good and bad design

patterns for ML software so as to provide developers

with a comprehensive classification of such patterns.

By using a questionnaire-based survey, the study

established that there is a lack of expertise by ML

engineers on the development of the architectures and

design patterns. The study formulated a design pattern

based on the Model View Controller (MVC) pattern

having three layers: Presentation Layer, the Logic

Layer and the Data Layer.

Requirements
TD

Requirement Not
specified

Architectural
TD

Design
TD

Incomplete Design
Speicification

Design
TD

Incomplete Design
Speicification

Code
TD

Low Quality Code,
Duplicate code

 and coding Violations

Test
TD

Differing testing, Lack of
Tests, Lack of Test

automation &

Violations of Good
Architectural Practice

Build
TD

Differing testing, Lack of
Tests, Lack of Test

automation &

Documentation
TD

Incomplete & insufficient
Documentation,

Infrastructure
TD

Old infrastructure, lack of
integration & lack of

automated deployment

Versioning
TD

Unnecessary code forks,
multi version support

Defect
TD

Defects and Bugs

Technical Debts and Descriptions

Functinality

Usability

Security

Reliabilty

Maintanability

Compatibility

Efficency

Quality
Softawere

Refactoring

Re-writing

Automation

Re-engineering

Re-packaging

Bug Fixing

Fault Tolerance

 Documentation

TD Repayment
Approaches

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

159

Fig. 5: DL software Development and Deployment Model (DDDM). Source (Adopted form: Chen et al., 2020)

Fig. 6: ML software deployment architecture adopted from Esmaeilzadeh (2017)

Fig. 7: Software engineering design pattern ML software systems. Adopted from Washizaki et al. (2019)

DL Data
Collection

Trained DL
Models

Exported Model for
Server Cloud

Converted Modes for
Mobile Interface

Exported Models for
Browser

Server/Cloud Platform

Mobile Platform

Converted Models for
Browser

DL Software Development DL Software Deployment

DL Framework

TensorFlow
&

Keras

Python

Serialised

Object

View

(Business Logic)

Template

(Display

Logic)
Model

(Object

Relational

Mapping(ORM)

Create,

Update,

Delete

Dataset

s

Data for

Display

Create,

Update,

Delete

Classifier OK ?
Evaluation

With Test Set

Training

Algorithm

Selection

Definition

of Training

Set

Data Pre-

Processing

Identification

of Required

Data

YES

NO

Parameter

TuningModel

User

Web or

Mobile

GUI

 Deployment Model using Django

Framework

MYSQL

DB

ML Model for Cancer Prediction

User
Interface

Presentation Layer

Business
Logic

Logic Layer

Database

Data Layer

Data
Collection

Data
Processing

Data Lake

Inference
Engine

R
e

al
 W

o
rl

d
B

u
sin

ess
 Lo

g
ic

Sp
ecific

M
ach

in
e

Le

arn
in

g
Sp

ecific

Business Logic
Data Flow

ML Runtime Data Flow

Architectural Layers

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

160

Table 2: Summary of literature review

SN Model/pattern/framework and author Advantages Disadvantages

1 Model-Service-Client + Retraining This design pattern incorporates the Does not clearly how the model, service and
 (MSC/R) design pattern (Runyu, 2020) principles of modularization and separation client component are integrated

 of concerns and uses a micro service

2 A test driven approach to develop Use of automated testing approaches to ensure No clear explanation how the rest of the

 web-based machine learning the following: Making sure the application application was developed using Python,

 applications (Esmaeilzadeh, 2017) is working as expected before deployment Django, MYSQL CSS and JavaScript

 No mention of how deployment was done

3 DL software deployment Uses tensor flow and Keras to integrate No clear methodology on how Tensor Flow
 model: Chen et al. (2020) models into software applications deploying and Keras was used

 the model on a cloud based server platform No clarity on how deployment was done

 such as AWS sage maker

3 Software engineering design pattern Exposed lack of expertise by ML engineers No clear methodology on how the logic, the

 for designing machine learning on ML software development data and the presentation layers were created,

 Systems (Washizaki et al., 2019) created an MVC for ML software integrated and deployed together with the ML model

4 The Technical Debt Framework (Adopted Identified some of the risks in ML software No mention of an architecture or a deployment

 from (Li et al., 2015) deployment called technical debts workflow
 Identified debt repayment approaches

5 Common problems with creating machine Used KubeFlow Pipelines (KFP) and Methodology on both development and

 learning pipelines from existing code TensorFlow Extended (TFX) Deployment not clear

 (O’Leary and Uchida, 2020)

Summary of Literature Review

After a comprehensive literature review, the results are

summarized based on the model or framework reviewed,

in terms of the advantages and disadvantages of each

framework and model (Table 2).

Proposed ML Software Model Deployment

Architecture (DFMSA)

The proposed architecture describes the major

components of both the ML model and the Django part,

their relationships (structures) and how they interact

with each other. This architecture is known as the

Django Framework ML Software Architecture

(DFMSA). The DFMSA consists of six sub

architectures (SAs): The user interface component, the

Serialization/De-Serialization component, the

server/repository component and the application

component, configuration files component and the

command line utility component (Fig. 8).

SA1: User Interface

The user interface provides a connection between
the Admin and normal user with the system through the
Admin Panel and the Client Interface. Beneath this SA
lies the static and template folders containing the CSS,
HTML, JavaScript and JSON files. The SA connects
with the rest of the application through the application
URLS file.

SA2: Django API

The Django API is made up of the files: View.py for
logic, models.py for database code, apps.py for
application configuration, urls.py for providing paths,
admin.py for administrative functions and tests.py for
writing tests. All the files work in conjunction to make
the application accept user data and give predictions.

SA3: System Configuration Files

The configuration files such as the settings.py and

urls.py are vital in linking the system files together. For

example, they are useful in creating paths and importing.

For example, they are useful in creating paths and

importing files, linking the static and template files, defining

database credentials and middleware components and

linking the installed apps and security key.

SA 4: Serialization/De-Serialization

Object serialization is the process of saving a ML Model

as a Pickle, a Joblib or manually saving and restoring using

a JSON approach. Serialization represents an object with a

stream of bytes, in order to store it on disk, send it over a

network or save to a database. Deserialization is the process

of restoring and reloading the pickled ML Model back to the

Jupiter Notebooks (IPYNB) format.

SA 5: Server and Repository

Heroku is a Cloud Platform as a Service (PaaS)

supporting several programming languages such as: Ruby,

Java, Node.js, Scala, Python and PHP. One advantage with

Heroku is that If the project is already pushed to GitHub,

automatic deployments can easily be set from the project's

repository in GitHub from the Heroku dashboard.

SA 6: Command Line Utility

The command line utility contains two major utilities:

Manage.py, a command-line utility that lets you interact with

this Django project in various ways and django-admin.py, a

Django’s command-line utility for administrative tasks.

Proposed ML Software Model Deployment

Workflow (SMDW)

The proposed SMDW is arrived based on the proposed

architecture and Literature Review summary (Table 2).

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

161

From this table, there are six factors which we turned into six

phases: Start, build ML Model, Build Django App, integrate

Model into Application or App, Make Predictions and test

user response tests using two variants: Variant A vs variant

B, also known as A/B testing (Fig. 9).

Phase 1: Start

During this phase, the software engineer is supposed to

start by setting up a GitHub account, installing the Python

virtual environment, creating a Django project and adding

applications files into the project followed by committing the

code into the GitHub Repository (GHR). This is in

preparation for the software engineering part of the project.

Phase 2: Build ML Model

During this phase, an ML engineer or a data

scientist installs Jupiter Notebook and installs and

loads all the initial packages required for the project.

This is followed by the loading and pre-processing of

the data file, writing, training and saving the algorithms

before adding the code into the GHR.

Fig. 8: Proposed system DFMSA using Plonski (2019)

Fig. 9: Proposed ML model deployment workflow Plonski (2019)

Django REST Framework-API ML Software Architecture

models.py

apps.py

views.py

migrations

admin.py

tests.py

urls.py

App-Folder

serialisers.py

settings.py urls.py

Configuration Files

PKL

Object

IPYNB

File

ML Algorithm

Registry

Serialisation/De-serialization

forms.py

Git

Repository

Postgre

SQL

Heroku Cloud

Server/Repository

Client
Side

User

templates

Folder

static

Folder
Admin
Panel

Admin

User Interface

manage.py

Command Line Utility

D
e

p
lo

y
Django-admin.py

Phase 1

Start

Phase 2

Build ML

Model

Phase 3

Build

Django App

Phase 4

Integrate

Model into

App

Phase 5

Make

Predictions

Phase 6

A/B

 Testing

Set up Git

Install Virtual
Environment

Create
Django
project

Add Code to
Git

Setup Jupiter
NoteBook

Install & Load
Packagaes

Load & Pre-
Process Data

Add Code to
Git

Define DB
models

Create REST
APIs for DB

models

Write Server
code for ML

Model

Write Test
codes for ML

Create ML
Algorithm
Registry

Add
Algorithms
to Registry

Create
Views for

Predictions

Add Urls for
predictions

Write Tests
for

Predictions

Add 2
nd

 ML
Algorithm

Create DB
model for

Tests

Write Scripts
for Sending
Requests

Add Code to
Git

Add DRF
Serilisers

Add views &
urls

Write & Train
Algorithms

Add Code to
Git Add Code to

Git

Add Code to
Git

Create REST
API for Test

Info

Create Apps
into project

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

162

Phase 3: Build Django App

During this phase, the software engineer continues

with what was started in Phase 1 by adding the database

models, creating the REST APIs for the models, adding

DRF serializes, adding views and URLS and adding the

code into the GHR.

Phase 4: Integrate ML Model in Django App

During this phase, the software engineer continues

with what was done in Phase 3 by writing ML server

code for the model, write Test codes, creates a registry

and add algorithms into the registry and then add the

code into the GHR.

Phase 5: Make Predictions

During this phase, the software engineer continues

with what was done in Phase 4 by creating views for

predictions, creating DB models for Tests, create REST

APIS for Tests, write scripts for sending Requests and add

the code into the GHR.

Phase 6: A/B Testing

A/B testing in the context of this study is the process

of comparing two outputs of the ML software predictions

and concluding which of the two outputs or variants is

more effective or accurate. The other parts of the project

are repeated such as creating views for predictions,

creating DB models for Tests, creating REST APIS for

Tests, writing scripts for sending Requests and adding the

code into the GHR.

Conclusion and Recommendation

This study investigated challenges that hinder the

Development and Deployment of ML software models in

order to create an architecture and a deployment workflow

implementable using Pythons DRF. After a systematic

literature review, the main challenges were found to be:

Unethical programming practices, lack of software

development skills that integrate both data science and

software engineering, difficulty in using software’s and

tools for developing ML software and a lack of clear

methodology for deployment. A suitable ML software

architecture and model workflow and are also

presented as a solution to deployment problems within

the ML engineering. This study aims to benefit ML

software engineers in industry to help increase the rate

of production as well as masters and PhD students in

IT and computer science to help them in wring their

thesis regarding ML software. It is recommended that

there I need to use the created architecture and

deployment workflow to try and deploy an ML

software as a test.

Acknowledgment

This research was made possible by the support provided

by The Technical university of Mombasa and Egerton

university through journal subscriptions, need-based

acquisition and a favorable research environment.

Author’s Contributions

Kennedy Ochilo Hadullo: Contributed mainly on

the architecture design of the manuscript.

Daniel Makini Getuno: Contributed mainly on the

workflow design of the manuscript.

Ethics

This article is original and contains unpublished

material. Both the corresponding author and the co-author

confirm that they have read and approved the manuscript

and that no ethical issues are involved. The authors

declare that they have no competing interests.

References

Allad, R. (2016). Moving from a Mobile First to an AI

First World. https://unionstreetmedia.com/moving-

from-a-mobile-first-to-an-ai-first-world/

Ameisen, E. (2020). Building machine learning powered

applications: Going from idea to product. " O'Reilly

Media, Inc.".

Bajpai, S. (2020). Analyzing resume using natural

language processing machine learning and django.

International Journal for Research in Applied

Science and Engineering Technology, 8(5),

2037-2039. doi.org/10.22214/ijraset.2020.5333

Bankar, S. (2018). Cloud Computing Using Amazon Web

Services AWS. International Journal of Trend in

Scientific Research and Development, 2156-2157.

doi.org/10.31142/ijtsrd14583

Binge, S. (2020). The importance of good software

architecture. https://www.sitepen.com/blog/the-

importance-of-good-software-architecture

Chen, L. (2015). Continuous delivery: Huge benefits, but

challenges too. IEEE Software, 32(2), 50-54.

doi.org/10.1109/ms.2015.27

Chen, Z., Cao, Y., Liu, Y., Wang, H., Xie, T., & Liu, X.

(2020, November). A comprehensive study on

challenges in deploying deep learning based

software. In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering

Conference and Symposium on the Foundations of

Software Engineering (pp. 750-762).

Esmaeilzadeh, A. (2017). A Test Driven Approach to

Develop Web-Based Machine Learning

Applications. UNLV Theses, Dissertations,

Professional Papers and Capstones. 3127.

https://unionstreetmedia.com/moving-from-a-mobile-first-to-an-ai-first-world/
https://unionstreetmedia.com/moving-from-a-mobile-first-to-an-ai-first-world/
https://doi.org/10.22214/ijraset.2020.5333
https://doi.org/10.31142/ijtsrd14583
https://www.sitepen.com/blog/the-importance-of-good-software-architecture
https://www.sitepen.com/blog/the-importance-of-good-software-architecture
https://doi.org/10.1109/ms.2015.27

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

163

Fitzgerald, B., & Stol, K. J. (2017). Continuous software

engineering: A roadmap and agenda. Journal of

Systems and Software, 123, 176-189.

 doi.org/10.1016/j.jss.2015.06.063

Grayson, J. E. (2000). Python and Tkinter

programming. Manning Publications Co.

Greenwich.
http://117.239.19.55:8080/jspui/handle/12345678

9/230

Geron, A. (2019). Hands-on machine learning with Scikit-

Learn, Keras and TensorFlow: Concepts, tools and

techniques to build intelligent systems. O'Reilly

Media. ISBN-10:1492032611.

Hull, J. C. (2020). Machine Learning in Business: An

Introduction to the World of Data Science.

Independently Published.

 https://www.amazon.com/Machine-Learning-

Business-Introduction-Science/dp/B088B8162S

IEEE CS. (2000). Recommended Practice for Architectural

Description for Software-Intensive Systems.

 doi.org/10.1109/ieeestd.2000.91944

Jaxenter. (2018). ML trends in stack overflow developer

survey 2018. https://jaxenter.com/ml-trends-stack-

overflow-145870.html

Keshari, K. (2020, December 02). Top 10 applications of

machine learning: Machine learning applications in

daily life. https://www.edureka.co/blog/machine-

learning-applications

Jordon, W. (2019). Python django web development: The

ultimate django web framework guide for Beginners.

Independently Published.

 https://www.amazon.com/Python-Django-Web-

Development-framework/dp/1688542817

Kruchten, P., Nord, R. L., Ozkaya, I., & Visser, J. (2012).

Technical debt in software development. ACM

SIGSOFT Software Engineering Notes, 37(5), 36-38.

doi.org/10.1145/2347696.2347698

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic

mapping study on technical debt and its management.

Journal of Systems and Software, 101, 193-220.

doi.org/10.1016/j.jss.2014.12.027

McClendon, L., & Meghanathan, N. (2015). Using

Machine Learning Algorithms to Analyze Crime

Data. Machine Learning and Applications: An

International Journal, 2(1), 1-12.

 doi.org/10.5121/mlaij.2015.2101

McGovern, J., Ambler, S. W., Stevens, M. E., Linn, J., Jo,

E. K., & Sharan, V. (2004). A practical guide to

enterprise architecture. Prentice Hall Professional.
ISBN-10: 0131412752.

Mikut, R., & Reischl, M. (2011). Data mining tools. Wiley

Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 1(5), 431-443.

 doi.org/10.1002/widm.24

Miller, J. (2019). Hands-on machine learning with IBM

Watson: Leverage IBM Watson to implement

machine learning techniques and algorithms using

Python. Packt Publishing Ltd.

 https://www.amazon.com/Hands-Machine-

Learning-IBM-Watson/dp/1789611857

Moroney, L. (2020). Ai and machine learning for coders.

O'Reilly Media, Incorporated.

 https://www.oreilly.com/library/view/ai-and-

machine/9781492078180/

Murad, D. F. (2020). Systematic Literature Review (SLR)

Approach. doi.org/10.31219/osf.io/v7239.

O'Leary, K., & Uchida, M. (2020). Common Problems

with Creating Machine Learning Pipelines from

Existing Code. https://storage.googleapis.com/pub-

tools-public-publication-

data/pdf/b50bc83882bbd29c50250d1e59fbc3afda3f

b5e5.pdf

Oppegaard, S. M. N. (2021). Regulating Flexibility:

Uber’s Platform as a Technological Work

Arrangement. Nordic Journal of Working Life

Studies. doi.org/10.18291/njwls.122197

Pathak, N. (2017). Artificial Intelligence for. NET:

Speech, language and search: Building smart

Applications with Microsoft Cognitive Services

APIs. Apress. ISBN-10: 1484229495.

Plonski, P. (2019). December 31. Deploy Machine

Learning Models with Django.

 https://www.deploymachinelearning.com/

Ranjeetsingh, S. S. (2014). Microsoft windows azure:

Developing applications for highly available Storage

of cloud service. International Journal of Science

and Research (IJSR), 4(12), 662-665.

doi.org/10.21275/v4i12.nov151864

Redapt Marketing. (2019). Why do ML projects fail?

https://www.redapt.com/blog/why-90-of-machine-

learning-models-never-make-it-to-

production#:~:text=During%20a%20panel%20at%20l

ast,actually%20make%20it%20into%20production

Runyu, Xu. (2020). A design pattern for deploying

machine learning models to production.

https://csusm-

dspace.calstate.edu/bitstream/handle/10211.3/21717

6/XuRunyu_Summer2020.pdf?sequence=1

Sanderson, D. (2012). Programming Google App Engine.

Sebastopol, CA: O'Reilly.

 https://www.oreilly.com/library/view/programming-

google-app/9781449314095/

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,

T., Ebner, D., ... & Dennison, D. (2015). Hidden

technical debt in machine learning systems. Advances

in Neural Information Processing Systems, 28,

2503-2511. http://papers.nips.cc/paper/5656-

hidden-technical-debt-in-machine-learning-systems

https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1109/ieeestd.2000.91944
https://doi.org/10.1145/2347696.2347698
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.5121/mlaij.2015.2101
https://doi.org/10.1002/widm.24
https://doi.org/10.31219/osf.io/v7239
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/b50bc83882bbd29c50250d1e59fbc3afda3fb5e5.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/b50bc83882bbd29c50250d1e59fbc3afda3fb5e5.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/b50bc83882bbd29c50250d1e59fbc3afda3fb5e5.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/b50bc83882bbd29c50250d1e59fbc3afda3fb5e5.pdf
https://doi.org/10.18291/njwls.122197
https://www.deploymachinelearning.com/
https://doi.org/10.21275/v4i12.nov151864
https://www.redapt.com/blog/why-90-of-machine-learning-models-never-make-it-to-production#:~:text=During%20a%20panel%20at%20last,actually%20make%20it%20into%20production
https://www.redapt.com/blog/why-90-of-machine-learning-models-never-make-it-to-production#:~:text=During%20a%20panel%20at%20last,actually%20make%20it%20into%20production
https://www.redapt.com/blog/why-90-of-machine-learning-models-never-make-it-to-production#:~:text=During%20a%20panel%20at%20last,actually%20make%20it%20into%20production
https://www.redapt.com/blog/why-90-of-machine-learning-models-never-make-it-to-production#:~:text=During%20a%20panel%20at%20last,actually%20make%20it%20into%20production
https://csusm-dspace.calstate.edu/bitstream/handle/10211.3/217176/XuRunyu_Summer2020.pdf?sequence=1
https://csusm-dspace.calstate.edu/bitstream/handle/10211.3/217176/XuRunyu_Summer2020.pdf?sequence=1
https://csusm-dspace.calstate.edu/bitstream/handle/10211.3/217176/XuRunyu_Summer2020.pdf?sequence=1

Kennedy Ochilo Hadullo and Daniel Makini Getuno / American Journal of Applied Sciences 2021, Volume 18: 152.164

DOI: 10.3844/ajassp.2021.152.164

164

Sharma, R. (2020). Study of supervised learning and
unsupervised learning. International Journal for
Research in Applied Science and Engineering
Technology, 8(6), 588-593.

 doi.org/10.22214/ijraset.2020.6095
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A Systematic

Literature Review on Applying CRISP-DM Process
Model. Procedia Computer Science, 181, 526-534.
https://doi.org/10.1016/j.procs.2021.01.199

Singh, P. (2021). Deploy machine learning models to
production: With flask, streamlit, docker and
kubernetes on google cloud platform. Apress.
http://103.7.177.7/handle/123456789/207519

Stack Overflow. (2020). We <3 people who code.
https://stackoverflow.com/never make it into
production?
https://venturebeat.com/2019/07/19/why-do-87-of-
data-science-projects-never-make-it-into-
production/

Wang, Q. (2019). Machine learning applications in
operations management and digital marketing
(Doctoral dissertation, Universiteit van Amsterdam).
https://abs.uva.nl/binaries/content/assets/subsites/am
sterdam-business-
school/research/dissertations/thesis-q.-wang---abs-
2019.pdf

Washizaki, H., Uchida, H., Khomh, F., & Guéhéneuc, Y. G.

(2019, December). Studying software engineering

patterns for designing machine learning systems.

In 2019 10th International Workshop on Empirical

Software Engineering in Practice (IWESEP)

(pp. 49-495). IEEE.

 https://ieeexplore.ieee.org/abstract/document/8945075/

Zazworka, N., Shaw, M. A., Shull, F., & Seaman, C.

(2011, May). Investigating the impact of design debt

on software quality. In Proceedings of the 2nd

Workshop on Managing Technical Debt (pp. 17-23).

doi.org/10.1145/1985362.1985366

Zhang, D., & Tsai, J. J. (Eds.). (2005). Machine

learning applications in software engineering

(Vol. 16). World Scientific.

 doi.org/10.1142/9789812569271_0001

Zhang, T., Gao, C., Ma, L., Lyu, M., & Kim, M. (2019,

October). An empirical study of common

challenges in developing deep learning

applications. In 2019 IEEE 30th International

Symposium on Software Reliability Engineering

(ISSRE) (pp. 104-115). IEEE.

 doi.org/10.1109/issre.2019.00020

https://doi.org/10.22214/ijraset.2020.6095
https://stackoverflow.com/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://doi.org/10.1142/9789812569271_0001
https://doi.org/10.1109/issre.2019.00020

