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Abstract: In this study, we propose a new method for detecting wet periods 

by using telecommunications Commercial Microwave Links (CML). The 

purpose of the study is to automatically find rain time slots. The attenuation 

of the microwave signal, propagating between a transmitting antenna and a 

receiving one, due to the variations of the climatic conditions over the link, 

is a non-stationary signal. When a rain event occurs over a CML, the 

attenuation signal level increases proportionally to the rain amount. This 

level decreases again at the end of the rain. These abrupt variations are 

exploited here to detect rainy time slots. The proposed method consists in 

splitting the attenuation signal into frames and computing the variation of the 

energy between consecutive frames. To determine whether the current frame 

corresponds to a wet period, the proposed method, named Energy Variation 

(EVA), compares the variation of the energy with a given threshold, while 

taking into account the status of the previous frame. Simulation results from 

real attenuation data of the mobile phone operator Telecel Faso SA (Burkina 

Faso) show that the proposed method allows the detection of 84.61% of rainy 

events. The Matthews Correlation Coefficient (MCC) is higher than 0.9, 

which demonstrates that EVA can discriminate between wet and dry periods 

with high accuracy. 

 

Keywords: Commercial Microwave Link, Wet-Dry Classification, Energy, 

Attenuation, Rainfall 

 

Introduction  

The microwave signal propagating between a 

transmitting and a receiving antenna loses power due to 

propagation, gases, and side effects (ITU-R, Rec P.525-4, 

2019a; ITU-R, Rec P.676-12, 2019b). When this signal 

encounters a rain cell on its path, it undergoes additional 

attenuation due to the rain ITU-R, Rec P.838-3, 2005). 

Several works have shown that the knowledge of this 

additional attenuation can be used to estimate the amount of 

rainfall on the (Chwala and Kunstmann, 2019, David et al., 

2013, Doumounia et al., 2014, Messer et al., 2006).  

The first step in the process of rain amount estimation, 

using a commercial microwave link, consists in 

identifying wet periods. Several methods have been 

proposed in the literature to address the problem of wet 

and dry periods classification. Schleiss and Berne (2010) 

proposed a method that exploits the standard deviation of 

the attenuation signal over sliding windows. This method, 

which we will refer to as "Moving Standard Deviation 

(MSD)", compares the standard deviation value computed 

for each frame to a predefined threshold. The weakness of 

this method lies in determining a suitable threshold, 

especially when the attenuation signal fluctuates during 

dry periods. Another wet/dry classification method was 

proposed by Chwala et al. (2012). This latter method 

exploits the spectrogram of the attenuation signal, finding 

that the power spectral density of the attenuation signal at 

low frequency during wet periods shows a significant 

deviation from the average spectrum during dry periods. 

The measurement of this deviation is used to detect wet 

periods. Polz et al. (2020) explored Convolutional Neural 

Networks (CNN) to detect the presence of rain. They 

consider the detection of rain events as a binary 
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classification problem. This approach requires a lot of 

data for training and testing the neural network. 

Cherkassky et al. (2014) proposed a classification tree 

exploiting the physical characteristics of precipitations to 

distinguish different precipitation types such as rain 

and sleet. Another method for detecting wet periods 

using the Pearson correlation coefficient was presented 

in (Rahimi et al., 2003). It exploits the fact that the 

correlation coefficient of the attenuation signals of double 

links connecting the same sites and transmitting at 

different frequencies is relatively high in wet periods. The 

disadvantage of this method is that it requires a double 

link. Finally, one can mention the wet/dry periods 

classification method proposed by Song et al. (2020). It is 

based on the Support Vector Machine (SVM) 

classification technique and uses the minimum, average 

and maximum values of the CML signal attenuation as 

statistical parameters for classification.  

In this study, we propose a new method for detecting 

wet periods, using the variation of the attenuation signal 

energy between consecutive frames. When rain occurs on 

a given link on which a microwave propagates, the wave 

attenuation level increases proportionally to the rain 

amount. This attenuation level decreases again at the end of 

the rain. Thus, the quantification of this energy variation and 

the knowledge of the status of the previous frame allows us 

to determine the status of the current frame.  

The remainder of this study is organized as follows: 

First, we describe the proposed new method for detecting 

wet periods. Then we present and discuss the results on 

actual attenuation data from the mobile phone operator 

Telecel Faso network (in Burkina Faso). We end this 

study with conclusions and perspectives.  

Materials and Methods  

Description of the Data  

The data used in this study were obtained from a system 

that in real-time collects the power levels of the commercial 

microwave links of the mobile phone operator Telecel Faso 

(Burkina Faso). This system is installed in LAboratoire de 

Matériaux et Environnement (LA.ME) of the Joseph KI-

ZERBO University, in Burkina Faso. Four links of the 

Telecel Faso network in the city of Ouagadougou (Burkina 

Faso in West Africa) are considered. Table 1 summarizes the 

technical details of these four links, namely their lengths, 

frequencies, and polarization. The transmitting and receiving 

power levels and therefore the attenuation of each link, are 

recorded at a one-minute sampling period.  

As the rain events ground truth, we used data from four 

rain gauges of the Agence Nationale de la Météorologie 

(ANAM) of Burkina Faso. These gauges are installed near 

the considered four Telecel Faso CMLs. The rain gauge 

data were recorded with a 5-min sampling period in 2017 

and a 15-min sampling period in 2019.  

Figure 1 shows the map of Burkina Faso, with a zoom 

on the city of Ouagadougou, which is our experimentation 

site. This figure shows the locations of the four CMLs and 

the four rain gauges. The red dots are the locations of 

the different rain gauges. The blue dots are the 

locations of the different transmission/reception towers 

and the CML are the green lines. 

For the evaluation of our wet period detection 

method, we consider 15 rainfall events for which the 

CML attenuation data and rain gauge data are 

available. These data were recorded between 

September 2017 and October 2019. The rainfall events 

have durations ranging from 30 to 240 min, with water 

amounts varying between 0.48 and 59.41 mm.  

Table 2 gives details of each rain event.  

Description of the Proposed Method for Detecting 

Wet Periods  

Consider the signal propagating between a transmitting 

and a receiving antenna of a mobile phone network. Let's 

note by Tx(t) the transmitting signal power level and by Rx(t) 

the receiving one, where t denotes the time variable. Without 

an automatic gain controller, Tx(t) is typically constant, while 

Rx(t) varies according to the weather conditions over the link 

(ITU-R, Rec P.525-4, 2019a; ITU-R, Rec P.676-12, 2019b; 

ITU-R, Rec P.838-3, 2005). The attenuation of the signal 

propagating over the link, a(t), is:  

  

( ) ( ) ( )x xa t T t R t= −  (1) 

 

In dry periods, (t) varies slightly. The occurrence of a rain 

event over the link causes an abrupt increase of the level of 

(t), proportionally to the rain intensity. To detect wet periods, 

we start by splitting the signal (t) into successive and distinct 

frames of duration . Let’s denote by T the frame i and a (t) 

the part of the attenuation signal on this frame:  
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w (t) is a sliding rectangular window of length 𝜏, starting 

at the time. The duration 𝜏 should be chosen according to 

the rainfall characteristics of each region. The attenuation 

signal energy on the frame i, Ei, is given by the formula 

(3) (Grami, 2016):  
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i
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To determine if the current frame 𝑖 corresponds to a 

wet period, The Energy Variation (EVA) method 

compares the energy of frame 𝑖, with the energy of frame 

𝑖 − 1, while keeping in mind the status of frame 𝑖 − 1.  
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Fig. 1: Map of the four CMLs and four rain gauges used in the study 

 
Table 1: Technical characteristics of the four CML links used in the study 

N  CML name  Link length (km) Link frequency (GHz)  Antenna polarization  

1  Kamboince-kaonghin  5.68  13.031  Vertical  

2  Tampouy-rimketta  2.50  12.933  Vertical  

3  Nagrin-gargin  3.15  12.821  Vertical  

4  Universite-nabiyaar  1.45  13.143  Vertical  

 
Table 2: Rainfall detection results of the EVA and MSD methods √: Rain event detected, ×: Rain event not detected 

       EVA MSD 

 Rain Rain event Rain event Rain event Rain event Rain amount detection detection 
CMLs gauge  date  start time  end time  duration (min) (mm) results  results  

Kamboince-kaonghin P_kamboinse  20.09.2017 20:05 20:55 45 59,41.0 √ √ 

  21.09.2017 03:00 0400 60 0,48.0 × × 
  31.07.2019 17:45 18:45 30 1,2.0 √ √ 

  31.07.2019 21:45 23:00 75 14,2.0 √ √ 

  31.07.2019- 23:45 00:15 30 0,8.0 × ×  

  01.08.2019  

  01.08.2019 10:45 11:30 30 1,8.0 √ √ 
Tampouy-rimketta P_tampouy 20.09.2017 20:15 20:55 40 8.0 √ √ 

Nagrin-gargin P_tengandgo 20.09.2017 19:50 20:10 30 10,35.0 √ √ 

  31.07.2019 17:00 1800 60 34.0 √ √ 
  31.07.2019 21:30 2230 60 20,5.0 √ √ 

  01.08.2019 10:45 12:30 45 0,7.0 √ × 

Universite-nabiyaar P_aeroport 06.09.2019 20:05 20:55 50 10,2.0 √ √ 
  30.09.2019 17:00 17:30 30 12,1.0 √ √ 

  02.10.2019 04:00 08:00 240 5.6 √ √ 
  10.10.2019 16:00 17:00 30 6.2 √ √ 
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Let’s define this energy variation by:  
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So, when two dry periods are consecutive, the level of 

the attenuation signal varies slightly across these two-time 

slots and thus 𝛿 is relatively low. If a wet period follows 

a dry one, the attenuation increases with the onset of the 

rain event, and 𝛿 become relatively high.  

If a dry period follows a wet period, the attenuation 

decreases with the end of the rain and 𝛿 takes again a 

relatively high value. Finally, if two wet frames are 

consecutive, the attenuation remains high over these 

two periods and therefore 𝛿 are relatively low. The 

proposed decision rule for classifying frame Ti-1 is           

as follows:  
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σ is a threshold that quantifies the variation of the 

attenuation signal energy between two consecutive 

frames. This threshold can be easily adjusted according to 

the rainfall characteristics of each region, namely, rain 

mean duration and intensity.  

Results and Discussion 

The EVA method was evaluated on actual data 

recorded from the Telecel Faso network and compared 

with MSD, the most popular and used method in the 

literature for wet/dry classification. As mentioned in the 

data description section, 15 rainfall events, recorded 

between September 2017 and October 2019, were 

selected for the evaluation.  

 To apply EVA and MSD methods, we set the frame 

duration to 60 min, corresponding to the average 

duration of the 15 rain events considered. For the EVA 

method, we set the detection threshold to                                  

𝜎 = 0.05, corresponding to a variation of 5% of the 

attenuation signal energy between two consecutive 

frames. For MSD the threshold is set to 0.5, as 

recommended by its authors.  

Figure 2 shows the attenuation signals, rain gauge 

data, and wet periods detection results by EVA and MSD, 

for the rain events from July 31 to August 1, 2019, for the 

kamboince-kaonghin link. There were 6 wet time slots 

and one can see in Fig. 2 that all the wet periods were 

detected by both two methods. 

For all the 15 rainfall events, there are a total of 26 wet 

periods and 232 dry ones. Table 3 presents the confusion 

matrix, while Table 4 and 5 give the confusion matrices 

of EVA and MSD respectively.  

As for performance criteria, we use three indices 

derived from the confusion matrix namely: The True 

Positive Rate (TPR) given by formula (5), the Error Rate 

(ER) given by formula (6), and The Matthews Correlation 

Coefficient (MCC) given by formula (7). The Matthews 

Correlation Coefficient (MCC) summarizes the four 

values of the confusion matrix into a single measure and 

is commonly used as a binary classification measure in 

machine learning. This measure accounts for the 

asymmetric ratio between wet and dry events. It is only 

high if the classifier performs well in both classes:  

 

TP
TPR

TP FN
=

+
 (5) 

 

FP FN
ER

TP FN FP TN

+
=

+ + +
 (6) 

 

( )( )( )( )

TP TN FP TN
MCC

TP FP TP FN TN FP TN FN

 − +
=

+ + + +
 (7) 

 

In formulas (5), (6), and (7), TP is the number of true 

positives, FP is the number of false positives, TN is the 

number of true negatives and FN is the number of false 

negatives, as shown in Table 3.  

 
Table 3: Confusion matrix of CML and reference rain gauge  

  Rain gauge 

  -------------------------------------------- 

  Wet  Dry  

CMLs Wet True wet (TP)  False wet (FP)  

 Dry  False dry (FN)  True dry (TN)  

  
Table 4: EVA Confusion matrix  

   Rain gauge  

  ------------------------------- 

  Wet  Dry 

CMLs  Wet  22     0  

 Dry    4 232 

 
Table 5: MSD Confusion matrix 

  Rain gauge 

  ------------------------------ 

  Wet  Dry 

CMLs  Wet  21     2 

 Dry    5  230  

 
Table 6: Performance of the EVA and MSD methods  

  TPR %  ER %  MCC %  

EVA  84.61  1.56  91.20  

MSD  80.76  2.73  84.41  
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Fig. 2: CML Attenuation, rain gauge data, and wet periods detection results, from July 31 to August 1, 2019, for the KAMBOINCE- 

KAONGHIN link 

 

One can see from Tables 4, 5, and 6 that the EVA 

method presents better results than MSD. The true 

positive rate of EVA is 84.61%, which is quite 

comparable to the performance of other methods 

described in the literature. Moreover, EVA's Matthews 

Correlation Coefficient (MCC) is higher than 0.9, which 

demonstrates that it can discriminate between wet and dry 

periods with high accuracy. We can also see from Table 2 

that, for the 3 rain events for which the rain amount is less 

than 1 mm, EVA detected 1, while MSD does not. This 

confirms that the proposed new method is more sensitive. 

Conclusion  

In this study, we proposed a new method for detecting 

wet periods from the attenuation signal of commercial 

microwave telecommunications links.  

The proposed method, named EVA, takes into account 

the variation of the energy variation between two 

consecutive frames, as well as the state of the previous 

frame to determine the state of the current frame. Based on 

actual data from the mobile phone operator Telecel Faso, 

EVA detects 84.61% of rain events and has an error rate of 

1.56%. The parameters of EVA, namely the duration of the 

frames and the threshold of energy variation to be considered 

for detecting rainfall events, can be adjusted according to the 

rainfall characteristics of each region.  

Future work will focus on the estimation of the rain 

amount from attenuation signals of commercial 

microwave links to derive rain maps. Short-time 

prediction of rainfall will also be investigated.  
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