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Abstract: There are significant differences between plant activities and 

animal activities in ecological networks. On this basis, this article aims to 

evaluate the effectiveness of the hibernate (forgetting and remembering 

mechanism). For this purpose, the hibernation interaction is derived model 

(linear UAH model) of continuous-time individual-level activity. This 

model is an effective approach to understand the effectiveness of the 

construction of the communication network on the complex ecology 

system. These standards cover the influence of the fundamental parameters 

and network structure on network effectiveness of hibernate. Theoretical 

analysis shows that the supreme eigenvalue of the related model matrix is 

determined whether hibernators tend to become extinct or continue. 

Moreover, the simulation experiments demonstrate that dynamics of the 

linear UAH model is very consistent with the actual situation activity-

hibernate interacting process. and so, the linear UAH model provide 

appropriate basis for evaluating effectiveness of hibernate. 

 

Keywords: Effectiveness, Qualitative Analysis of Dynamical System, 

Network Structure, Forgetting and Remembering Mechanism 

 

Introduction 

As a means of communication, activities have 

individual life plants. The dynamics of plant activities is 

aimed at modeling and research the activity process of 

plants, to understand the effect of different factors on 

plant prevalence of plants, so as to formulate cost-

effective restriction strategy activities. Van Mieghem et al. 

(2009) suggested an individual-level mode in 2009, (the 

accurate SIS model), which an accurate description of 

the average dynamics of the SIS epidemic. The 

continuous-time individual-level models are 

particularly useful in investigating the effective of the 

network topology and suitable for the study of 

ecological network. Thus this article aims to evaluate 

the effectiveness of hibernate (forgetting and 

remembering mechanism). For this purpose, the 

individual-level activity-hibernate interacting model 

(the linear UAH model) is derived. Then put forward 

a set of standards for extinction activities. These 

standards capture the combined effects of main 

parameters and network structure on the effectiveness 

of hibernation. The simulation experiments 

demonstrate that the dynamics of the linear UAH 

model is very suitable for the actual activity-hibernate 

interacting process. Therefore, the linear UAH model 

provides an appropriate basis for evaluating the 

effectiveness of hibernate. 

The traditional modeling approach is to classify all 

agents and then to inspect the evolution of the size of 

every compartment over time. Čokl et al. (2019) show 

the stink bugs investigated so far communicate with 

species and sex-specific narrow-band calling and 

courtship song signals produced by abdomen vibration. 

Delgado et al. (2021) present the creative online lab 

alternatives can provide students valuable scientific 

learning experiences when in-person learning is not 

possible. Garvin et al. (2020) identify mutations that 

are likely compensatory adaptive changes that allowed 

for rapid expansion of the virus. Narendra and Shorten 

(2010) show the method is based on the well-known 

fact that a Hurwitz Metzler matrix is also diagonally 

stable. Stewart (2009) introduce the "Probability, 

Markov Chains, Queues and Simulation" provides a 
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modern and authoritative treatment of the 

mathematical processes that underlie performance 

modeling. Sun et al. (2020b) show the fresh weight and 

relative water content of EPS. Swierczynski (2019) 

present the ASDs frequently manifest in the form of 

behavioral inhibition-aversion to novelty and 

preference for familiar. Zare (2019) introduce the vivo 

evaluation on breast cancerhas not been conducted. 

Sun et al. (2020a) determines fish provide an 

important supply of Long-Chain Polyunsaturated 

FATTY acids (LC-PUFAs) for human consumption. 

The materials are arranged in this way. Section 2 

derives the exact UAH model and the linear UAH 

model respectively. Section 3 discusses the dynamics 

of the linear UAH model. At last, Section 4 

generalizes this study. 

Formation of the Linear UAH Model 

This section is dedicated to establish a individual-

level model, which is capturing the effectiveness of 

hibernate for plant activity. 

Notions, Notations and Fundamental Hypotheses 

Consider an ecological network consisting of N plants 

labelled 1,2,···,N and let V (G) = {1,2,…,N} an ecological 

activity through a ecological network G = (V (G),E(G)), (i,j) 

E(G) only if j V (G) can effect iV (G). Let A = [aij]NN 

indicate adjacency matrix of G. Hereafter, the network is 

always assumed to be a strong connection. 

After the appearance of the activity, at any time, 

assume that each plant in the ecological network is in 

one of the following three possible states: Uncertain, 

acting and hibernating. Depending on the individual 

difference, every plant may choose to be uncertain, or to 

be activity, or to be hibernator. At time t, let Pi(t) = 0, 1 

and 2 mean that, plant I is uncertain, activity and 

hibernator, separately. At time t, the state of ecological 

network is indicated by the vector: 

 

        1 2, , , .
T

Np t p t p t p t  

 

As below, introduce a group of hypotheses: 

 

(H1) Due to the effectiveness of an active plant j, an 

uncertain plant i, at any time becomes activity at 

rate βij≥ 0. Here, βij>0 only if (i,j) ∈E(G). 

(H2) Due to the forgetfulness, an active plant i turn to be 

a hibernator, at any time at rate δi >0. 

(H3) Due to the forgetfulness, an hibernator i turn to be 

an uncertain, at any time at rateαi >0. 

(H4) Due to the rememberance, an hibernator i turn to be 

a activity, at any time at rateγi >0. 

(H5) Pr{Pi(t) = 0,Pj(t) = 1} = Ui(t)Aj(t),1 ≤ I,j≤ N,ij. 

(H6) Due to the effectiveness of an actor j, every uncertain 

plant becomes actor at rate βj ≥ 0 at any time 

 

The Linear UAH Model 

Based on equivalent models and these independent 

assumptions, the following model can be derived: 

 

 
     

 
       

 
     

1

1

,

0.

N
i

i ij j j i i

j

N
i

i ij j j i i i i

j

i

i i i i i i

dU t
U t a A t H t

dt

dA t
U t a A t H t A t

dt

dH t
A t H t H t

dt

t

 

  

  






  



   




  





  (2.1) 

 

As Ui(t) + Ai(t) + Hi(t) = 1, the following model is 

derived: 

 

 
    

     

 
     

1

1

0.

i

i i

N

ij j j i i i i

j

i

i i i i i i

dA t
A t H t

dt

a A t H t A t

dH t
A t H t H t

dt

t

  

  




  




 


   




  (2.2) 

 

We name this model as linear UAH because of the 

acting rate are linear in the arguments. 

Figure 1 shows these state transition rates of plant 

under the linear UAH model. 

 

 

 

Fig.1: The state transition rates plant i under the linear UAH 

model 

Ui(t) 

i 

i 

i 
Ai(t) 

Hi(t) 

 
1

N

ij j jj
a A t

  
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Dynamics of the Linear UAH Model 

The generic UAH model is considered. Let A(t) mean 

the fraction of plant-activity at time t. So: 

 

   
1

1
.

N

i

i

At t A t
N 

   

 

The main purpose of this study is to define the 

tendency of A(t). For fundamental knowledge on matrix, 

from. In the following, only real square matrices are 

considered. Given the matrix M, let s(M) denote the 

maximum eigen value of M. If the off-diagonal entries of 

A are all non-negative, it is Metzler. 

The linear UAH model might have two different 

equilibria, which are defined as below. 

Definition 1 

Let E = (U1,…,UN,A1,…,AN,H1,…,HN)Tbe an 

equilibrium of the linear UAH model (3): 

 

(a) E is activity-free if A = 0.A activity-free equilibrium 

represents for a steady ecological network there is 

certainly no active plant 

(b) E is uncertain-free if U= 0. A uncertain-free 

equilibrium represents for a steady ecological 

network there is certainly no uncertain plant 
 

Obviously, the linear UAH model always has a 

unique activity-free equilibrium E1 

=(1,…,1,0,…,0,0,…,0)T and a unique uncertain-free 

equilibrium  2 1 10, ,0, , , ,NE A A H where

,i i
I I

i i i i

A H
 

   
 

 
. For the aim of checking 

hibernate equilibria of the model, we define a matrix: 
 

1
i

i i

i i

Q diag A diag diag


 
 

   


 

 
Since G is strongly connected andQ1is irreducible. 

On this basis, define an auxiliary matrix as: 

 

 2
i i

i i

i i i

Q diag A diag diag
 

 
  

   


 

 

Obviously, 1
i

i

Q diag



 .Q2, then s(Q1) <0 if and only 

if s(Q2) <0. 

Theorem 3.1 

If  1 1
0,

N

i ij jj
S Q a 


  then the activity-free 

equilibrium E1 is globally asymptotically stable. 

Proof 

Let (A1,…,AN,H1,…,HN)T become a model(2) 

solution. It comes from the model that: 

 

 
      1 , 1,2, , .

i

i i i i i i

dU t
A t U t U t i N

dt
       

 
 

We have the comparison system: 

 

 
 i

i i i

dz t
z t

dt
  

 
 

has stable
iA , there holds: 

 

  1iU t  
 

 

and hence,  lim 1t iU t  . 

Let T = max{T1,…,TN}.For all t ≥ T, from the 

model(2), it follows that: 
 

 
       

          

     

     

1

1

1

1

1

1

N
i

i ij j j i i i i

j

N

i ij j j i i i i i

j

N

i ij j j i i

j

N

ij j j i i

j

dA t
U t a A t H t A t

dt

U t a A t U t A t A t

U t a A t A t

a A t A t

  

  

 

  










  



    


 



  










 

 

So: 

 

 
     

1

1
N

i

ij j j i i

j

dw t
a w t w t

dt
  



  
 

 
with wi(T) = Ai(T),i = 1,…,N. Let w(t) = 

(w1(t),…,wn(t))T and define a positive definite function 

as: 
 

     
1

. . .
2 1

T iV w w t diag w t




 
  

 
 (3.1) 

 
Through calculation, we have: 

 

  
   

 

     

   

6
.

1

. 1 .
1

. .
1

T i

T i
i i

T i i
i i

dV w t dw t
w t diag

dt dt

w t diag A diag diag w t

w t diag A diag diag w t






  



 
 



 


       

 
    

 

 

 
Since Q2 has the negative spectrum, then choose a ε, 

so that matrix: 
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2
1

i
i iQ diag A diag diag

 
 


    


 

 
has the negative spectrum. Let u1,u2,…,uN mean the 

eigen values of Q′
2 and assume u1 is the maximum eigen 

value. As Q′
2 is symmetric, we have the orthogonal 

matrix T so that: 
 

 2 . .T

iQ T diag u T    

 
So, we get: 

 

  
             16

. .
T T

i

dV w t
T w t diag u T w t u w t w t

dt
      

 
It follows from the Lemma (Theorem 31.4 in) and 

Lemma (Corollary 3.3 in (Strauss and Yorke, 1967)) 

that limtw(t) = 0, which implies that, 1 ≤ i ≤ N. 

Then, for any ε >0, have T >0 so that t ≥ T, there is 

Ui(t) < ε, 1 ≤ i ≤ N: 
 

 
        

   

1

1

1

1

N
i

i ij j j i i i

j

N

i ij j i i

j

dU t
U t a A t U t A t

dt

a U t

 

    





    

 
    

 





 

 
Since the comparison system: 

 

 
   

1

1
N

i

i ij j i i

j

dy t
a y t

dt
    



 
    

 


 
 

has a globally asymptotically stable equilibrium

 

1

1 i

N

ij j ij
a a

 

 





, for any ϵ>0, there existsT2 >0such 

that for all t ≥ T2: 
 

 
 

1

1
.

i

i N

ij j ij

A t
a a

 

 



 


 

 
This implies that 

 

 lim 1t iU t 
 

 
Then, we get limt→∞ Ui(t) = 1. 

Theorem 3.2 

If  1 1
0,

N

i ij jj
S Q   


  and then the uncertain-free 

equilibrium E2 is globally asymptotically stable. Define 

an auxiliary matrix Q3 as: 
 

 
3

i i i

i

i

Q diag A diag
  





    

Obviously, 1 3.i

i i

Q diag Q I


 
   

, then s(Q1) >0 if 

and only if s(Q3) >1. 

Theorem 3.3 

If s(Q1) >0,thus the hibernate equilibrium E*is a 

unique. 

Proof 

Suppose the model has a hibernate equilibrium

 * * *

1 1, , , , .N NE U U A A   

From the equation of model (2), we can get: 

 

 

 

* *

*

1*

*

1

1,1 .

,1 .

i i i
i i

i i

N

i i ij j jj

i N

i i i i i ij j jj

U A i N

a A
A i N

a A

  

 

  

     





 
    




  

  




 

 

This observation inspired, a continuous mapping H = 

(h1,…,hN) : (0,∞)N → (0,1)N is defined in this way: 

 

 
 

 

*

1

*

1

.

N

i i ij j jj

i N

i i i i i ij j jj

a y
h y

a y

  

     








  




 

 

It suffices to enough to prove that H recognizes a 

unique fixed point and we must to prove two affirmers. 

Affirmer 1. H is monotonic. Let p,q∈ (0,∞)N,p≤ 

q(i.e.,pi≤ qi,1 ≤ i ≤ N). Then for1 ≤ i ≤ N: 

 

 
 

 

 

 

1

1

1

1

,

N

i i ij j jj

i N

i i i i i ij j jj

N

i i ij j jj

N

i i i i i ij j jj

a p
h p

a p

a q

a q

  

     

  

     












  




  









 

 

which implies H(p) ≤ H(q). 

Affirmer 2 

H recognizes a only fixed point in (0,1)N. According 

to the Lemma (Lemma 2.3 in), Q3 has a simple 

positive eigenvalue s(Q3) >1 and there is a positive 

eigenvector w = (w1,···,wN)T belonging to s(Q3). Let: 
 

   

   

1 2

3

2 2

3

1 1
min 1 min

max

1 1
min 1 max

min

i i i i

i i
i i i ii i i

i

i i i i

i i
i i i ii i i

i

wS Q

wS Q

   


    

   


    

  
  

    

  
  

    
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Then, 0 < ε1 ≤ ε2. Thus 
 

 
 

 

   
     

1 1

1

1 1

1 3

12

1 1 3

,1 .

N

i i ij j jj

i N

i i i i i ij j jj

i i i

i

i i i i i i

a w
h w

a w

w s Q
w i N

w s Q

   


      

  


      








  


   

   





 
 

ThenH(ε1w) ≥ ε1w: 
 

 
 

 

   
     

2 1

2

2 1

2 3

22

2 1 3

,1 .

N

i i ij j jj

i N

i i i i i ij j jj

i i i

i

i i i i i i

a w
h w

a w

w s Q
w i N

w s Q

   


      

  


      








  


   

   





 
 

ThenH(ε2w) ≤ ε2w. It follows from affirmer 1 that 

H|(k), where: 
 

1 2

1

, .
N

i i

i

k w w 


     

 
It follows from Lemma (Theorem 4.10 in, we have 

H has a fixed point in k. Denote this fixed point by
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Without limiting the generality, assume θ >1: 
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This violates the assumption of
0 0

* **

i i
A A . Therefore, 

A∗ is the only fixed point of H. 

Experiments and Concluding Remarks 

Experiment 

Scale-free and Small-world networks are a type of 

networks with a wide range of applications (Albert 

and Barabási, 2002). Take a stochastic generated 

scale-free network and Small-world networks with 

100 nodes and the experiments on the networks are 

shown in Figs. 2 and 3 separately. 

 

 
 

Fig. 2: The time plots of Linear A(t), Linear H(t),Exact A(t), Exact H(t) 
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Fig. 3: The time plots of Linear A(t), Linear H(t),Exact A(t), Exact H(t) 

 

The following outcomes are from the previous above 

experiments: 
 
(a) If A(t) approaches a nonzero value, then the linear 

UAH model can truly capture the average 

evolutionary process of the plant 

(b) If H(t) becomes a nonzero value, after that the linear 

UAH model can truly capture the average 

evolutionary process of the plant 
 

Concluding Remarks 

This article has discusses the effects that of hibernate 

on plant activity and the linear UAH model has been 

exported. Under this model, a group of criteria for 

extinction of a activities is given. The extensive 

simulations result that, the dynamics of the linear UAH 

model fits well with the actual of the hibernate for 

activity process of hibernate. The following completions 

are drawn from the above demonstrates. In this case, the 

linear UAH model works fine; it can be utilized to 

quickly predict this average dynamics of activity in the 

ecological network. For this purpose, one individual-

level activity-hibernate interacting model (the linear UAH 

model) is derived. Simulation experiments show that 

dynamics of the linear UAH model are very consistent with 

the actual activity-hibernate interacting process. So, the 

linear UAH models provide an appropriate basis for 

evaluating the effectiveness of hibernate. 

Moving in the direction, there are many works under 

study. With the generic UAH model criteria, the 

existence/activity of coexistence balance should be found. 

Thus, it is valuable exploit a new UAH model that brings 

the restraining efficacy into account. Because of individual-

level model, it is practical importance to know the influence 

of many factors on the complex ecology system. 
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