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Abstract: Increasing clinic evidences have showed that microbial 

communities play important roles in human health and disease. Predicting 

hidden microbe-drug associations can be helpful in understanding the 

microbe-drug association mechanisms in clinical treatment, drug discovery, 

combinations and repositioning. Some computational methods were 

proposed to predict the associations of microbes and drugs. However, the 

prediction performance of these methods needs to be improved. In this 

study, a new computational model (LRLSMDA) is proposed for identifying 

Microbe-Drug Associations based on the Laplacian Regularized Least 

Square algorithm. LRLSMDA integrates the chemical structure similarity 

of drugs and known microbe-drug associations. The microbe Gaussian 

Interaction Profile (GIP) kernel similarity is computed based on known 

microbe-drug associations. We compute the drug GIP kernel similarity and 

the drug chemical structure similarity based on known microbe-drug 

associations and drug chemical structures. The drug GIP kernel similarity 

and the drug chemical structure similarity are integrated into a more 

comprehensive drug similarity matrix by the linear weighted method. 

Finally, the Laplacian regularized least squares algorithm is applied to 

predict hidden microbe-drug associations. LRLSMDA has achieved the 

average Area Under the Curve (AUC) values of 0.8983±0.0019, 

0.9043±0.0015 and 0.9095 in 5-fold Cross-Validation (5CV), 10-fold 

Cross-Validation (10CV) and Leave One Out Cross-Validation (LOOCV), 

respectively. These experimental results show that the prediction 

performance of LRLSMDA outperforms three compared models. 
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Introduction 

As an important part of the human microbiome, 
microbes are mainly made up of bacteria, archaea, 
viruses and fungi etc. Generally speaking, microbes are 
mainly made up of bacteria, archaea, viruses and fungi 
etc. Bacteria and viruses are to cause hundreds of human 
diseases (Geoghegan et al., 2016). Especially for some 
emerging and epidemic-prone diseases, such as 
Coronavirus Disease 2019 (COVID-19), Severe Acute 
Respiratory Syndrome (SARS) and Middle East 
Respiratory Syndrome (MERS), directly threaten human 
health and become the public health concern. 

Some researchers think that these diseases can result 

from the absence of beneficial functions or the 

introduction of maladaptive functions by invading 

microbes (Turnbaugh et al., 2007; Methé et al., 2012; 

Young, 2017). It is also believed that restoring the 

absence of beneficial functions or eliminating harmful 

microbial activities is helpful to the treatment of certain 

diseases (Young, 2017; Huttenhower et al., 2012). 
After its discovery in the 1940s, penicillin has been 

used to restore the absence of beneficial functions or 
eliminating harmful microbial activities. Millions of 
people already have been saved by antibiotics from 
diseases and deaths. Therefore, with the abuse of 
antibiotics, many bacteria are developing antibiotic 
resistance, which greatly reduces the efficacy of 
antibiotics and limits the range of antibiotics. Over 70% 
of bacteria are resistant to at least one common 
antibiotic. But at the same time antibiotics are developed 
rarely and only two antibiotics have been discovered in 
the past 30 years (Pew Charitable Trusts, 2015). The 
United Kingdom government predicts that without the 
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discovery of new potential antibiotics, 10 million people 
will die from antibiotic-resistant infections worldwide 
every year by 2050 (O’neill, 2014). Therefore, drug 
resistance is a serious threat to public health.  

In order to deal with the problem of drug resistance, 

some scholars proposed two methods to solve this 

problem: Drug combination and drug repositioning. On 

the one hand, a medicine application to combat 

antibiotic resistance is drug combination research 

(Zimmermann et al., 2007). The first exploration of 

antimicrobial agents in tuberculosis was performed by 

using combination drugs (Marshall et al., 1948). 

Combination drug therapy is being widely used to treat HIV 

infection and cancer chemotherapy (Vandamme et al., 

1998). On the other hand, another method is drug 

repositioning (Chen et al., 2015), which find novel 

therapeutic effects of old drugs. For both 

combinatorial drug treatment and drug repositioning, 

identifying novel associations between drugs and 

microbes is their first step (Chen et al., 2016). 

Some works show microbes take critical roles in 
many important biological processes, including an 
increased toxicity of digoxin (Aarnoudse et al., 2008; 
Haiser et al., 2014), a reduction of the clearance of 
morphine and higher morphine AUC inducing virulence 

in some strains pseudomonas aeruginosa, increasing 
221% in simvastatin AUC for homozygote’s (Ong et al., 
2012; Voora et al., 2009; Ramsey et al., 2014), altering 
the activity warfarin (Violi et al., 2016) and an 
increased toxicity of irnotecan (Guthrie et al., 2017). 
Identifying associations of microbes and drugs is 

helpful to throw light on why some respond well to 
certain drugs, but others suffer severe side-effects. 
However, to date, only a few microbe-drug associations 
have been identified (Sun et al., 2018). 

In this study, a new model (LRLSMDA) is proposed 

to identify Microbe-Drug Associations based on the 

Laplacian Regularized Least Square algorithm. In 

LRLSMDA, we compute the microbe Gaussian 

Interaction Profile (GIP) kernel similarity based on 

known microbe-drug associations to construct the 

microbe similarity matrix. Then an integrated drug 

similarity matrix is constructed as follows: First, the 

chemical structures similarity of drugs is calculated 

based on the Canonical SMILES of drugs downloaded 

from Drugbank. Second, we calculate the drug GIP 

kernel similarity based on known microbe-drug 

associations. Last, the integrated drug similarity matrix 

is constructed by the average of the drug GIP kernel 

similarity and the drug chemical structures similarity. 

Based on the microbe similarity matrix, the integrated 

drug similarity matrix and the microbe-drug association 

matrix, the laplacian regularized least squares algorithm 

is applied to identify hidden microbe-drug associations. 
To confirm the prediction ability of LRLSMDA, we 

compare LRLSMDA with three compared models. 

These three models include HGBI (Wang et al., 2013), 

NBI (Cheng et al., 2012) and SNMF (Wang et al., 

2017). Furthermore, we introduce 5-fold cross-validation 

(5CV), 10-fold Cross-Validation (10CV) and Leave One 

Out Cross-Validation (LOOCV) to validate whether 

LRLSMDA is effective in identifying microbe-drug 

associations. In 5-fold Cross-Validation (5CV), the AUC 

value of LRLSMDA is 0.8983±0.0019, while the AUC 

values of HGBI, NBI and SNMF are 0.8516±0.0048, 

0.6978±0.0057 and 0.7203±0.0093, respectively. 

LRLSMDA achieves the better prediction performance 

than three other models. In 10-fold Cross-Validation 

(10CV), LRLSMDA is also better as AUC of 

0.9003±0.0017, compared with three other models above 

(HGBI: 0.8721±0.0033, NBI: 0.7098±0.0041 and 

SNMF: 0.7211±0.0056). In LOOCV, The AUC values of 

HGBI, NBI, SNMF and LRLSMDA are 0.8873, 0.7199, 

0.7622 and 0.9096, respectively. LRLSMDA is also 

better than three other models. 

5CV, 10CV and LOOCV computational experiment 

results show that LRLSMDA is consistently superior to 

three other models (HGBI, NBI and SNMF). LRLSMDA is 

effective to identify hidden miRNA-disease associations. 

Materials and Methods 

Materials 

The dataset of human microbe-drug associations are 

downloaded from the Microbe-Drug Association 

Database (MDAD) (Sun et al., 2018). We sort and 

preprocess these downloaded data and obtain 1152 

known microbe-drug associations, 142 microbes and 627 

drugs. Let M = {m1, m2, m3,…,mnm} denote nm microbes 

in M and D = {d1, d2, d3,…, dnd} represent nd drugs in D. 

Then, Y is nd rows and nm columns of the adjacency 

matrix of microbe-drug associations. If there is a known 

association between microbe mi and drug dj, the value of 

yij is 1, otherwise is 0. Therefore the benchmark dataset 

consist of 1,152 known microbe-drug associations and 

87,882 unknown microbe-drug associations. This 

benchmark dataset is represented as follows: 

 
+= ,  (1) 

 

in which +  is 1152 known microbe-drug associations, 
  is a union of the sets and   is 87882 unknown 

microbe-drug associations, respectively. 

Methods 

Construct the GIP Kernel Similarity Matrix of 

Microbes 

GIP kernel has been successfully applied in many fields 

(Van Laarhoven et al., 2011; Zhu et al., 2020; Luo et al., 

2018). In terms of an assumption that similar microbes 
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tend to related with similar drugs, the microbe GIP 

kernel similarity KMGIP(mi,mj) can be computed as: 

 

   2, || ||
i ji j mm GIP m mS KM m exp ym y    (2) 
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where Sm is a microbe similarity matrix and 
imy  and 

jmy  

are the interaction profiles of microbe mi to microbe mj, 

respectively. m regulates the normalized kernel bandwidth 

by the original bandwidth 
m  . 

Construct the Similarity Matrix of Drugs 

For drugs, we compute the drug GIP kernel 

similarity and the drug chemical structures similarity. 

According to the microbe GIP kernel similarity 

calculation method (Zhu et al., 2021), we also 

compute the drug GIP kernel similarity KDGIP(di,dj) 

between drug di and drug dj as below: 
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where,
idy and

jdy denote the interaction profiles of disease 

di to disease dj, respectively. d regulates the normalized 

kernel bandwidth by the original bandwidth 
d  . 

Based on the previous researches, we can use some 

ways compute the drug similarity. In our study, we 

introduce the drug chemical structure similarity into 

LRLSMDA. 

The drug chemical structure similarity can be computed 

by Chemical Development Kit (Steinbeck et al., 2006) 

based on the chemical structures of drugs in the Canonical 

Simplified Molecular Input Line Entry Specification 

(SMILES) (Weininger, 1988). The Canonical Simplified 

Molecular Input Line Entry Specification formatof drugs 

can be downloaded from Drugbank (Wishart et al., 2018). 

We compute binary fingerprints of all drugs by Chemical 

Development Kit. The Tanimoto score (Tanimoto, 1958) of 

their binary fingerprints is used to measure the chemical 

structure similarity DSchem(di,dj).  

As shown above, two drug similarity matrices are 

computed. We combine two drug similarity matrices 

KDGIP(di,dj) and DSchem(di,dj) into a more comprehensive 

drug similarity matrix Sd by the linear weighted method: 

 

=
2

chem GI
d

PDS KD
S


 (6) 

LRLSMDA for Predicting Microbe-Drug Associations 

The Laplacian Regularized Least Squares (LRLS) 

algorithm has been successfully applied to 

identify associations between biological entities. In this 

study, we present a new model (LRLSMDA) to 

identifymicrobe-drug associations via Laplacian 

Regularized Least Squares algorithm. LRLSMDA is 

implemented based on the drug chemical structures 

similarity, the drug GIP kernel similarity and the 

microbe GIP kernel similarity. 

Based on the microbe GIP kernel similarity matrix and 

the comprehensive drug similarity matrix above, two 

diagonal matrixes Dm and Ddcan are expressed as follows: 
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Then we normalize these two diagonal matrixes Dm and 

Dd to obtain two normalized laplacian similarity matrixes 

Lm and Ld by the laplacian operation, respectively: 

 

 1/2 1/2

m m m m mL D D S D    (9) 

 

 1/2 1/2

d d d d dL D D S D    (10) 

 

Based on this LRLS algorithm, FM* and FD *are 

computed using the minimization of the cost functions, 

respectively: 

 

 
2* arg min T

FM m mF
FM Y FM tr FM L FM      

 
 (11) 

 

 
2* arg min T

FD d dF
FD Y FD tr FD L FD      

 
 (12) 

 

in which tr() and ||||F area matrix trace and the 

Frobenius norm(Xia et al., 2010), respectively. The 

trade-off parameters βm and βd are set to be 1. Two 

prediction matrixes FM* and FD* can be computed as 
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Finally, FM* and FD* are transformed into a 

prediction matrix with a linear mean method as follows: 
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Results and Discussion 

Performance Evaluation 

The prediction performance of LRLSMDA is 

systematically evaluated by the cross validation framework. 

In the k-fold cross validation, 1152 known microbe-drug 

associations +  are divided into k exclusive subsets: 

 
+

1 2 ... K

       (16) 

 

With: 

 

1 2 ... K

        (17) 

 

1 2 ... K

      (18) 

 

in which  is the symbol of union,  is the symbol of 

intersection and  is the symbol of the empty set. 
1

  is the 

first exclusive subset. Each subset (e.g., 
1

 ) in turn, acts as 

a test sample and the remaining samples as the training 

samples. Moreover, all the unknown microbe-drug 

associations are considered as the candidate associations k-

fold cross validation is performed 100 times, with the 

average of predictive results as final results. 

In LOOCV, we select each known association as a 

test sample and the rest known associations as training 

samples. Moreover, all the unknown microbe-drug 

associations are selected as the candidate associations. 

Each known microbe-drug association is ranked relative 

to the candidate associations. If the value of this ranking 

is higher than an assumed threshold, the test sample is 

correctly predicted. 

Comparison with other Models 

In order to evaluate the predictive performance of 

LRLSMDA, we compare it with three other models, 

namely NBI (Cheng et al., 2012), HGBI (Wang et al., 

2013) and SNMF (Wang et al., 2017). NBI is a network-

based method to infer new interactions of drugs and 

targets. HGBI is also aheterogeneous graph inference-

based method to infer hidden interactions between drugs 

and targets. As a matrix factorization-based method, 

SNMF can predict microbe-drug associations.  

5-fold CV, 10-fold CV and LOOCV are used to 

verify the performance of these models. We can see from 

Fig. 1 that LRLSMDA is better as AUC of 

0.8983±0.0019, compared with three predictive models 

above (NBI: 0.6978±0.0057, HGBI: 0.8516±0.0048, 

SNMF: 0.7203±0.0093). 

Figure 2 shows that LRLSMDA can obtain the better 

performance than three other models in 10CV. The AUC 

value of LRLSMDA is 0.9043±0.0015, while the AUC 

value of NBI, HGBI and SNMF are 0.7098±0.0041, 

0.8721±0.0033 and 0.7211±0.0056, respectively, in 10CV. 

In LOOCV, we also compare LRLSMDA with three 

other models. As shown in Fig. 3, LRLSMDA can achieve 

the AUC value of 0.9095, while NBI, HGBI and SNMF 

have 0.7199, 0.8873 and 0.7622 in LOOCV, respectively.  

 

 
 

Fig. 1: The AUC curves of four models in 5CV 
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Fig. 2: The AUC curves of four models in 10CV 

 

 
 

Fig. 3: The AUC curves of four models in LOOCV 

 
As we can see from Fig. 1 to 3, LRLSMDA is better 

than three other models in 5CV, 10CV and LOOCV. 

Parameter Analysis 
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clear that the AUC value of LRLSMDA is 

0.8983±0.0019 in 5CV when γ is equal to 21. 

Figure 5 describes an increasing AUC trend of 

LRLSMDA from 0.886±0.0014 to 0.9043±0.015 in 

10CV, when γ increases from 22 to 21. Itis obvious for 

LRLSMDA to make a better performance when the 

value of parameter is 21. 

As shown in Fig. 6, LRLSMDA can obtain AUCs of 

0.8892, 0.8977, 0.9095 and 0.9086 in LOOCV when γ = 

22, 21, 21 and 22, respectively. It is obvious for 

LRLSMDA to make a better performance when γ = 21. 

As we can see from Fig. 4 to 6, LRLSMDA makes 

a better performance in 5CV, 10CV and LOOCV 

when γ = 21. 

 

 
 

Fig. 4: The AUC curves of LRLSMDA in 5CV when  ranging from 22 to 22. 

 

 
 

Fig. 5: The AUC curves of LRLSMDA in 10CV when  ranging from 22 to 22 

1 
 

0.9 
 

0.8 
 

0.7 

 

0.6 
 

0.5 
 

0.4 

 

0.3 
 

0.2 
 

0.1 

 

0 
0 0.2 0.4 0.6 0.8 1 

False positive rate 

T
ru

e 
p
o

si
ti

v
e 

ra
te

 

LRLSMDA ( = 2.0) (AUC = 0.89830.0019) 
 

LRLSMDA ( = 0.25) (AUC = 0.88210.0024) 

LRLSMDA ( = 0.5) (AUC = 0.88960.0023) 

LRLSMDA ( = 4.0) (AUC = 0.89610.0024) 

5-fold CV 

1 
 

0.9 
 

0.8 
 

0.7 
 

0.6 
 

0.5 
 

0.4 
 

0.3 
 

0.2 
 

0.1 
 

0 
0 0.2 0.4 0.6 0.8 1 

False positive rate 

T
ru

e 
p
o

si
ti

v
e 

ra
te

 

LRLSMDA ( = 2.0) (AUC = 0.90430.0015) 
 

LRLSMDA ( = 0.25) (AUC = 0.8860.0014) 

LRLSMDA ( = 0.5) (AUC = 0.89380.0015) 

LRLSMDA ( = 4.0) (AUC = 0.90240.0016) 

10-fold CV 



Lingzhi Zhu et al. / American Journal of Biochemistry and Biotechnology 2021, 17 (1): 50.58 

DOI: 10.3844/ajbbsp.2021.50.58 

 

56 

 
 

Fig. 6: The AUC curves of LRLSMDA in LOOCV when  ranging from 22 to 22 

 

Conclusion 

Increasing evidences have showed that microbes take 

important roles in human health and disease. Identifying 

hidden microbe-drug associations is helpful in 

understanding the microbe-drug association mechanisms 

in clinical treatment, drug discovery, combinations and 

repositioning. In our study, LRLSMDA is proposed to 

predict microbe-drug associations of human. In the 

model of LRLSMDA, the microbe GIP kernel similarity, 

the comprehensive drug similarity, the known microbe-

drug associations are combined to compute the 

association score between microbes and drugs. 

LRLSMDA has Achieved the Curve (AUC) values of 

0.8983±0.0019, 0.9043±0.0015 and 0.9095 in 5CV, 

10CV and LOOCV, respectively, which shows a better 

performance than three other models. 
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