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Abstract: Previous studies have shown that diseases are associated with 

microbe. To explore a more effective treatment for these diseases, unknown 

microbe-drug associations must be identified. However, existing models to 

identify microbe-drug association are limited. In our article, a predictive 

model (WPCMF) is presented for identifying microbe-drug associations 

based on weighted profile and collaborative matrix factorization. In 

WPCMF, the Gaussian Interaction Profile (GIP) can be used for computing 

the similarities of microbe and the drug, respectively. Then we use the 

Canonical SMILES of drugs to compute the chemical structures similarity of 

drugs. Two drug similarities are fused into an integrated drug similarity 

matrix. Weighted profile and collaborative matrix factorization are applied 

for predicting potential microbe-drug associations. Experimental results show 

that WPCMF achieves the average Area Under the Curve (AUC) values of 

0.9096±0.0028, 0.9195±0.0019 and 0.9236 in 5-fold Cross-Validation (5 CV), 

10-fold Cross-Validation (10 CV) and Leave-One-Out-Cross-Validation 

(LOOCV), respectively, which consistently outperforms other related 

methods (KATZHMDA, WP, CMF and Kron RLS). We think WPCMF is 

ideal as a supplement in the field of biomedical research. 
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Introduction 

Accumulating studies have shown that diseases are 

associated with microbe (Young, 2017). To explore a 

more effective treatment for these diseases, unknown 
microbe-drug associations must be identified (Young, 2017; 

Ley et al., 2005; Larsen et al., 2010). For example, a 
clostridium difficile infectious disease is associated with the 

function and diversity of microbial communities (Young, 

2017). Ley et al. (2005) revealed that Bacteroidetes is 
significantly reduced whereas Firmicutes is enhanced in 

obesity. Furthermore, Firmicutes obviously decreases in 
type 2 diabetes (Larsen et al., 2010). Based on known 

microbe-disease associations and symptom-based disease 
similarity, Zhang et al. (2018a) presented a label 

propagation method to discovery microbe-disease 

associations. To improve the accuracy of the prediction, a 
model of graph regularized non-negative matrix 

factorization was proposed to accurately discovery latent 
associations between diseases and microbes (Zhang et al., 

2018b). To cure these diseases, antibiotics can be applied 

for restoring the function and diversity of 

microbial communities. However, as the broader 

application, abusing of antibiotics is becoming 

increasingly serious problem which followed by 
dangerous microbial drug resistance. In particular the 

abusing of antibiotics has been changing so that more 
sophisticated microbes. More than 70% of bacteria are 

resistant to at least one class of antibiotics. The finding 

rate of new antibiotics continues to decline (PCT, 2015). The 
study of drug combination therapy and drug repurposing 

looks at measures to prevent development of antibiotic 
resistance as well as ways to stop its spread. The first step of 

drug combination therapy and drug repurposing is to identify 
potential drug-microbe associations. 

Microbe communities might take part in mediation of 

drug activity and drug toxicity (Aarnoudse et al., 2008; 

Haiser et al., 2014), such asincreasing 221% in simvastatin 

AUC for homozygotes (Ong et al., 2012; Voora et al., 2009; 

Ramsey et al., 2014), altering the activity warfarin 

(Violi et al., 2016), increasing the toxicity of irinotecan 

(Guthrie et al., 2017) and so on. But understanding microbe-

drug association mechanisms is limited. 
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In our article, a Predictive Model (WPCMF) is 

presented for identifying microbe-drug associations based 

on weighted profile and collaborative matrix 

factorization. In WPCMF, the Gaussian Interaction 

Profile (GIP)can be used for computing the similarities of 

microbe and the drug, respectively. Then we use the 

Canonical SMILES of drugs to compute the chemical 

structures similarity of drugs. Two drug similarities are 

fused into an integrated drug similarity matrix. Weighted 

profile and collaborative matrix factorization are applied 

for predicting potential microbe-drug associations. To 

validate the capability of WPCMF, we compare WPCMF 

with four related models, such as HMDAKATZ (Zhu et al., 

2019), WP (Yamanishi et al., 2008), CMF (Shenet al., 

2017) and Kron RLS (Van Laarhoven et al., 2011). 5-fold 

cross-validation (5 CV), 10-fold Cross-Validation (10 CV) 

and Leave One Out Cross-Validation (LOOCV) are 

introduced to confirm whether WPCMF could be 

more effective in predicting microbe-drug associations. 

In 5 CV, the AUCs of WPCMF, KATZHMDA, WP, CMF 

and Kron RLS are 0.9096±0.0028, 0.9010±0.0024, 

0.897±0.0024, 0.6918±0.0085 and 0.6809±0.0064, 

respectively. The predictive performance of WPCMF is 

better than five related models. In 10CV, WPCMF is also 

better as AUC of 0.9195±0.0019, compared with four 

related models above (KATZHMDA: 0.9066±0.0014, 

WP: 0.903±0.0016, CMF: 0.7201±0.0048 and Kron RLS: 

0.6897±0.0051). WPCMF is also better than five related 

models. In LOOCV, the AUC of WPCMF is 0.9236, 

while the AUC values of KATZHMDA, WP, CMF and 

Kron RLS are 0.9116, 0.9086, 0.762 and 0.6936, 

respectively. WPCMF is also better than three other 

models. It is obvious that WPCMF is consistently superior 

to five related models (KATZHMDA, WP, CMF and 

Kron RLS) in 5 CV, 10 CV and LOOCV.  

Materials and Methods 

Materials 

As a commonly-used databases, MDAD (Sun et al., 

2018) saves the information of 5,055 known associations 

of 1,388 drugs and 180 microbes. We download known 

associations from MDAD. Then we further remove the 

redundant associations and take the key information of 

known microbe-drug associations as the benchmark 

dataset. 1152 known associations are chosen from the data 

set. The specific information of known microbe-drug 

associations are shown in the following Table 1. 

Methods 

Drug Similarity 

In our study, some approaches are used to measure the 

drug similarities, which include the drug GIP similarity and 

the drug chemical structure similarity. The drug GIP 

similarity can be computed with the known associations of 

drugs (Van Laarhoven et al., 2011; Zhu et al., 2021a;          

Lan et al., 2020; Chen et al., 2021; Zhu et al., 2021c; 

Luo et al., 2018). Let M = {m1, m2, m3,…, mnm} represent 

a set of nm microbes and D = {d1, d2, d3,…, dnd} be a set 

of nd drugs. And Y is a adjacency matrix of known 

microbe-drug associations, which include nd rows and 

nm columns. If microbe mi and drug dj have a known 

association, yij has a value of 1, otherwise 0. For drug di and 

drug dj, the drug GIP similarity can be defined as: 
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in which  1 2= , ,...,
id i i inmy y y y and  1 2= , ,...,

jd j j jnmy y y y

denote the interaction profiles of disease di to disease dj, 

respectively.  

In addition, Chemical Development Kit (Steinbeck et al., 

2006) is used to compute the drug chemical structure 

similarity with based on the Canonical SMILES of drugs 

(Weininger, 1988; Wishart et al., 2018). Binary 

fingerprints of all drugs are computed by Chemical 

Development Kit. We use the Tanimoto (1958) of their 

binary fingerprints to measure the drug chemical structure 

similarity Dch (di, dj).  

As shown above, two drug similarity matrices are 

computed. We combine DG (di, dj) and Dch (di, dj) into 

an integrated drug similarity matrix Sd by the linear 

weighted method: 

 

=
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Microbe Similarity 

Similarly, the Gaussian Interaction Profile (GIP) can 

be used for computing the microbe GIP similarity (Zhu et al., 

2019; Lan et al., 2021; Zhu et al., 2021b). The GIP 

similarity MG is calculated as below: 
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in which  1 2= , ,...,
id i i inmy y y y and  1 2= , ,...,

jd j j jnmy y y y is the 

interaction profiles of microbe mi and microbe mj, 

respectively. Sm is a similarity matrix of microbes. 
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Weighted Profile 

The weighted profile (Yamanishi et al., 2008) model 

has been successfully applied in the field of 

bioinformatics. In our study, the weighted profile model 

adopt similarities to all the other microbe and drugs by a 

weighted average method. We define the weighted profile 

model as follows: 
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in which Y(di) and Y(mi) are the interaction profiles of 

drug di and microbe mj, respectively. After running the 

weighted profile model, we get the average of the 

predictive results.  

WPCMF for Microbe-Drug Association Prediction 

As a traditional method, collaborative matrix 

factorization (Shen et al., 2017) have been used for 

identifying hidden associations, but its prediction 

performance need improve. In our study, a new method 

(WPCMF) is presented for identifying microbe-drug 

associations via weighted profile and collaborative matrix 

factorization. We describe the detail of WPCMF: 

 

 
2 2 2

,min T

A B l F FF
Y AB A B  

 

 
2 2

T T

d d m mF F
S AA S BB      (8) 

 

with: 

 
TY AB  (9) 

 
T

dS AA  (10) 

 
T

mS BB
 (11) 

 

where, l, d and m are the non-negative parameters, ||.|| 

denote a Fresenius norm and Y is a adjacency matrix. In 

the above expression, we use the first term to denote the 

approximate model of Y, a tikhonov regularization term to 

minimize the norms and the last two terms to find the 

least-squared-error between Sm(Sd) and AAT(BBT). For l, 

d and m, 5 CV, 10 CV and LOOCV are preformed to 

find the most appropriate values. 

Initialize Matrix A and Matrix B 

The first step of collaborative matrix factorization is to 

initialize the matrix A and matrix B. Here, we use the 

singular value decomposition method to decompose Y 

into matrix A and matrix B: 

 

 , , ( , ),U S V SVD Y k  (12) 

 
1/2=USkA  (13) 

 
1/2=VSkB  (14) 

 

in which diagonal matrix Sk includes k singular values. 

The Optimization Process 

In this study, the least square method is still a useful 

and often vital, part of the optimization process. In the 

optimization process, we must take into account the least 

square method to update matrix A and matrix B until 

converge. Let Ik denote the identity matrix of k  k and 

S/Abe 0 and A can be represented as follows: 

 

  = T T

d d l k dA YB S A B B I A A    
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Similarly, we also use the same approach to get the 

representation of A as below: 
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Results 

Performance Evaluation 

In our article, 5 CV, 10 CV and LOOCV are used for 

evaluating the ability of WPCMF. In 5CV, we divide 1152 

known associations 𝕊+ into five parts as follows: 

 
+
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where  denotes an union symbol,  denotes an 

intersection symbol and  denotes an empty set symbol. 

i

  is an exclusive subset and i ranges from 1 to 5. We 

select each part, in turn, as a testing data and other data as 

training data. 5 CV can be performed 100 times. 

Similarly, 
+

is divided into 10 parts continually. The 

process is ended until each part has approximately the 

same amount of microbe-drug associations as below: 

 
+

1 2 10...       (20) 

 

With: 

 

1 2 10...        (21) 

 

1 2 10...      (22) 

 

in which we select each part, in turn, as a testing data 

and other data as training data. 10 CV can be performed 

100 times. 

In LOOCV, we select each association is selected as a 

testing data and other data as training data. Each known 

microbe-drug association is ranked relative to the 

candidate associations.  

According to the combination of the real category and 

the predicted category of the learner, it can be divided into 

True Positive (TP), False Positive (FP), True Negative (TN) 

and False Negative (FN), as listed in the following Table 2. 

Comparison with other Models 

To confirm the ability WPCMF, it is compared with 

the other four methods, such as HMDAKATZ (Zhu et al., 

2019), WP (Yamanishi et al., 2008), CMF (Shen et al., 

2017) and Kron RLS (Van Laarhoven et al., 2011). 

HMDAKATZ is a model to identify associations between 

drugs and targets. As a recommendation model, WP is 

based on the similarity of microbes and drugs to predict 

microbe-drug associations. Kron RLS uses the Kronecker 

product kernel to calculate the prediction scores and is 

based on regularised least squares to predict associations 

between microbes and drugs. 

Then, we choose 5 CV, 10 CV and LOOCV to verify 

the ability of WPCMF and other models. In 5 CV, Fig. 1 

shows that the AUCs of WPCMF, KATZHMDA, WP, 

CMF and Kron RLS are 0.9096±0.0028, 0.9010±0.0024, 

0.897±0.0024, 0.6918±0.0085 and 0.6809±0.0064, 

respectively. The predictive performance of WPCMF is 

better than five related models.  

As the Fig. 2 shows, WPCMF can achieve the AUC value 

of0.9195±0.0019, compared with four related models above 

(KATZHMDA: 0.9066±0.0014, WP: 0.903±0.0016, CMF: 

0.7201±0.0048 and Kron RLS: 0.6897±0.0051). WPCMF is 

also better than five related models. 

We can see from Fig. 3 that the AUC of WPCMF is 

0.9236 in LOOCV, while the AUC values of 

KATZHMDA, WP, CMF and Kron RLS is 0.9116, 

0.9086, 0.762 and 0.6936, respectively. 

 
 
Fig. 1: The AUC curves of five models in 5 CV 

 

 

 
Fig. 2: The AUC curves of five models in 10 CV 

 

 
 
Fig. 3: The AUC curves of five models in LOOCV 
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Table 1: Microbe, drug and associations in the benchmark 

Dataset The benchmark dataset 

Microbes 142 

Drugs 627 

Microbe-drug associations 1152 
 
Table 2: Confusion matrix 

 Predictive results 
 ------------------------------------------- 
Real results Positive Negative 

Positive TP FN 
Negative FP TN 

 
It is obvious that WPCMF is consistently superior to 

five related models (KATZHMDA, WP, CMF and Kron 

RLS) in 5 CV, 10 CV and LOOCV. 
 

Conclusion 

Accumulating studies have shown that diseases are 

associated with microbe. To explore a 

more effective treatment for these disease, unknown 

microbe-drug associations must be identified. 

However, existing models to identify microbe-drug 

association are limited. In our study, a predictive model 

(WPCMF) presented for identifying microbe-drug 

associations based on weighted profile and collaborative 

matrix factorization, which can efficiently fuse multiple drug 

information and microbe information. In WPCMF, the 

Gaussian Interaction Profile (GIP) can be used for computing 

the similarities of microbe and the drug, respectively. Then 

we use the Canonical SMILES of drugs to compute the 

chemical structures similarity of drugs. Two drug similarities 

are fused into an integrated drug similarity matrix. Weighted 

profile and collaborative matrix factorization are applied for 

predicting potential microbe-drug associations. To validate 

the capability of WPCMF, we compare WPCMF with 

four related models. 5 CV, 10 CV and LOOCV are 

introduced to confirm that WPCMF is consistently 

superior to five related models (KATZHMDA, WP, 

CMF and Kron RLS) in 5 CV, 10 CV and LOOCV. 

Some multiple kernel boosting algorithm methods (Liu et al., 

2016) and traditional machine learning (Cheng et al., 2020) 

should also be considered in the future. 
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