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Abstract: Glucosinolate, is a kind of bioactive sulfur-containing secondary 

metabolites, which are mainly distributed in cruciferous vegetables such as 

broccoli, cabbage, cauliflower turnip, and radish. In recent years, 

Glucosinolate has been widely studied for its anticancer and cardiovascular 

activities. The types and contents of Glucosinolate in broccoli are related to 

many factors, such as the cultivars, growth environment and stages, 

postharvest practices, and processing treatments. To make full use of the 

potential activities of Glucosinolate, the effects of postharvest practices and 

food processing treatments on Glucosinolate have been carried out in recent 

years. The authors have shown that postharvest processing conditions, for 

example, temperature, relative humidity, storage under a controlled atmosphere 

or modified atmosphere packaging, and food processing treatments can 

significantly affect the contents of Glucosinolate in broccoli. Therefore, this 

review updates the scientific literature on postharvest and food processing 

treatments on Glucosinolate in broccoli. In addition, the effect of cooking 

practice on the content of Glucosinolate is also highlighted.  
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Introduction 

Broccoli, one of the most important crops, has been 

consumed throughout the world (Miao et al., 2017;  

Sun et al., 2021). China is the largest producer of 

broccoli, which is followed by India, the United States, 

Spain, Mexico, and Italy. In the last decade, the 

consumption of broccoli has increased by several times 

due to the awareness of the active ingredients including 

polyphenols, flavonoids, vitamins (VA, VB6, VB12, VC, 

etc.,), minerals (calcium, potassium, sodium, 

phosphorous, etc.,), carotenoids, Glucosinolate (GLS), 

etc., (Alexandre et al., 2020; Soares et al., 2017). 

Epidemiological studies have demonstrated that broccoli 

can reduce the occurrence risk for many types of cancers 

due to GLS and their hydrolysates (Nugrahedi et al., 2016; 

Sun et al., 2021). GLS, a group of secondary metabolites 

containing elements sulfur and nitrogen, are primarily 

active substances in broccoli (Raiola et al., 2017; Vig et al., 

2009). In general, GLS is composed of a β-D-thioglucose 

group, a sulfonated oxime group, and a side chain derived 

from amino acids (Barba et al., 2016; Seo and Kim, 2017). 

More than 120 kinds of GLS have been found in the 

Brassicaceae family, whereas around 17 varieties of GLS in 

broccoli have been reported (Table 1, Lafarga et al., 2018; 

Van Etten and Tookey, 2018). Briefly speaking, 

according to the derived amino acid precursors, GLS can 

be classified into three types: Aliphatic type GLS mainly 

from methionine, isoleucine, leucine, or valine, indole type 

GLS originated from tryptophan, and aromatic type GLS 

generated from phenylalanine or tyrosine (Romeo et al., 

2018; Soares et al., 2017).   

The distribution of GLS in many broccoli cultivars has 

been studied. GLS contents in broccoli are highly 

dependent on various factors, for example, the cultivars, 

developmental stages, preharvest, and postharvest 

processing treatments (Baenas et al., 2020; Miao et al., 

2017; Prieto et al., 2019; Soares et al., 2017). The most 

common GLS in broccoli, are glucoraphanin (GLA, 

aliphatic type GLS), sinigrin, progoitrin, gluconapin 

(alkenyl), the indole glucobrassicin and neoglucobrassicin 

(Table 1). In the report of Farnham et al. (2000), GLA 

contents in investigated broccoli cultivars varied from 0.04 

to 2.94 μmol g-1 fresh weight. Similarly, Wang et al. (2012) 

indicated that GLA contents varied between 1.57 and             

5.95 μmol g-1 dry weight in five Chinese broccoli cultivars.  

Usually, GLS in broccoli are not directly bioactive, but 

their hydrolysates have the flavor and anticancer ability 

(Abdull Razis and Noor, 2013; Baenas et al., 2020). From 

the health standpoint, the most extensively investigated 
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compounds in broccoli are the Isothiocyanates (ITCs), the 

hydrolysates of GLS, which are regarded as the main 

bioactive with anti-tumor activity (Miao et al., 2017; 

Prieto et al., 2019). GLS is distributed in the vacuole, 

while myrosinase is stored in the cytoplasm. After 

broccoli cell is damaged by external factors, for example 

chewing, insects attacking, or cooking processing, the 

hydrolysis of GLS begins once the contact of GLS and 

myrosinase occurs (Wu et al., 2021). The hydrolysates 

like thioglucose, sulfate, and unstable intermediates, are 

formed through the GLS-myrosinase system. Among the 

bioactive hydrolysates, the most popular compounds like 

nitriles, ITCs, thiocyanates, epithionitriles, and vinyl 

oxazolidinethiones, have been reported (Prieto et al., 

2019). The factors, for instance, pH, the availability of 

ferrous ions, and the presence of myrosinase-interacting 

proteins can significantly influence the composition of the 

hydrolysates (Baenas et al., 2020; Nugrahedi et al., 2016; 

Prieto et al., 2019). However, because GLS are thermally 

sensible compounds, it is necessary to employ some 

methods to enhance their storage stability. Generally, all 

postharvest and processing treatments can cause a 

decrease in broccoli quality and a change in GLS contents. 

Many strategies have been employed to reduce GLS loss 

by radiation processing, heat, microwave, High-Pressure 

Processing (HPP), Modified Atmosphere Packaging 

(MAP), pre-freezing processing, freeze-drying, etc., 

(Aguilar-Camacho et al., 2019; Cai et al., 2016; Deng et al., 

2017; Ferreira et al., 2018; Lu et al., 2020b, c; Paulsen et al., 

2018; Torres-Contreras et al., 2017, 2018;         

Villarreal-García et al., 2016; Wang et al., 2016, 2018). 

Cooking is not often considered a critical postharvest 

process. However, at present, numerous studies have shown 

that cooking can significantly affect GLS content in broccoli 

(Baenas et al., 2019, 2020; Miao et al., 2017; Nugrahedi et al., 

2016; Soares et al., 2017). Therefore, this review updates 

the latest development on the effects of postharvest 

treatments and food processing on GLS content in broccoli. 

Effect of Postharvest on GLS in Broccoli 

Broccoli is one kind of highly perishable vegetable. 

Storage conditions, for instance, temperature, RH, 

atmosphere composition, Controlled Atmosphere (CA), 

MAP, etc., can significantly affect its quality (Baenas et al., 

2020; Jones et al., 2006; Miao et al., 2017). Additionally, the 

treatment of broccoli with sucrose, 1-Methylcyclopropene 

(1-MCP), or melatonin, is also an effective method to 

increase the GLS retention (Miao et al., 2017). The effects of 

postharvest practices on GLS in broccoli were mainly 

discussed as follows. Some results on the effects of 

postharvest on GLS were presented in Table 2. 

Storage Treatment  

The level of GLS in broccoli is strongly affected by 

storage conditions (Baenas et al., 2020; Banerjee et al., 

2014). In general, the stability of GLS in broccoli depends 

on many factors such as their chemical formula, storage 

temperature and time, packaging atmosphere, etc., and all 

these parameters need to be taken into consideration before 

the broccoli is stored (Jones et al., 2006; Miao et al., 2017).  

Storage Temperature and Time  

During the storage, the quality of broccoli usually 

decreases, which is accompanied by a decrease in GLS 

content (Miao et al., 2017). Among the factors affecting GLS 

content during broccoli transport and storage, storage time 

and temperature may be the most important ones. Lowering 

the temperature (<4°C) can maintain higher levels of GLS in 

broccoli. In one early study, GLA content in broccoli 

decreased by 82% after it was stored at 20°C for 5 days, 

while it declined by around 31% when broccoli was at the 

storage of 4°C (Rodrigues and Rosa, 1999). Similarly, 

Rangkadilok et al. (2002) found that GLA level in broccoli 

cultivar ‘Marathon’ decreased by 55% after it was kept at 

20°C for 7 days, while there was not any loss after broccoli 

was stored at 4°C for the same time. The reasonable 

explanation was that high temperature could disrupt the 

cellular integrity of broccoli, and so the improved contact 

between myrosinase and GLS led to the fast hydrolysis of 

GLS (Prieto et al., 2019; Zinoviadou and Galanakis, 2017). 

Recently, Oliviero et al. (2018) reported that cold storage of 

broccoli at 4~8℃ for 7 days caused the GLS loss (27%).  

Pre-cooling treatment is a popular method to increase 

the quality of broccoli. Wang et al. (2020) employed three 

methods (0℃ cold storage pre-cooling (control), ice pre-

cooling, cold water pre-cooling) to improve the quality of 

broccoli. The results showed that ice pre-cooling and cold 

water pre-cooling treatments could reduce the GLS loss. 

Slurry ice precooling was also used to treat broccoli 

(Liu et al., 2019). The results also demonstrated that it 

could reduce the GLS loss. Recently, Xie et al. (2021) 

investigated the effect of the combination of pre-cooling 

treatment and low-temperature storage (0±1℃) on the 

storage quality of broccoli. The authors indicated that pre-

cooling treatment and low-temperature storage of broccoli 

could delay yellowing more effectively and maintain 

higher GLS content in broccoli.  
Barba et al. (2016) studied the contents of the total 

indolyl and aliphatic types GLS in pre-stored broccoli at 
0~4℃ for 4~7 days and after storage at 10 and 18℃. The 
authors found that the total GLS and total aliphatic and 
indolyl types GLS increased after broccoli was stored at 
10℃. Storage at 18℃ increased the content of                                      
4-hydroxyglucobrassicin. Similarly, Yuan et al. (2010) 
reported that the level of 4-methoxy glucobrassicin was 
improved when broccoli was preserved at 20℃. The results 
indicated that the contents of some indole types of GLS could 
be increased by postharvest treatment, and thus counteracted 
the breakdown of GLS induced by myrosinase. Actually, in 
these studies, the content of total GLS did not change 
significantly. The authors concluded that the increased level 
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of indole type GLS could counteract the decrease of aliphatic 
type GLS (such as GLA) content.  

Relative Humidity (RH)  

It is necessary to remember that RH is the crucial 
factor to maintain a high quality of broccoli. A high RH 
of 98~100% is highly recommended to keep the harvested 
quality of broccoli (Miao et al., 2017). Jones et al. (2006) 
reported that the most important storage factor to keep the 
high quality of broccoli was high RH, next to low 
temperature. GLA in broccoli decreased by more than 80 % 
after it was stored under low RH, 20°C for 5 days. Similarly, 
GLA level decreased by 50% when broccoli was preserved 
in open boxes (low RH) at 20°C within the first 3 days, while 
the GLA loss was not obvious when broccoli was preserved 
in plastic bags under high RH (>90%) and the same 
temperature (Rangkadilok et al., 2002). The decrease of 
GLA in broccoli was generally accompanied by a significant 
deterioration of the quality, which implied that the hydrolysis 
generated by myrosinase, might occur. However, the 
difference in the change of GLA level was not found when 
broccoli was stored under low temperature (4°C) for 7 days 
whether in either open boxes with about 60% RH or plastic 
bags with around 100% RH (Rangkadilok et al., 2002). 
Shakeel et al. (2019) investigated the quality of broccoli 
under ambient conditions and proposed that the harvested 
broccoli had better be stored under lower temperatures and 
higher RH (>60%) to keep the good visual quality. 
Therefore, it seems that it is not too necessary to use 100% 
RH if broccoli is stored at a cooling temperature (below 4°C), 
whereas high RH combined with packaging is necessary to 
keep the high quality of broccoli when broccoli is preserved 
at 20°C (Shakeel et al., 2019). 

CA Storage  

CA storage is an effective means to keep the quality of 

broccoli and has been extensively applied to improve the 

shelf life of broccoli (Caleb et al., 2016;            

Fernadez-Leon et al., 2013a, b, c; Singh et al., 2018; 

Wang et al., 2017). CA conditions should be carefully 

investigated. Lower concentration of gases in CA 

(0.5~1.0% O2: 0.5% CO2; 0.5~1.0% O2: 1% CO2; 

0.50~1.0% O2: 2% CO2; 1.0% O2: 1.0% CO2) or 

controlled dynamic atmosphere (0.5%; 1.0%; 2.0% CO2) 

could cause greater loss of indole-3-carbinol GLS in broccoli 

compared to the control, after a 3-month storage. The best 

atmosphere conditions to preserve the quality of broccoli 

were 1~2% O2, and 5~10% CO2 when it was stored at a 

temperature from 0 to 5°C (Jones et al., 2006). In the report 

of Fernández-León et al. (2013a), when broccoli was stored 

under cooling or room temperature (20°C), the decrease of 

GLS in broccoli was significantly reduced after it was treated 

by CA storage (10% O2, 5% CO2). Similarly, the content of 

GLA in broccoli stored at 4°C and CA (1.5% O2 + 6% CO2) 

was higher than that under air conditions (Rangkadilok et al., 

2002). The authors indicated that higher CO2 levels might 

induce GLA biosynthesis and/or the decrease of its 

degradation pathway. However, after being stored for 20 

days at 1% O2 or 1% O2 +10% CO2, GLA levels were 

significantly lower than those under 5°C, air condition, and 

the total GLS level in broccoli cultivar ‘Marathon’ was 

reduced by 15% under the storage of 10°C for 7 days 

after it was treated by 20% CO2 (Jones et al., 2006). 

Therefore, CA conditions such as normal content of O2 

and higher content of CO2 are highly suggested for the 

storage of broccoli. 

 
Table 1: GLS distributed in broccoli* 

Commonly known name Chemical name 

Aliphatic type GLS  

Glucoraphanin 4-methylsulfinylbutyl-GLS 

Progoitrin (2R)-2-hydroxybut-3-enyl-GLS 

Glucoerucin 4-methylthiobutyl-GLS 

Gluconapin 3-butenyl-GLS 

Epiprogoitrin (2S)-2-hydroxy-3-butenyl-GLS 

Glucoiberin 3-methylsulfinylpropyl-GLS 

Glucoiberverin 3-methylthiopropyl-GLS 

Glucobrassicanapin 4-pentenyl-GLS 

Sinigrin 2-propenyl-GLS 

Glucoalyssin 5-methylsulfinylpentyl-GLS 

Gluconapoleiferin 2-Hydroxy-4-pentenyl-GLS 

Indole type GLS  

Glucobrassicin Indol-3-ylmethyl-GLS 

4-Hydroxy-glucobrassicin 4-Hydroxy-indol-3-ylmethyl-GLS 

Neo-glucobrassicin N-methoxyindol-ylmethyl-GLS 

4-Methoxy-glucobrassicin 4-Methoxy-indol-3-ylmethyl-GLS 

Aromatic type GLS  

Gluconastrutiin 2-phenylethyl-GLS 

*Miao et al. (2017); Nugrahedi et al. (2016); Soares et al. (2017) 
 
Table 2: Effects of postharvest treatments on GLS in broccoli 

Methods Results References 

Ethylene treatment Both aliphatic and indole type GLS (up to two times) levels Villarreal-García et al. (2016) 

 were improved by ethylene treatment (1000 ppm, 24 h, 20℃). 

1-MCP treatment The total GLS content was significantly enhanced by the Fernández-León et al. (2013a) 
 treatment of 1-MCP (25 μL -1). 

Melatonin treatment The degradation of GLS was significantly inhibited after Miao et al. (2020) 

 broccoli was treated with melatonin treatment. 
LED treatment The decrease rate of total GLS was prevented after broccoli Jin et al. (2015) 

 was treated by LED. 

Stored at 10% O2, 5% CO2 CA storage could effectively low the decrease of GLS in Fernández-León et al. (2013a) 
 broccoli florets when broccoli was stored at cooling and 20°C. 

Stored in MAP using Micro-perforated The loss of the GLS content in the MAP sample was about 23%, Fernandez-Leon et al. (2013b) 

polypropylene plastic while it was about 57% in the control.
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Ultraviolet (UV)  

Some studies on the effect of UV-B irradiation on the 

quality of broccoli and the contents of phytochemicals in 

harvested broccoli have been carried out (Aiamla-or et al., 

2012; Duarte-Sierra et al., 2019, 2020). UV-B conditions 

could significantly affect the accumulation of GLS in 

broccoli (Aiamla-or et al., 2019; Rybarczyk-Plonska et al., 

2014, 2016). Darre et al. (2017) evaluated the effect of 

UV-B radiation conditions on GLS in broccoli after it was 

stored at 4℃ for 17 days. The results showed that the 

levels of aliphatic type GLS were improved when broccoli 

was treated by UV-B irradiation for 18 h. In addition, the 

authors also found that aliphatic type GLS was the most 

easily accumulated when broccoli was treated by UV-B 

irradiation. Recently, Duarte-Sierra et al. (2020) also 

examined the effects of UV-B radiation on the quality as well 

as GLS levels in broccoli during the storage periods. The 

results indicated the contents of indole type GLS in broccoli 

treated with both doses of UV-B irradiation, were 

significantly higher than those in untreated broccoli. The 

total GLS contents were increased by 18 and 22%, 

respectively after broccoli was accordingly treated by 

hormetic and higher doses of UV-B irradiation. In addition, 

the contents of aliphatic type GLS in broccoli treated with 

both doses of UV-B irradiation, increased by 15% compared 

with those in the untreated broccoli. But, the aliphatic type 

GLS contents increased less than that of indole type GLS. 

Packaging Treatment  

One of the purposes of packaging coating for fresh 

broccoli is to reduce the exposure GLS to myrosinase, and 

GLS breakdown (Prieto et al., 2019; Singh et al., 2018). 

Generally, the investigations are focused on the studies on 

how packaging materials (holes or without holes, different 

polymers, edible coating, etc.,) can preserve GLS in broccoli.  

The storage of cooling and CA are effective methods 

to remain the quality of broccoli (Singh et al., 2018). But, 

these methods are not popular in developing countries, 

where broccoli is challenged by high temperatures during 

the post-harvest processing (Jones et al., 2006). MAP, as 

one of the storage methods, possesses simple and 

economical properties and has great potential in 

maintaining the quality of broccoli (Fernández-León et al., 

2013b, c; Singh et al., 2018; Wang et al., 2017). 

Meanwhile, MAP also is an effective method to preserve 

GLS in broccoli whether at low or high temperatures. 

Certainly, many factors, for example, the types of 

packaging, broccoli cultivars, etc., can significantly affect 

the content of GLS. Fernandez-Leon et al. (2013c) 

investigated the quality of broccoli when it was stored at 

5℃ in MAP using microperforated polypropylene plastic. 

The GLS content in broccoli stored in MAP decreased by 

about 23%, whereas the GLS level in the control was 

reduced by around 57% at the same time. Barba et al. 

(2016) observed the GLA level declined by 55% when 

broccoli was under the storage of open-air boxes for 3 days, 

and the level of GLA decreased by 56% when broccoli was 

stored in plastic bags for 7 days. The GLS content decreased 

more obviously when broccoli cultivar 'Parthenon' was under 

the storage of air conditions than that was stored under 

modified atmospheres using micro-perforated polypropylene 

plastic at 5℃ for 12 days (Fernández-León et al., 2013b).  

The GLS content is also significantly affected by 

storage temperature when broccoli is under the storage of 

MAP. No significant difference in GLA content was 

observed when broccoli was under the storage of air or MAP 

at 4℃ for 10 days (Rangkadilok et al., 2002), whereas, the 

content of GLA decreased by 50% when broccoli was under 

the storage of air condition and room temperature for 7 days. 

Under the same storage temperature, GLA level was not 

significantly reduced when broccoli was stored under MAP 

for 10 days (Rangkadilok et al., 2002). Jia et al. (2009) also 

investigated the effect of MAP processing on the GLS 

content in broccoli cultivar ‘Youxiu’. In their study, 

polyethylene bags (40 μm thick) with no holes (M0), two 

Micromoles (M1), and four macro holes (M2) were used to 

package broccoli samples, respectively, and then they were 

under the storage of 4 or 20℃. As for the control, the total 

GLS level was significantly reduced after it was stored at 4℃ 

over 23 days. In addition, the total aliphatic and indole type 

GLS contents decreased by 56, and 42%, respectively, under 

the same storage conditions. However, for broccoli coated 

with polyethylene bags, the contents of the total aliphatic and 

indole type GLS were reduced by 26 and 15%, respectively, 

when it was preserved at 4℃ for 23 days. The authors 

suggested that polyethylene bags (40 μm thick) without hole 

(M0) was one of the effective packaging materials to keep the 

quality of broccoli whether at low or high temperatures. 

Recently, Zinoviadou and Galanakis (2017) presented the 

results of broccoli stored at 4 or 20℃ in MAP and found 

the losses of the total aliphatic and indole types GLS 

decreased. The positive effect generated by MAP during 

postharvest storage was probably due to the change of 

amino acid contents since they were the precursors of 

some types of GLS (Bonte et al., 2017). 

The use of Exogenous Metabolic Regulators 

Methylcyclopropene (1-MCP)  

1-MCP has been extensively applied to the 

preservation of fruit and vegetables (Miao et al., 2017). 

Yuan et al. (2010) showed that the employment of 1-MCP 

at the content of 2.5 μL-1 could reduce the degradation rate 

of GLS when broccoli was stored at 20°C. Similarly, in 

the work of Fernández-León et al. (2013a), after broccoli 

was treated with 1-MCP at the content of 0.6 μL-1, the 

decrease rate of GLS was reduced. Additionally, the use 

of 1-MCP at the content of 25 μL-1 could improve the total 

GLS level when broccoli was preserved at 15°C for 5 days 
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(Xu et al., 2013). In short, 1-MCP shows a great potential 

to be used as a chemical preservative to reduce the 

degradation of GLS in broccoli. 

Melatonin  

Melatonin is regarded as one kind of bio-preservatives 

and has been widely used for the preservation of fruits and 

vegetables (Arnao and Hernández-Ruiz, 2019; Luo et al., 

2018; Miao et al., 2020; Zheng et al., 2019). Miao et al. 

(2020) studied the effect of melatonin on GLS 

degradation when broccoli was stored at room 

temperature. In their work, a higher GLS retention rate 

and GLA accumulation were observed after broccoli was 

treated with melatonin at the content of 1.0 μL-1. 

However, the level of GLS in the control was significantly 

reduced during the storage. As for the total contents of 

aliphatic and indolic types GLS, they decreased by 50 and 

52%, respectively, after the control was stored for 3 days. 

Whereas, the total levels of GLS in broccoli handled by 

melatonin, were reduced by 17 and 35%, respectively, 

under the same storage time. Wei et al. (2020) also 

investigated the effect of melatonin treatment on GLS 

levels in fresh-cut broccoli when broccoli was stored at 4℃. 

The results showed that the total GLS level in broccoli 

treated with 100 μm melatonin was 16.08 mmoLkg−1, which 

was almost two times higher than that in untreated broccoli 

after all broccoli samples were stored for 20 days. 

Furthermore, the total level of GLS in melatonin-treated 

broccoli was still higher than that in untreated broccoli.  

Sucrose Treatment  

Sucrose also has been employed to delay the 

senescence, and improve the storage quality of broccoli 

(Miao et al., 2017). Xu et al. (2016) investigated the effect 

of sucrose treatment on the levels of GLS in broccoli. The 

results showed the degradation rate of GLS in sucrose-

treated broccoli, was significantly reduced compared to 

that in the control. Therefore, the authors indicated that 

sucrose exhibited great potential to be applied in 

maintaining the quality of broccoli. Generally, GLS 

contents in broccoli are highly related to two opposing 

mechanisms (Nugrahedi et al., 2015; 2016; Yuan et al., 

2010). One is that GLS can be hydrolyzed by myrosinase, 

and the other is that the accumulation of GLS can be 

controlled by an unknown mechanism. According to this 

hypothesis, the authors inferred that the higher GLS 

content in sucrose-treated broccoli might be attributed to 

the regulation of myrosinase activity (Xu et al., 2016). 
Besides the discussion above, Methyl Jasmonate 

(MeJA) and 6-Benzylaminopurine (6-BA) also have been 

used to maintain GLS content in broccoli (Chiu et al., 

2019, 2020; Miao et al., 2017; Xu et al., 2020). 6-BA 

could significantly improve the retention rate of GLS 

(Xu et al., 2012). MeJA at the content of 250 µm also 

could increase the preservation of GLS in broccoli. 

Even if broccoli was treated by boiling, steaming, or 

microwaving, the total GLS level in broccoli treated by 

MeJA was markedly higher than that in uncooked 

broccoli (Chiu et al., 2019, 2020). Thus, the use of 

MeJA can improve the remained amount of GLS, and 

shows a great potential to be applied in the postharvest 

treatment of broccoli.  

Light Treatment  

Many authors have carried out the effects of radiation 

types on the biosynthesis of GLS in broccoli, and the 

results are different. Casajus et al. (2021) investigated the 

effect of continuous white light irradiation on the 

biosynthesis of GLS in broccoli during the storage. 

Visible radiation was found to reduce the decline of GLS 

content. The total GLS content in the control was reduced 

from 10.1 μmoL/g dry tissue to 1.4 μmoL/g dry tissue 

when it was stored for 5 days, whereas the total GLS 

content in treated broccoli was only reduced to                      

3.0 μmoL/g dry tissue. Continuous white light irradiation 

treatment, not only could keep GLS levels, but also 

maintain the visual quality of broccoli at the same time. 

While, the content of aliphatic type GLS was improved 

when the visible light of 25 μmoL m2 s-1 was used to treat 

broccoli preserved at 18°C, and the content of GLS also 

increased when the same radiation conditions were 

employed to treat broccoli stored at 10°C                 

(Rybarczyk-Plonska et al., 2016). Recently, Casajus et al. 

(2020) found that the senescence of broccoli during the 

storage was significantly affected by harvesting time. 

Harvesting time could affect the composition and level of 

GLS. During the day, with the extension of harvesting time, 

indolic type GLS content only decreased slightly. The level of 

aliphatics type GLS was reduced during the whole storage 

period. The possible reason was that darkness storage might 

give rise to the degradation of GLS since many studies 

indicated that light radiation could improve GLS accumulation 

(Rybarczyk-Plonska et al., 2016). In addition, the reason for 

the different GLS levels in broccoli harvested at different time 

points must be not related to the light radiation, since all 

broccoli samples were stored in the darkness.  

Some investigations also have shown that          

Light-Emitting Diode (LED) lights, including LED 

green light, red LED irradiation, and yellow LED light, 

are better than fluorescent lights for maintaining the 

quality stability of broccoli (Jiang et al., 2019; Loi et al., 

2019; Wang et al., 2021). Jin et al. (2015) investigated the 

effects of the treatments of fluorescent and LED green 

lights on GLS levels in broccoli. The results showed that 

the retention rate of the total GLS in broccoli treated with 

LED green light was significantly higher than that of the 

samples treated with fluorescent light. So, the authors 

suggested that LED green light was an effective way to 

reduce GLS loss, and improve the quality of broccoli.  
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In addition, emulsion technology and ethanol vapor 

treatments also have been applied to maintain GLS in 

broccoli. Wang et al. (2014) investigated the effect of 

ethanol vapor processing on bioactive substances, for 

example, polyphenols, total GLS, sulforaphane, etc., and 

the antioxidant activity of fresh-cut broccoli. The samples 

were pretreated with 2, 5, 10, or 20% ethanol vapor at 

20℃ for 6 h, then cut into small florets and stored at 10℃ 

for 10 days. The results showed that the pretreatment with 

10% ethanol significantly delayed the decrease of the total 

GLS content. During the investigated storage, the 

remained GLS in broccoli treated with 10% ethanol was 

1.82 times higher than that of the control. Lu et al. (2020a) 

studied the effect of a double emulsion system (W/O/W) 

on the quality of broccoli and indicated that double 

emulsion technology could improve the quality of 

broccoli, and maintain higher GLS content. 

Effect of Cooking Process on GLS 

Before it is eaten, broccoli is usually treated by many 

kinds of cooking practices, for example, steaming, 

boiling, stir-frying, microwave, stir-frying followed by 

boiling, etc. The employed cooking process and cooking 

time can significantly affect the GLS level in broccoli and 

thus result in the cooked broccoli with different nutritional 

values (Nugrahedi et al., 2016). Until now, there have 

been reported on the mechanisms of the change of GLS 

content, including GLS leakage, GLS hydrolysis, heat-

reduced myrosinase inactivation, and the degradation of 

GLS hydrolysates, etc., (Baenas et al., 2019, 2020; 

Nugrahedi et al., 2016; Sun et al., 2021). As for the 

mechanisms involved during the cooking practice for 

broccoli, it highly depends on the investigated cooking 

conditions. Generally, among the cooking practices, 

microwaving and boiling can lead to the greatest GLS 

drop (Baenas et al., 2020; Wu et al., 2021). However, the 

decrease in GLS level in steamed broccoli showed the 

lowest drop (Tabart et al., 2018; Wu et al., 2021).  

Cutting Treatment  

Cutting is a common handling method for broccoli 

pretreatment, which destroys the tissue of broccoli and 

thus promotes the formation of GLS hydrolysates (Jia et al., 

2009). Torres-Contreras et al. (2017) examined the effect 

of cutting treatment on GLS in broccoli, which was cut as 

whole florets, two pieces of florets, four pieces of florets, 

and shredded pieces of florets. The authors pointed out 

that the contents of glucoerucin and gluconasturtiin in cut 

four-piece florets were reduced by 62 and 50%, 

respectively, and thought that the hydrolysis reaction 

could occur. In another study, Jones et al. (2006) 

examined the levels of GLS in shredded pieces of broccoli 

after broccoli was stored for 48 h at room temperature. 

The authors found that the contents for most kinds of GLS 

were reduced, whereas the content of 4-methoxy-3-

indolylmethyl GLS increased 15 times (Jones et al., 

2006). Through analyzing the content of GLS in the finely 

shredded broccoli, it was also found that GLS content 

could be reduced by 75% after 6 h (Prieto et al., 2019; 

Song and Thornalley, 2007). 

Blanching/Boiling  

Since GLS are sensitive to heat, heat treatments of 

broccoli will affect the GLS content, and generally leads 

to a decrease in GLS content (Lafarga et al., 2018). The 

GLS loss highly depends on the chemical structure of 

GLS, for instance, the indole type GLS is more sensitive 

to heat than the aliphatic type GLS (Zinoviadou and 

Galanakis, 2017). During boiling, broccoli is dipped into water 

at 100℃, for at least 10 minutes, while blanching involves 

blanching broccoli in boiling water for up to 3 min, then 

removing it, and immersing it in cold water (Hanschen et al., 

2018; Lafarga et al., 2018; Preciado-Iniga et al., 2018). 

Among the investigated processes for cooking broccoli, 

boiling may produce the greatest impact on GLS content. 

The decrease of GLS content in broccoli treated by 

cooking practice is mainly due to GLS leakage and the 

degradation of GLS hydrolysates. The loss amount of 

GLS is highly related to boiling time (Hanschen et al., 

2018; Nugrahedi et al., 2015). Song and Thornalley (2007) 

compared four cooking practices, for instance steaming, 

boiling, microwaving, and stir-frying, and found that among 

these studied processes, only boiling could reduce GLS 

content significantly. Similarly, Cieslik et al. (2007) 

compared the effects of blanching and boiling treatments on 

GLS contents in the chosen cruciferous vegetables including 

broccoli, curly kale, Brussels sprouts, etc. The results also 

showed that the total content of GLS decreased significantly 

after the selected vegetables were treated by blanching 

and boiling. Recently, Hanschen et al. (2018) also found 

that boiling and blanching could affect the formation of the 

hydrolysates in cruciferous vegetables, thus resulting in the 

difference in GLS levels. Blanching was favorable for the 

formation of ITCs due to the heating denaturation of the 

epithio-specifier protein, while boiling could give rise to the 

leakage of GLS and the hydrolysates into the cooking water.  

Mrkic et al. (2010) studied the effect of the 

combination of blanching and hot air drying (50~100°C) 

on GLS content in broccoli. The results indicated that 

GLS content decreased by appropriately 64% after 

broccoli was treated by water blanching, which was likely 

attributed to the leakage of GLS into cooking water 

(Mrkic et al., 2010). Some studies indicated that steam 

blanching could achieve the same purposes as water 

blanching (Baenas et al., 2020; Ndiaye et al., 2009). 

Compared with water blanching, steam blanching has 

some advantages, for example, the less leakage of GLS, 

the higher preservation of myrosinase activity. Compared 

with boiling and branching processes, the fermentation 

process could reduce GLS. Sosinska and Obiedinski 
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(2011) investigated the effects of heating treatment, 

pickling, and fermentation on glucobrassicin levels and 

the hydrolysates in broccoli and cauliflower. Heating 

treatment, for example, boiling and steam cooking, could 

remain the highest glucobrassicin level in selected 

vegetables, however, pickling and fermentation could 

cause the greatest loss of glucobrassicin. Xu et al. (2021a, b) 

investigated the effect of fermentation using animal- and 

plant-sourced Pediococcus pentosaceus on the formations 

of bioactive compounds in broccoli juice. The results 

indicated that the total GLS content decreased 

significantly after broccoli juice was fermented by the 

investigated Pediococcus pentosaceus.  

Steaming  

Steaming, by reducing the direct contact of broccoli 

with the cooking water, maybe the most effective 

method for remaining GLS level in post-harvested 

broccoli. Many studies have demonstrated that steaming 

can cause a slight decrease, or even improve the total GLS 

content (Lafarga et al., 2018; Sun et al., 2021; Wu et al., 

2021; Xu et al., 2016; Zinoviadou and Galanakis, 2017). 

Miglio et al. (2008) studied the effects of three common 

cooking practices, for instance, boiling, steaming, and 

frying, on GLS contents. The results indicated that the 

total level of GLS was improved by 30.8% after broccoli 

was treated by steaming, however, when broccoli was 

treated by boiling and frying, the total levels of GLS 

decreased by 59.0 and 84.0%, respectively (Miglio et al., 

2008). Interestingly, Jones et al. (2010) evaluated the 

effects of three cooking practices named boiling, 

microwaving, and steaming, on the content of GLS in 

broccoli. Regardless of treatment time, the higher 

retention of GLS was observed after broccoli was treated 

by steaming, whereas boiling and microwave processes 

could cause more losses of GLS in investigated broccoli. 

Similarly, Lu et al. (2020b) studied the effect of cooking 

time on GLA content in broccoli treated by four processes 

including steaming, boiling, stir-frying, and microwaving. 

The results showed that GLA content decreased with the 

extension of cooking time in each cooking method. 

Steamed broccoli retained a higher content of GLA. 

Among the investigated methods, the authors thought that 

the best methods to maintain the highest level of GLS 

(and/or) their derivatives were steaming (3~50 min) and 

microwaving (45~590 W). However, Bongoni et al. 

(2014) reported that the total GLS content increased by 

17% after broccoli was treated by steaming. The reason 

was that the extractability of GLS was improved after 

broccoli was treated by heating.   

Microwave  

Many authors consider microwaving an effective 

method to preserve the GLS content (Table 3; Guo et al., 

2017; Soares et al., 2017; Tabart et al., 2018; Xu et al., 

2016). Some studies indicated that GLS loss was observed 

when microwaving was used to treat broccoli even under 

the optimized microwaving process (Vallejo et al., 2002). 

So, microwave conditions such as microwave power 

and time can significantly affect the preservation of 

GLS (Sun et al., 2021). Conflicting results regarding the 

effect of microwave processing on GLS content have been 

reported. Some studies indicated microwave treatment 

could cause a significant loss of GLS (Jones et al., 2010; 

Vallejo et al., 2002), whereas other investigations 

manifested it was a good way to preserve or even improve 

GLS content (Barakat and Rohn, 2014; Lu et al., 2020c; 

Soares et al., 2017; Wu et al., 2019). The inconsistent 

results are ascribed to the employed conditions, such as 

microwave power, time, etc., (Baenas et al., 2020; 

Tabart et al., 2018). Vallejo et al. (2002) demonstrated 

that the total GLS content decreased by 74% after broccoli 

was cooked using microwave treatment at 1000 W for 5 min, 

which was mainly attributed to the leakage of GLS into 

the cooking water. GLA content in broccoli treated by 

microwave treatment was reduced by 62% (Vallejo et al., 

2002). Also, in the study of Jones et al. (2010), GLA 

content decreased by 15~17% after broccoli was treated 

by microwaving at 1,100 W for 5 min. However, Song and 

Thornalley (2007) found that the decrease in GLS level 

was not significant when broccoli was cooked by 

microwaving for up to 3 min. With the increase of 

microwave time to 19 min at 950 W, Tabart et al. (2018) 

manifested that the total GLS level in broccoli was still 

not significantly affected. The difference was mainly 

ascribed to the user conditions such as microwave time, 

microwave power, etc., Pellegrini et al. (2010) investigated 

the effects of cooking processes such as boiling, 

microwaving, and steaming on GLS content in broccoli. The 

results showed that microwaving was the best cooking 

practice for preserving GLS content among the investigated 

methods. The change in the total GLS content was not 

observed during the microwaving process, but only a slight 

variation of single-type GLS content was found. The high 

preservation of GLS was mainly ascribed to the loss of water 

during the microwaving process (Armesto et al., 2019; 

Campos et al., 2019; Guo et al., 2017; Tabart et al., 2018; 

Wu et al., 2019; Zhao et al., 2019). Wu et al. (2017) 

confirmed that microwave was an effective method to 

preserve GLS in broccoli. Lu et al. (2020c) investigated 

the effects of microwave and the low-temperature 

cooking process, on GLA levels in broccoli. The results 

showed that GLA content in broccoli cooked by both 

investigated methods was higher than that in the control. 

Compared to conventional heating, GLA content could be 

increased by around 80% after broccoli was cooked by 

microwaving at 60°C. Therefore, the authors suggested 

that GLA content could be improved when broccoli was 
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treated by microwaving treatment with a temperature below 

60°C. Paulsen et al. (2021) carried out the effects of 

microwave bag cooking and conventional microwaving on 

GLS content in broccoli. A higher total GLS level (32.3±2.6 

µmoL/g) was observed when broccoli was cooked using a 

microwave bag, compared to that in broccoli (26.4±1.3 

µmoL/g) cooked by conventional microwaving. No 

significant change in total GLS level was observed when 

broccoli was cooked in a microwave bag for the first 3~5 

min. So, the authors suggested that a microwave bag was a 

good manner to preserve GLS content in cooked broccoli. 

Frying  

Stir-frying is one of the most widely employed 

cooking practices in some Asian countries, which 

involves frying foods using a little number of hot oils 

(Baenas et al., 2020; Nugrahedi et al., 2017; Tian et al., 

2018). Regarding the effect of stir-frying on the retention 

of GLS, some contradictory results have been shown. In 

some cases, stir-frying can cause little loss of GLS, while in 

other studies, it can result in a significant decrease of GLS. 

The differences in these reports are mainly due to the used 

stir-frying conditions (Bongoni et al., 2014; Wu et al., 2021). 

Nugrahedi et al. (2017) reported that stir-frying was an 

excellent cooking practice to preserve GLS, due to the 

deactivation of myrosinase at the high temperatures during 

the process (160~250℃). Nugrahedi et al. (2015) also 

reported that frying (as well as steaming and microwave 

cooking) was beneficial for the retention of GLS. Yuan et al. 

(2009) studied the effects of cooking practices, such as 

microwaving, steaming, stir-frying, boiling, and stir-frying 

followed by boiling, on GLS contents in broccoli. The 

authors showed that the contents of total aliphatic type GLS 

were markedly reduced by 55, 54, 60, and 41%, respectively, 

after broccoli was accordingly cooked by stir-frying,           

stir-frying/boiling, microwaving, and boiling. In contrast, the 

content of total aliphatic type GLS did not almost change 

after broccoli was cooked by steaming. All investigated 

cooking methods could significantly decrease the total 

contents of the indole type GLS. The loss of total indole 

type GLS could reach up to 67 and 64%, respectively, 

when broccoli was accordingly cooked by stir-frying and 

stir-frying/boiling. Besides, the effect of stir-frying using 

different edible oils on the GLS level was also studied 

(Moreno et al., 2007). The results showed that stir-frying 

with different edible oils could significantly affect GLS 

content. Stir-frying with sunflower oil and refined olive 

oil could significantly cause the loss of total GLS of 49 

and 37%, respectively, when broccoli was accordingly 

cooked by stir-frying with refined oil and sunflower oil. 

However, no significant change in total GLS was 

observed when broccoli was cooked using the rest 

investigated oils (Moreno et al., 2007). The thermal 

degradation of GLS resulted in a significant decrease in 

GLS content during stir-frying. So, the degradation of 

GLS was highly dependent on the used cooking edible 

oils. However, the relationship between stir-frying 

temperature and the retention or decrease of GLS content 

was not found. In the study of Song and Thornalley 

(2007), no significant change in GLS content was 

observed when broccoli was cooked at stir-frying 

temperature up to 200°C for 3~5 min. However, in their 

study, a high decrease in GLS content was observed when 

broccoli was cooked by stir-frying and stir-frying/boiling. 

The differences in the results were due to the used cooking 

temperature. The myrosinase was denatured rapidly at 

high cooking oil temperature (200°C), and thus the 

hydrolysis of GLS did not occur. However, when the 

cooking oil temperature was around 130~140°C, the 

hydrolysis of GLS induced by myrosinase was 

produced. According to these results, the authors 

indicated that cooking oil temperature had better reach 

up to 200°C to ensure the preservation of the total GLS.  

Effect of Food Processing on GLS 

Freezing  

Freezing is one of the most widely employed methods to 

keep the quality of broccoli (Baenas et al., 2020; Storey and 

Anderson, 2018). Broccoli usually goes through several 

treatments, for example, cutting, blanching, washing, and 

cooling before it is frozen. Indeed, for blanched broccoli, the 

content of GLS did not change after 3 months of storage (at 

20℃), but for the non-blanched broccoli, a decrease of 33% 

of the total GLS content was observed at 85℃ for seven-day 

storage (Oliviero et al., 2018). Rungapamestry et al. (2008) 

investigated the effects of blanching and freezing processing 

on GLS content in broccoli. GLS content in the control could 

be retained for up to 90 days at 20°C when it was treated by 

the blanching/freezing process. In addition, the highest 

remained GLS content was observed after the blanching-

frozen broccoli was cooked by stir-frying. Furthermore, 

Alanis-Garza et al. (2015) evaluated the effect of the freezing 

process on the retention rate of GLS in seven broccoli 

cultivars. The results showed that the extractability of 

total GLS was improved when all studied broccoli 

cultivars, except cultivar Florapack®, were treated by the 

freezing process. Similarly, Cai et al. (2016) studied the 

effects of pre-freezing processing and freezing processing 

on GLS content in broccoli. The results indicated that pre-

freezing processing could significantly reduce the 

biosynthesis of GLS. The freezing process could cause the 

decrease of aliphatic type GLS level (44.76%) and total 

GLS level (35.16%) but did not significantly affect 

indolic type GLS level (Table 3). In addition, the GLS 

level also could be improved by the freezing process. As 

mentioned above, two main mechanisms for the formation 

of GLS were proposed. One was the accumulation of GLS 

induced by an unknown pathway, the other was the 

breakdown of GLS by myrosinase. 
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Table 3: Effects of processing methods on GLS levels in broccoli 

Processing methods Conditions The retention of total GLS References 

Microwave 1000 W, 5 min ↓ 74%. Vallejo et al. (2002) 
 1000 W, 1~10 min GLS were reduced by 0.95, Hwang and Kim (2013) 

  13.5 and 64.6% for 1 

  min, 5 min, 10 min, respectively. 
 590 W, 5 min ↑0.4%. Barakat and Rohn (2014) 

 950 W, 40~60℃ Sulforaphane was increased by 99.5% Lu et al. (2020b) 

  (40℃), 46.6 (50℃), 27.4% (60℃), 
  respectively. 

 300 W, 30 min 102.2%. Pellegrini et al. (2010) 

 1100 W, 2 or 5 min 83.9 ~104.1%. Jones et al. (2010) 
 1000 W, 5 min 25.5%. Vallejo et al. (2002) 

 1000 W, 5 min 41.8%. Yuan et al. (2009) 

 900 W, 0.5~3 min ~100% Song and Thornalley (2007) 
 900 W, 2.5 min 60% Martinez-Hernandez et al. (2013) 

Pre-freezing and freezing 3℃, 8 min; -26℃, 8 min GLS were reduced by 64.9% at 3℃ Cai et al. (2016) 

  for 8 min, and reduced by 35.2% 
  at -26℃ for 8 min. 

HPP 100~500 MPa, 15 min, 20℃ No degradation of GLS was observed. Van Eylen et al. (2009) 

300 MPa, 35 min, 20℃ or 300 The degradation of 80% 

MPa, 15 min, 40℃. of total GLS was found. 

 

The remained GLS content was generally attributed to the 

balance of both mechanisms during freezing processing. 

Regarding the freezing process, it not only caused the 

accumulation of GLS, but also might give rise to the denature 

of myrosinase, and subsequently lead to the decrease in the 

formation of GLS hydrolysates. Qiu et al. (2020) studied the 

effects of microwave thawing, steam thawing, natural 

thawing, and still water thawing on GLS. No significant 

differences in GLS level were observed when broccoli was 

processed by microwave thawing and steam thawing. 

However, the decrease of ascorbic acid content induced by 

steam thawing was around 23.7% compared to that treated 

by microwave thawing. After the treatment of microwave 

thawing, the contents of total phenolics, GLS, ascorbic acid, 

and carotenoids were 1.15, 1.20, 1.93, and 1.39 times those 

of the natural thawing treatment, respectively.  

HPP  

HPP is one kind of extensively applied strategy for 

preserving and sterilizing foods. When it is applied to 

foods, it causes the inactivation of enzymes and 

pathogenic microorganisms and helps to maintain the 

compounds that can promote our health (Baenas et al., 

2020; Lafarga et al., 2018; Zinoviadou and Galanakis, 

2017). Experiments have been conducted on the effect of 

HPP on GLS content. The results showed that the 

inactivation of myrosinase was at the pressure of 300 

or 500 MPa (Zinoviadou and Galanakis, 2017). Van 

Eylen et al. (2009) investigated the effect of the 

combination of temperature (20~40°C) and pressure 

(100~500 MPa) on GLS content. The results manifested 

that HPP could induce the hydrolysis of GLS, and thus led 

to the formation of ITCs (Table 3). Therefore, the authors 

indicated that HPP could be used as an effective method 

to avoid the decrease in GLS content. 

Conclusion 

Broccoli is one of the most popular vegetables due to 

the high content of GLS. GLS can be applied in many 

fields, for example, food additives, flavor enhancers, as 

well as anticancer agents. However, they are highly 

unstable compounds that can be easily hydrolyzed into 

some breakdown derivatives. Therefore, the preservation 

of GLS is critical work and should be considered as a part 

of the broccoli processing workflow for both food 

producers and the restoration sector. The high retention of 

GLS in broccoli can be obtained if correct post-harvest 

storage conditions, cooking handling, and food processing 

treatments are chosen. Therefore, the studies on 

optimizing postharvest conditions, food processing, and 

cooking handling for broccoli are very important. 

Postharvest treatments such as CA, cooling, MAP, 

freezing processing, and as well as 1-MCP and melatonin 

treatments, are effective methods to reduce GLS loss. 

Low temperature (<4℃) and high RH may be the most 

important storage factors to keep the high quality of 

broccoli, which can keep the integrity of broccoli cells, 

and reduce the contact of GLS and myrosinase. UV 

irradiation can effectively reduce microbial 

contamination in broccoli and improve the preservation of 

bioactive compounds including GLS. As for cooking 

practices, microwaving can retain or even increase GLS 

content in some cases. Boiling can reduce the GLS 

content significantly. The highly recommended method to 

cook broccoli is short-time steaming, which may be the 

best effective method to preserve GLS during cooking. 

Among thermal treatments, blanch-freezing treatment 

does not cause a change in GLS content significantly. 

HPP, one of the nonthermal treatments, has been regarded 

as a promising way to maintain high GLS content. 
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Although many studies on the effects of postharvest and 

processing on GLS have been investigated, however, many 

works on this topic are needed to be carried out. The effect 

of the combination of the heating with other non-thermal 

methods like HPP on GLS is critical to be investigated in the 

future and, the underlying mechanisms of how post-harvest 

processing regulates GLS metabolism are still needed to be 

further explained. More importantly, the relationship 

between the changes of individual type GLS and postharvest 

processing needs to be further investigated.  
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