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Abstract: The quality of capsules has a direct impact on human health. 

However, defects inevitably arise during the capsule manufacturing process, 
and manual sorting is required. Most studies on capsule defects focus on 

detecting surface imperfections and those on internal capsule defects remain 
relatively limited. This study classifies four types of capsules using the deep 

learning model MobileNet, aiming to accurately identify surface and internal 
defects. A total of 2872 capsule images are used to evaluate the model's 

classification performance prior to and following optimization. The MobileNet 
model categorizes capsule images into four types: Normal capsules, deformed 

capsules, impure capsules, and bubbled capsules. Stratified cross-validation is 
applied to partition the dataset into 80% training, 10% validation, and 10% 

testing sets for ten-fold cross-validation. The model's performance is evaluated 
using three metrics: Precision, recall, and F1-score. The results are compared 

with two classic deep learning models, four traditional machine learning 
models (VGG16, ResNet101, KNN, and SVM), as well as decision trees and 

random forests. The findings demonstrate that the MobileNet model exceeds 
the performance of the other models, achieving precision, recall, and F1 scores 

of 94.24, 94.75 and 94.23%, respectively. Through transfer learning and 
improving the top layers of the MobileNet model with dropout, L2 

regularization, Batch Normalization (BN), and average pooling, the model 
accuracy is improved by 7.95%, indicating promising performance and 

potential in detecting capsule defects. 
 

Keywords: MobileNet, Capsule Defects, Image Processing, Deep Learning, 
Transfer Learning 

 

Introduction 

The quality of pharmaceuticals is crucial in the medical 

industry and has a direct impact on human health. Capsule-

based medications are of great importance in healthcare, but 

they often suffer from various defects due to limitations in 

production technology. These defects, ranging from air 

bubbles to shrinkage and deformities, result in inconsistent 
dosages, compromised efficacy, and poor sealing, which 

will affect the potency and shelf life of medication. 

Cosmetic defects have little effect on the efficacy of 

medications, but they can reduce the image of consumers. 

In the last decade, due to the lack of systematic equipment 

for detecting capsule defects, manual visual inspection and 

sampling have often been used to detect capsule defects. 

However, these approaches have low detection rates, 

limited detection accuracy, and susceptibility to individual 

subjective factors (Zhou et al., 2020). 

Actually, capsule defect detection can be summarized 

as surface defects and internal defects detection. Defect 

detection is an image classification and computer vision 

problem. Currently, computer vision-based online capsule 

detection technologies are often utilized in the medical 

industry. Based on the traditional image segmentation 

methods, a scanning-based area growth technique was 

adopted to achieve online capsule defect detection (Zhu et al., 

2011). The RGB color space can establish an algebraic 

relationship between the three components for the 

segmentation of capsule defects, which is useful for detecting 

capsule defects and reducing the processing time in real-time 

capsule defect identification systems (Hou et al., 2011). 

The rapid rise and development of artificial intelligence 

applications have led to significant growth in intelligent 

image-processing devices. Convolutional Neural Networks 

(CNN) and other deep learning techniques are employed for 
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classifying images (Pławiak and Acharya, 2020). CNN-

based Inception-ResNet-V2 model was used for the 

assessment of damage in wooden structures (Ehtisham et al., 

2024). The CNN-based MobileNet model was used to 

automatically recognize the position of the mask on the face, 

achieving high accuracy and F1-score (Rahman et al., 2023). 

A novel vision transformer-based deep neural network is 

proposed by integrating the transformer with CNN for 

image classification. 

The advanced CNN model MobileNet is frequently used 

in medical diagnostic tasks and agriculture, particularly for 

the classification of skin diseases, assessment of lung 
diseases by chest radiographs (Heidari et al., 2020), 

identification of implanted ridges on CBCT slices for 

classification (Chang et al., 2024); YVMV-infected okra 

plants (Chawla et al., 2024) and automatic classification 

of plant diseases (Sutaji and Yıldız, 2022). Unlike 

traditional CNN architectures, MobileNet employs 

depthwise separable convolutions to independently filter 

input and combine outputs in channels. This innovative 

approach can significantly reduce computation and overall 

model complexity. Its lightweight architecture can be 

efficiently implemented on devices with limited resources, 
such as mobile devices and embedded platforms, which is 

particularly beneficial for dental practices with 

constrained high-performance computing power 

(Mohapatra et al., 2021). In recognition of novel 

coronavirus, the classification of MobileNetV2-Support 

Vector Machine is optimal (Surono et al., 2023a). 

Through thorough image preprocessing, MobileNet 

has achieved performance comparable to that of 

traditional CNNs, highlighting its potential for widespread 

adoption in medical diagnostics (Howard et al., 2017). 

The appearance of capsules has different characteristics. 

Previous studies did not use the MobileNet algorithm for 

capsule defect detection. Usually, existing studies on 

capsule defect detection mainly focus on surface defects 

and a few on internal capsule defects. First, a machine 

vision system is designed to comprehensively capture all 

surfaces of the capsules, which involves a stable 

mechanical structure and poses considerable challenges. 

Second, due to the wide variety and often subtle nature of 

defects, their identification is particularly complex. The 

capsules have a diameter of 6 mm and the minimum 

detectable defect size is 0.1 mm, presenting significant 

technological challenges for research. Internally, capsules 

are filled with gel. When the smart camera shoots, the 

impurities and bubbles inside can reduce image clarity. 

Specifically, when there are no defects on the front of the 

capsule, but on the back, the captured defects are even 

more blurred, which poses a significant challenge to 

model learning. Therefore, this study aims to assess the 

application potential of MobileNet in detecting defects on 

the back and inside of capsules. 

Materials and Methods 

Design of Model 

The MobileNet structure is shown in Fig. (1). It 

includes two types of convolution layers (depthwise and 

pointwise), along with pooling layers, and is followed by 

fully connected hidden layers and a Softmax layer. The 

convolution layer uses a set of learnable filters for the 

convolution of the input image. Each convolutional kernel 

is represented as a compact weight matrix that slides over 

the input image, computing dot products at every position. 
This method produces a collection of feature maps that 

emphasize the unique attributes of the input images. The 

depthwise convolution kernel layer is 3×3 and the 

pointwise convolution layer is 1×1×3. Maximum pooling 

reduces dimensions, while ReLU introduces non-linearity 

for better learning. The Softmax layer receives a 

numerical vector as input and generates a probability map 

over a group of separate, non-intersecting categories. The 

Softmax function enhances the separability between 

different classes by increasing the distance between them 

in the transformed feature space (Akil et al., 2020). The 
values of each input vector indicate the level of evidence 

for each category. The Softmax function (Eq. 1) converts 

these values into probabilities that sum to 1 and typically 

selects the category with the highest probability as the 

prediction. The optimization process for each model uses an 

image enhancement and transfer learning technique 

(Naranjo-Torres et al., 2020): Fine-tuning (finetune). 

Table (1) displays the parameters for the MobileNet 
model. The model is based on the MobileNet architecture, 

with the top layer removed and the dropout layer added, 
the BN layer, the average pooling layer, and L2 

regularization. Dropout removes random connections 
between nodes of both layers (Nguyen et al., 2021). The 

role of dropout and L2 is to prevent overfitting. The 
proposed MobileNet architecture can be trained for up to 

100 consecutive epochs with a batch size of 64. Cross-
entropy is utilized as the loss function (Eq. 2) and it rises 

as the predicted probability diverges from the true label 
(Chawla et al., 2024). The model seeks to reduce cross-

entropy. Adam initialized with a learning rate of 0.01, is 
utilized to speed up model training and enhance 

convergence. Model Checkpoint is applied to callbacks to 
monitor the model's validation loss. It only saves the 

model if the loss improves relative to the previously best-
performing model. To improve the computational 

efficiency, the proposed model is implemented using 
Graphics Processing Unit (GPU). Tensor Flow toolbox is 

used to implement the model: 
 

𝑝𝑗 =
𝑒

𝑥𝑗

∑ 𝑒𝑥𝐾𝐾
𝑘=1

 (1) 
 
𝐶𝐸(𝜃) = − ∑ 𝑦𝑗 ∙ log(𝑃𝑗)𝑛

𝑗=1   (2) 
 
where, 𝑝𝑗  is the 𝑗𝑡ℎ component of the predicted vector of 
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class j;j is an integer with a range from 1 to K; K is the number 
of classes;𝐶𝐸(θ) is a loss function that represents the error 
between the estimated vector and𝑦𝑗 is the 𝑗𝑡ℎ component of 
the normalized reference vector. 

Design of Experiments and Image Processing 

The proposed methodology involves two primary 
phases: Categorizing capsule defects and calculating their 
attributes. These phases are illustrated in Fig. (2). The 
dataset is collected and segmented into four categories: 
Normal, foreign, impurity, and bubble. Following image 
pre-processing, a pre-trained MobileNet model is 
employed for training and validation with this dataset. 

To optimize storage space and computational load, the 
color image should be first converted to grayscale. After 
that, Gaussian filters are used to smooth the image. These 
filters can be convolved using the Gaussian function. Last 
but not least, applying histogram equalization can improve 
the image contrast. 
 
Table 1: Parameters of the MobileNet model 

Layer Output shape Param # 

Inception_input (224, 224, 3) 0 
Mobilenet_1.00_224 / 3228864 

Dropout (7, 7, 1024) 0 
Batch_normalization (7, 7, 1024) 4096 

L2 regularization / / 
Global_average_pooling2d 1024 0 

Dense 512 528900 

Dense_1 4 2068 
 

 
 
Fig. 1: Architecture of the proposed MobileNet 
 

 
 
Fig. 2: Flowchart of the proposed MobileNet methodology 

Data Collection and Preparation 

During the sorting process following capsule 
production, four types of images were categorized: Three 
representing defective capsules and one depicting a 
qualified capsule (Fig. 3a). The four types of capsules are 
Normal, alien, impurity, and bubble capsules. In the field 
of computer vision, the quality standards for images 
captured by different cameras vary and low-resolution 
images present a significant challenge for image 
processing tasks (Surono et al., 2023b). All images were 
captured using an industrial camera (MV-CS05013-
10GC, HIKVISION) with a resolution of 2448×2048 
pixels and 12 megapixels, 2872 color images in all. 2296 
of them are used for training, 288 for validating, and 288 
for testing. Considering the memory consumption, the 
collected capsule images are resized into a resolution of 
224×224, and stored with the corresponding image labels 
as the input dataset. The quality of capsules, from good to 
poor, is normal capsules (720 images), alien capsules (751 
images), impurity capsules (680 images), and bubble 
capsules (721 images), respectively. The four types of 
capsule data are largely balanced (Fig. 3b) to reduce the risk 
of overfitting and accuracy bias. The minimum diameter of 
bubbles in the bubble capsules reaches 0.1 mm. 

Image rotation is used to increase diversity and avoid 
overfitting in the dataset. Data augmentation (Zhou et al., 
2022) through width and height shifting (10%), zooming 
(20%) and rotation (20%) is carried out. Grayscale 
processing, Gaussian filter, and normalization are also 
carried out. K-fold cross-validation (K = 10) is performed 
to assess the training consistency across the entire dataset. 
The implementation process involved utilizing the K-fold 
function within the sklern. model_selection module in the 
Scikit-learn library. 
 

 
(a) 

 
(b) 

 
Fig. 3: Capsule classification (a) Capsule legend (b) Quantity 

distribution 
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Model Performance Evaluation 

True Positive" (TP) represents correct predictions for 

positive instances, "True Negative" (TN) for negative 
instances, "False Positive" (FP) for incorrect predictions 

of positive instances, and "False Negative" (FN) for 

incorrect predictions of negative instances 

(Thanathamathee et al., 2023). The classification of F1 

score measures takes precision and recall into account. It 

is calculated as the harmonic mean of precision and recall. 

To understand the performance of the CNN model in 

classification, all the common metrics: Precision, recall, 

and F1-score are calculated using the following Eqs. (35): 
 

  
TPi

Precision 
TPi FPi





 

 (3) 

 

 
TPi

Recall
TPi FNi




 
 (4) 

 

 

callecision

callecision
F

RePr

RePr2
1




  (5) 

 

Results and Discussion 

Comparative Experiments 

To compare the overall performance of MobileNet, the 

proposed method is compared with 2 deep learning and 4 

traditional machine learning, including VGG16, 
Resnet101, KNN, SVM, decision tree, and random forest. 

Precision, recall, and F1 are used as the evaluation metrics. 

It is evident that MobileNet has a high precision (0.942), 

recall (0.947), and F1 (0.942), better than 3 state-of-the-

art deep learning and 4 traditional machine learning 

Table (2). Before and after optimization, the precision, 

recall, and F1-score of the improved MobileNet 

architecture improved by 6.40, 3.25 and 5.99% in 

respectively Fig. (4). The new models are fine-tuned, 

resulting in significant enhancements in training precision, 

generalization ability, and robustness. 
In addition, MobileNet has a smaller model size, fewer 

parameters, and a smaller trained model size Table (3). 
 
Table 2: Quantitative evaluation metrics with different deep 

learning and traditional machine learning 

Model Accuracy (%) Precision (%) Recall (%) 

F1-score 

(%) 

KNN 24.56 24.7 24.7 23.9 

SVM 25.56 25.7 26.4 25.1 

Decision tree 24.63 24.7 24.6 24.5 

Random forest 26.76 26.9 26.7 26.4 

VGG16 64.58 62.5 72.4 57.9 

Resnet101 91.97 92.0 94.4 87.5 

Enhanced MobileNet 95.00 94.2 94.7 94.2 

Table 3: The model size of the main model 

Model Model size (MB) Parameters (million) 

VGG16 57.157 149.836 
Resnet101 166.800 437.258 

MobileNet 14.358 37.640 

 

 
 
Fig. 4: Capsule classification 
 

Selection of K Fold for MobileNet Model 

The confusion matrix depicting all K = 10 fold results 

is shown in Fig. (5). The analysis of the confusion matrix 

reveals the advantages of values along the principal 

diagonal, representing true positives and true negatives, 

while off-diagonal values indicate instances of false 

positives and false negatives. An optimal classification is 

denoted by a metric. In this study, the achieved values 
approximate 0.9, closely approaching the ideal value of 1. 

This indicates that the proposed method has effectively 

recognized the majority of images within each class, 

underscoring its robust classification performance.  

Effect of Learning Rate and Batch Size on 

Detecting Results 

Learning rate and batch size are hyperparameters in 

cross-validation that significantly impact the effectiveness 

of a neural network on a dataset. Both excessively high 

and low learning rates can decrease the accuracy of 

recognition. The learning rate determines the magnitude 

of weight adjustments at each step of gradient descent, 

directly influencing the speed of model convergence. A 

higher learning rate can accelerate the model convergence 

initially but may cause oscillations that hinder the optimal 

solution. Conversely, a lower learning rate can reduce 

convergence. To determine the optimal learning rate, this 

study selected a smaller batch size and a specific number 
of neurons in fully connected layers (batch size = 64, 

neurons = 512). Small batches can slow down training, as 

they help update model parameters more frequently. The 

choice of neuron count depends on dataset complexity and 

task requirements. Too few neurons will lead to 

underfitting, while too many will cause overfitting. Table (4) 

shows different tested learning rates during training 

to balance between learning rate and detection accuracy.  
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Fig. 5: Confusion matrix of MobileNet model in the testing data for all the 10 folds 

 
Table 4: Impact of learning rate on recognition performance 

Learnin
g_rate 

Train_ac
curacy 

(%) 

Val_acc
uracy 
(%) 

Test_ac
curacy 

(%) 
Train
_loss 

Val_
loss 

0.01 96.03 93.72 95.00 0.21 0.27 

0.001 95.97 92.95 92.29 0.21 0.36 

0.0001 95.79 93.18 94.57 0.21 0.30 

 

Table 5: Impact of batch size on classification outcomes 

Bath
_size 

Trian_ac
curacy 

(%) 

Val_acc
uracy 
(%) 

Test_accu
racy (%) 

Train_
loss 

Val_
accur
acy 

32 94.68 93.86 91.65 0.23 0.36 

64 96.03 93.72 95.00 0.21 0.27 

96 96.28 93.25 93.23 0.22 0.38 

128 96.26 92.04 91.40 0.24 0.57 

 

As the learning rate decreases, the detection accuracy 

steadily improves, although excessively small rates can 

lead to declines in accuracy. Clearly, a learning rate of 

around 0.01 achieves the highest detection accuracy, 

indicating the model reaches its optimal state at this point. 

Batch size is the amount of sample data fed into the 

network at once when training the model. In 

classification tasks, selecting an appropriate batch size 

is crucial for improving the network model's training 

speed and accuracy. When the batch size is excessively 

small, it may result in unstable convergence of the 

network and a slower convergence rate, causing 

fluctuations in the loss value. Alternatively, an 

extremely large batch size results in excessive memory 

consumption and prolonged computations, leading to 

local optimum (Nan et al., 2022). 

This study is conducted under a learning rate of 0.01 

and 512 neurons. The batch sizes of 32, 64, 96, and 128 

are compared all of which are common choices in deep 

learning (Krizhevsky et al., 2017). According to the 

results in Table (5), the loss function reaches its 

minimum, and setting the batch size to 64 significantly 

improves the accuracy of the test set to its highest level. 

Figures (6-7) illustrate the impact of the learning 

rate on the recognition outcomes. Figures (6a-b) depict 

the accuracy of the training and validation datasets 

across varying learning rates, respectively. Notably, at 

a learning rate of 0.01, the accuracy rate surpasses that 

of another learning rate with the same number of 

iterations. In addition, the accuracy gradually improves 

as the training iterations increase, reaching a slow and 

stable growth point of around 30 iterations. Upon 

achieving approximately 70 iterations, the recognition 

accuracy exhibits gradual improvement and 

subsequently stabilizes. Figures (7a-b) present the loss 

curves for the training and validation datasets across 

varying learning rates, respectively. Clearly, after 10 

iterations, a minimal loss is observed in the networks 

when employing a learning rate of 0.01. As additional 

iterations are conducted, the loss value consistently 

diminishes, tending towards zero. 

Figures (8-9) illustrate the impact of batch size on 

recognition outcomes. Specifically, Fig. (8a-b) displays 

the accuracy trends for both the training and validation 

datasets with varying batch sizes. Particularly, 

classification correctness improves progressively and 

stabilizes after approximately 30 iterations. Similarly, 

Fig. (9a-b) illustrates the training and validation loss 

curves for varying batch sizes. Figure (9) indicates that 

larger batch sizes correspond to higher initial loss 

values. Conversely, smaller batch sizes result in erratic 

accuracy curves, signifying network instability. 
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Fig. 6: Curve depicting recognition accuracy across varying 

learning rates; (a) train_accuracy; (b) validation_accuracy 
 

 
 

 
 
Fig. 7: Loss trajectory with varying learning rates; (a) 

train_loss; (b) validation_loss 

 
 

 
 
Fig. 8: Accuracy curve with different batch_size; (a) 

train_accuracy; (b) validation _accuracy 
 

 
 

 
 
Fig. 9: Loss curve with different batch_size; (a) train_loss; 

(b) validation _loss 
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Effect of MobileNet Structure on Detecting Results 

Figures (10-11) show the effect of neurons in the fully 

connected layer on recognition results. Figures (10a-b) 

show the accuracy curves of the training set and 

validation set, respectively. It is observed that the 

number of neurons reaches 256 and 512 and the curve 

converges well. Figures (11a-b) depict the loss 

trajectories for the training and validation datasets, 

respectively. As the training iterations increase, the 

accuracy at 256 layers and 512 layers surpasses that at 

1024 Fig. (11a). However, the validation accuracy at 256 

layers becomes unstable in the later stages of the training, 

while at 512 layers, it remains consistently stable 

throughout the training period Table (6). This shows that 

the 512 layer converges well during the training process. 
 

 
 

 
 
Fig. 10: Loss curve under different layers (256, 512, 1024); (a) 

train_loss; (b) validation _loss 

 

 

 
 
Fig. 11: Accuracy curve under different layers (256, 512, 1024); 

(a) Train_accuracy; (b) Validation _accuracy 

 
Table 6: Impact of neuron count in the fully connected layer on 

recognition performance 

Number 
of 

neurons 

Train_a
ccuracy 

(%) 

Val_a
ccurac
y (%) 

Test_acc
uracy 
(%) 

Train_
loss 

Test_
loss 

256 95.98 93.15 93.95 0.19 0.28 
512 96.03 93.72 95.00 0.21 0.27 

1024 95.62 92.86 94.05 0.36 0.24 

 

Conclusion 
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model has demonstrated high classification 

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

0 20 40 60

0.0

0.5

1.0

1.5

Va
l_
lo
ss

Epoch

Tr
ai
n_
lo
ss

Epoch

 layer=256
 layer=512
 layer=1024

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
l_
lo
ss

Epoch

 layer=256
 layer=512
 layer=1024

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

0 20 40 60

0.0

0.5

1.0

1.5

Va
l_
lo
ss

Epoch

Tr
ai
n_
lo
ss

Epoch

 layer=256
 layer=512
 layer=1024

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
l_
lo
ss

Epoch

 layer=256
 layer=512
 layer=1024

0 10 20 30 40 50 60 70 80 90 100

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai
n_
ac
cu
ra
cy

Epoch

 layer=256
 layer=512
 layer=1024

0 10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 20 40
0.75

0.80

0.85

0.90

0.95

Tr
ai
n_
ac
cu
ra
cy

Epoch

Va
l_
ac
cu
ra
cy

Epoch

 layer=256
 layer=512
 layer=1024

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai
n_
ac
cu
ra
cy

Epoch

 layer=256
 layer=512
 layer=1024

0 10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 20 40
0.75

0.80

0.85

0.90

0.95

Tr
ai
n_
ac
cu
ra
cy

Epoch

Va
l_
ac
cu
ra
cy

Epoch

 layer=256
 layer=512
 layer=1024

(a) (b)



Wenqing Bian et al. / American Journal of Biochemistry and Biotechnology 2024, 20 (4): 356.364 

DOI: 10.3844/ajbbsp.2024.356.364 

 

363 

accuracy on specific capsule datasets. However, 

due to the noise in other datasets, the performance 

may decrease. Besides the dataset's diversity, the 

imbalanced distribution across various categories 

can adversely affect the training process, leading to 

reduced accuracy. Another challenge is the time-
consuming task of selecting suitable 

hyperparameters, including factors like batch size 

and learning rate, to enhance capsule classification 

accuracy through cross-validation. Due to 

differences in the dataset, the optimal 

hyperparameter selection may vary and it is 

necessary to re-evaluate these parameters when 

retraining the dataset 

 

In the future, the potential for optimizing fixed layer 

depths in transfer learning is enormous. This approach 

utilizes pre-trained models and prior knowledge to 

significantly accelerate the learning process of new 

tasks, especially suitable for scenarios with limited data 

or constrained resources. By adjusting the layer depth 

based on task complexity and data characteristics, the 

model performance has been effectively improved, 

solving the problems of data imbalance and sample 

scarcity, thereby reducing costs and improving 

generalization ability. 
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