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Abstract: Problem statement: Recent technological and scientific advances plegédhe field of
Genome-Wide Association Study (GWAS), which promige be instrumental in linking many
common complex diseases to their genetic originil&\4o far such large-scale surveys have been
moderately successful in identifying disease relajenetic variants, much of disease heritability is
still not accounted for by the discovered loci. fehs an urgent need for advanced statistical nastho
for efficient automatic detection of complicated Itiblocus interactions on significant scales.
Approach: Novel statistical methods based on Bayesian datdysin ideas, specifically Bayesian
modeling, Bayesian variable partitioning, graphiaatl network models are promising to aid in search
for missing disease heritability and shed lightammplex biological processes involved in disease
development. First crucial difference setting thesethods apart from all the mainstream previous
approaches (hypothesis testing methods) is thigit flisease mapping capability via the simultaneous
fitting of a statistical model for the whole casmtrol data set. Additionally, such Bayesian method
allow for the construction of complicated data medend quantitative incorporation of diverse prior
information into the final statistical modeResults. The use of Bayesian techniques has already
yielded new insights into the details of epistatieractions across the genome associated witbugri
important diseaseSonclusion/Recommendations. Bayesian approaches provide a way to detect and
understand complicated multilocus interactions thiaéady started to elucidate important disease
pathways. As the field of GWAS matures, Bayesiaatsgies can surely aid in converting such
multiple surveys into useful biomedical information
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INTRODUCTION directed in this direction in the past dozen yeéhs,
genetic basis of common human diseases has not been

The promise of personalized medicine and identified for the most part (W'_FCCC, 2007). Recent
genomics; Improved disease prevention and diagnosi€mergence of successful strategies for the genoiche-w
as well as novel routes to therapies are the maiAsSsociation studies was supposed to provide the
motivations for extensive studies aimed at findinghecessary tools for deciphering genetic causes of
disease related genes and variants. Particulaglyety ~ complex human illnesses like type 1 and 2 diabetes
tests capable of showing individual's risks to depe (Todd et al., 2007), rheumatoid arthritis and bipolar
certain diseases would help to tailor preventivel an disorder (Hirschhorn and Daly, 2005; WTCCC, 2007).
therapeutic treatments to every single patientdeoto
achieve best possible results (Hall, 2010; McCaethy An emergence and development of GWAS: An
al., 2008). While there are already a few companiegxamination of an immense number of genetic markers
offering ‘consumer genomics’ services to provideacross the whole genome for multiple individualshwi
estimated disease risks via characterization ofwkno the goal of identifying variants-disease associetits
genetic risk factors (Donnelly, 2008; Carmichael,known as Genome-Wide Association Study (GWAS).
2010), currently this kind of information on gemeti Novel scientific and technological advances (Metzke
markers can give only a limited help in commonea  2010; Brantonet al., 2008; Schaffer, 2012) made
propensity risk assessment (Donnelly, 2008; HallGWAS fully capable of unlocking the basis of comple
2010). Even though a plethora of resources has bedliseases. Particularly, development of the Intésnat
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HapMap resource (IHMC, 2005) that simplified design(IHMC, 2005). Due to LD patterns, it is likely thidere

and analysis of association studies, emergencermded will be a lot of redundant positive signals in dens
genotyping chips (Metzker, 2010; Svoboda, 2010) andtydies (Zhang, 2012). Later on we address in Idetai
assembly of large and characterized clinical samplepoy Bayesian strategies can address the burning

(WTCCC, 2007) should be singled out as importanty ghjems in genetics while dealing with epistasigl a
factors in GWAS recent successful progress. Whil inkage disequilibrium.

many disease loci have been identified in sucheysv
(WTCCC, 2007; Johnson and O’Donnell, 2009),
discovered variants explain only a small proportidn
the observed familial aggregation (McCarthy al.,
2008; Altshuler and Daly, 2007). This is known as
‘missing  heritability problem’ (Gibson, 2012).
Currently there are three alternative mainstreaeasd
for the genetic architecture of complex diseashs: t
infinitesimal model, the rare allele model and tinead

sense heritability model (Gibson, 2012). Thus, rtest al., 2008). However, failures of such ‘frequentist
urgent contemporary debate that needs to be sadved = : ; q
methods to account for the power of a study and the

regarding the architecture of complex human traits. . o
While, ‘common variant’ hypothesis has come under 6[1umber of likely true positives (McCarttgy al., 2008)

lot of criticism lately (Hall, 2010; Gibson, 2012y, is combined with the increased likelihood to report a

now necessary to dig deeper and choose which one ppultitude of redundant associations (Zhang, 2012)

the alternative proposed architectures is closegatity sr?arkeczl_ a wide interesthin ﬂ;‘e ”Bayesiafn proce;jlmpbes.
in order to help develop future studies efficiently tNIS review we survey the challenges facing staast

(Gibson, 2012; Hall, 2010; Donnelly, 2008). geneticists while analyzing the GWAS data and patli
’ ’ ' ' ’ how recently emerged Bayesian methods can help with

Beyond single-locus analysis: Despite striking success the process. In addition to outlining the main
in the 20th century in pinpointing genes respomsfbl  differences between various proposed approaches, we
mendelian diseases, genetic origins of commorighlight limitations and advantages of each method
complex diseases are, in fact, non-mendelian inreat @nd describe future prospects in the field and how
(zhang and Liu, 2007; Jiarg al., 2011). Particularly, Bayesian approaches can aid in answering outstgndin

gene-gene interactions are involved in many complefuestions in biomedicine.

Statistical approaches for GWAS: Currently, most of
the approaches to disease association mapping gmplo
the standard ‘frequentist’ attitude to the evaluatof
asignificance (McCartht al., 2008). Particularly, such
algorithms use hypothesis testing procedures td dea
with one variant at a time (Zhang, 2012). The atexp
threshold for the p-value is ~x%0° (Risch and
Merikangas, 1996; Hogga#t al., 2008; McCarthyet

biological processes like metabolism, signal MATERIALSAND METHODS
transduction and gene regulations and, thus, geneti
variants in multiple loci may contribute to the ehise Previously, we mentioned multiple complicated

formation together (Moore, 2003; Chenal., 2011a). interactions that have to be considered while
For example, breast cancer and type 2 diabetes hawveloping statistical models for understandinghef
been linked to multi-SNP interactions (Chehal.,  multilocus interactions. In Fig. 1 we summarizeth#
2011a; Ritchieet al., 2001; Wiltshireet al., 2006). relevant interactions present in the GWAS in the
While most current bioinformatics approaches foens graph. The ultimate goal is to be able to accuyatel
detecting single-SNP associations, advanced stafist understand all the shown couplings in large-scale
methods are necessary for multi-SNP associatiogase-control studies while also comprehending the
mapping because single-variant methods not onlyeoo biological processes that lead to disease developme
power when interactions exist but are, in factplesls  Thus, while statistical understanding is important,
in detecting rare mutations (Zhang, 2012). Als® th developing methods that can point in the directibn

number of possible interactions is so vast thalsit the appropriate biological processes taking pladae
computationally unrealistic to search though allnext ultimate goal.

possible interactions in the genome for a largdesca
case-control study (Zharggal., 2011a; Cordell, 2009). Overview of Bayesian data analysis. Statistical

Additional challenge for disease origin discoveryconclusions about an unknown parametér (or
comes from the statistical correlation between Imgar unobserved data,y,) in the Bayesian approach to
variants known as linkage disequilibrium or LD (flga parameter estimation are described utilizing prditab
et al., 2011a; Kozyryev and Zhang, 2012). LD patternsstatements which are conditional on the observed da
have many important applications in genetics and/: p@Oly) and p(kondy). Additionally, implicit
biology (Wall and Pritchard, 2003) and arise due toconditioning is performed on the values of any
shared ancestry for contemporary chromosomesovariates (Gelmae al., 2004).
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Fig. 1. Schematic graph representation of all #levant interactions in the genome and paths ®ades formation.
SNPs are shown as circles with color indicatingrtbesease connection: ‘green’ SNPs are not aswatia
with the phenotype of intereshlue’ are marginally associated, ‘brown’ are irghcing disease formation
either through epistasis or they are in LinkageeBislibrium (LD) with such variants and ‘orange’amcan
lead to diseas®rmation through gene-environment interactions.iddween different variants is depicted as
lines without arrows, while gene-gene and generenmient couplings are represented by lines enditiy w
arrows at both enddn the paper we review which of the interactionstle graph can be efficiently
discovered using the novel Bayesian approaches.

The concept of conditioning on the observed data i2007) and, therefore, P(parameters|data) can berkno

what separates Bayesian statistics from otherenfar

approaches which estimate unknown parameter oeer thl. However,

distribution  of
conditioning on the true, yet unknown parameteual
(Gelmanet al., 2004; Rice, 2006).

only up to the proportionality constant as showrtm
advanced computational techniques

the possible data values while (iterative sampling methods) can be used to determi

posterior distribution of parameters (Liu, 2008c®i
2006). The main task is to make appropriate chaifes

At the heart of all the Bayesian approaches fokstatistical models to describe P (data|parametans)

detection of gene-gene interactions lies the canoép also to choose appropriate prior distributions be t

Bayesian inference and, specifically, Bayesian rhodeyalues of parameters: P(parameters).
selection. The goal is to determine the posterior

distribution of all parameters in the problem (dise
association, epistatic interactions and block stmes),

Overview of Bayesian variable partition: Instead of

given the common variants data for the case-contrdsting each SNP set in a stepwise manner (Marehini

study while incorporating prior beliefs about paeden
values. The conditional probability of all parantste
given the observed data is proportional to the pcodf
the likelihood function of the data and prior distition
on the parameters (Rice, 2006):

P(data | parameters)P(paramet:

P(parameters | data) P(data)
ata

@)

al., 2005; Liuet al., 2011), Bayesian approaches fit a
single statistical model to all of the data simuétausly
(zhang and Liu, 2007; Zhangt al., 2011a; 2011b)
allowing for increased robustness when compared to
hypothesis testing methods (McCartley al., 2008;
Zhang, 2012). Another advantage of Bayesian approac
to the problem is the ability to quantify all the
uncertainties and information and to incorporate
previous knowledge about each specific SNP marker

For all large data sets encountered in GWASnto the statistical model through the priors (Ztpamd

P(data) cannot be explicitly calculated (Zhang hang
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In the Bayesian model selection framework, we areH = The control data set (healthy) and then DO
interested in figuring out which of the set of misde D1 and D2 = Correspondingly partitions of the gatti
{M} is the most likely one given the observed d&x3. data set into three categories described
In analogous way to Eq. 1, we can find the posterio above
probability for a particular model Mgiven data, by
replacing parameters with;M The assumption is that case genotypes at thesdisea

associated markers will have different distribusievhen
P(Mi | X) O P(X|M)P(M) (2)  compared to control genotypes. Furthermore, the

likelihood model assumes independence between
Thus, through comparison of P{X) and P(M|X) markers in control group.
it can be determined using Eq. 2 whether modebM While BEAM algorithm was one of the first few to
M; is more likely (Rice, 2006). Now let’s considerho be able to handle GWAS data, it suffered from an
this conceptual framework is applied in practicedlte  assumption that SNPs dependence structure could be
extraction of multilocus interactions in GWAS. described by the Markov chain (Zhaegal., 2011a;
Zhang and Liu, 2007). In fact, SNP markers are ligh
Epistasis analysis in genome-wide data sets:. While  correlated within haplotype blocks which are sefeafa
statistical methods like BGTA (Zheng al., 2006), by the recombination events (IHMC, 2005; Redtlal.,
MARS (Cooket al., 2004) and CPM (Nelsost al., 2001). Therefore, despite its successful approach,
2001) are capable of detecting epistatic assodistihe =~ BEAM model is not able to capture the block-like
Bayesian Epistasis Association Mapping (BEAM)human genome structure.
algorithm (Zhang and Liu, 2007) was the first picadt _
approach capable of handling genome-wide caselncorporating block-type genome structure: A new
control data sets. BEAM a|gorithm gives for eachPSN BayeSIan .mOdel that infers LD'blOCkS. and ChOOSGE.SN
marker posterior probabilities for disease asswriat Markers in the blocks that are disease associated,
and epistatic interaction with other markers givea  therefore successfully incorporating diplotype e
case-control genotype SNP data. The core of théhe human genome into the Bayesian approach

Bayesian marker partition model used can be briefiyproposed by Zhang and Liu (2007) is known as
summarized as follows. BEAM2 algorithm developed by Zhare al. (2011a).

BEAM can detect both interacting and non- The statistical Bayesian model for the LD-block
interacting disease loci among a large number oftructure is summarized in Zhamy al. (2011a) and
variants. It is an application of Bayesian modelKozyryev and Zhang (2012). The main assumption is
selection procedure. Particularly, all the markare that diplotypes of individuals come from a multiniain
split into three non-overlapping groups: (1) maskeot distribution with frequency parameters described by

associated with the disease, (2) marginally diseaserg‘ﬁPD'”C.hletdp%or antd tEaDt g%rlwt{pe comblnathrﬁTl
associated variants and (3) those with interactio mdeéemljr:ent IV\?I’Z&?] is a gooocdsap?)rr(ca)xinq]zaljtigﬁ %o
e o D M6 gealty (Zhanyt ., 20112, Thererors, e compac

. expression for the marginal probability of the data
(MCMC) methods, posterior probabilities for group for a specific block is given by Eq. 4:
memberships are determined. Specifically, by C
interrogating each SNP marker conditionally on the b

_ T rea)| (2] 4

algorithm produces posterior probabilities (Zhamgia (DD |[s.b)= blocky r@) F(Z(nwa)) )
Liu, 2007). Particularly, the genotype counts are
modeled by the multinomial distribution with the
In order to determine the posterior probabilityeafch the gamma functiomis the vector of Dirichlet
marker's group membership (represented by 1) thgparameters and, mefers to the number of counts for a
Metropolis-Hastings (MH) algorithm (Liu, 2008) is specific diplotype. For joint inference of the dipipe

1=1

current status of others via MCMC method the
frequency parameters described by the Dirichletrpri where, a block of SNPs considered is (s,...,bFl)s

used to sample from P(I|D,H) as given in Eq. 3: blocks and disease association status we use itle jo
statistical model for the observed genotype datages

P(1|D,H)O P(D1| )P(D2 | )P(DO,H | )P(I 3) and controls, the marker membership and block
partition variable as in Eq. 5:

Where:

D = The patient data set (with disease) P(D,H,B,)= P(D,H|B,)P(B)P(I. (5)
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Finally, in order to determine the posteriors
P(B|D,H) and P(l|D,H) the model uses a combinatibon
MH algorithm and Gibbs sampler (Liu, 2008; Zhaatg
al., 2011a).

SNP1, SNP2, SNP3, SNP4, SNP5

Detailed interaction partition structure
determination: While successful in inferring epistatic
interactions in GWAS, both BEAM and BEAM2 had a
disadvantage of using saturated models which lanite
the ability of the algorithms to accurately deterenthe
structure of the epistatic interactions among déffe
disease related markers. However, recent studies
showed that such interaction details arising due to
encoding of the complicated regulatory mechanisms
might play an important role in the disease foromati
(zhang et al., 2011b; Yanget al., 2009; WTCCC,
2007). In order to be able to carefully explore the
etiopathogenesis and genetic mechanisms of diseasdsg. 2: A diagram of the procedure for the inferemnd

SNP4 L SNP3|SNP2

Zhanget al. (2011b) proposed the Recursive Bayesian a detailed dependence structure among disease
Partition (RBP) algorithm. The RBP approach attempt related variants or mutations when using
to search for conditional independence and recursive Bayesian partition (RBP) as done in
independence groups among interacting markers. RBP Zhanget al. (2011b).In this simple example,
first recursively infers all the marginally indemlemt five SNPs (numbered SNP1 though SNP5)
interaction groups (no interaction between growgs} were assumed to be associated with the
then infers the conditional independence withinheac phenotype in question. The independence
group using chain-dependence model. RBP therefore groups within the set of those SNPs are singled
successfully  recursively — determines dependence out using circles/ovals and different colors.
structure_among interacting variants in the GWAS There is a strong conditional independence in
setting. Figure 2 shows an example of the possible the group of ‘red’ SNPs {2, 3, 4} while ‘blue’
outcomes of the RBP algorithm applied to GWAS data SNP1 and SNP5 are independent of the other
when determining the epistatic interactions three disease-associated variants

independence structure.

where, G = (@) is an undirected disease graph
Bayesian graph models and networks. Here we constructed on disease associated SNPg @ad
describe BEAM3 algorithm developed by Zhang (2012)including partition of SNPs into cliques (C) and
and how it improves on BEAM and BEAM2 models interaction between cliqued); probability function of
and what genetic problems and questions it canteelp X1 set under the phenotype association hypothesis is
address. Through the use of Bayesian graphicaladeth described by R Therefore, as can be seen from Eq. 6,
BEAM3 detects flexible interaction structures irste ONly a few disease-associated SNPs are modeles{(in
of using saturated models (like BEAM and BEAM2 X1) and hence a significant portion of computational

: ; . time is saved due to avoiding explicit modeling of
do), therefore, highly reducing the multi-SNP mOdeIcomplica\ted dependence structures of all SNPs which

compl_ex_lty. Moreover, because only the dlse.asecould be millions (Zhang, 2012; Zhang and Liu, 2011
assoc_latlon graphs are ConSt.quted’ I_3EAM3 proV'de§lianget al., 2011). Additionally, through the choice of a
for _hlgher computational efficiently in the GWAS proper baseline probability function,(X,), the model
settings (Zhang, 2012). _ automatically accounts for the complex LD effects

In deta”, Zhang (2012) allowed for h|gher'0rder among dense SNPs emp|oying graphS. Thus’ a
couplings via saturated interactions within clig@esn-  significant number of repetitive false interactioase
overlapping partiton of SNPs) and pairwise avoided reducing computational burden (Zhang, 2012)
interactions between them. It can be shown (Zhang, In a different direction, Bayesian methodology has
2012) that the joint probability of all SNPs X, peen also applied to data-mining and machine Iegrni
parameters, including disease graph and associatigfpproaches to improve detection of gene-gene
status (G, I) and disease status indicator (Y)Mergby: interactions in GWAS. Chee al. (2011a) proposed to

use a Bayesian classification tree model for

PAIY.C) b 1Py (6) identification of multilocus interactions in therge-

Po(X1) scale data sets.
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Fig. 3: A simple example of the classification treteucture representation of the disease associatdtilocus
interactions as used in Chetal. (2011a) for Bayesian classification tree searelthad. Predictor variables
(SNPs herepre shown as orange circles while edges are maxibdthe genotype values. The terminal
nodes in the graph represent the partition of ¢agure space with each subject eventually beingraes to
only one such nodé&ach terminal node is marked with the proportiothefcase individuals assigned there,
with green-colored nodes containing mainly contantsl red-colored ones containing mainly cagesan
example, from this simple tree model we can corelinit subjects with SNP1 value of {1} and SNP2ieal
of {0,1} are very likely to have a disease in qimst therefore it is possible that interaction betw this
common variants leads to the formation of the disedhe goal of the method is the determinatiothef
posterior distribution for the binary tree giver thbserved data in case-control study

Specifically, this kind of machine-learning apprbac variables determined in previous iterations (Chieal.,
produces tree-structure models where each nontatmin2011a). However, one of the major drawbacks of such
node determines the splitting rule based upon thepproaches is that they do not test for interastion
predictor variables like SNP genotypes and edgedirectly, but instead allow for them, while testifoy
between nodes correspond to different possibleegalu associations in the data (Cordell, 2009).

for the variable in the top parent node. In summary

path along such a tree till the terminal node repmés a RESULTS

specific combination of predictor variables alorg t

path, in such sense, accommodating for the multiioc Even though practical Bayesian approaches

interactions (Cordell, 2009; Cheat al., 2011a). For fof GWAS  multilocus interactions analysis
example, Fig. 3 shows an example of such a treeemod have emerged  relatively recently, such methods
There are various ways for searching through tre®ave already helped to  make important

space in such recursive partitioning approache@dvances in determination of diseaseolady.
including greedy algorithms (Hastiet al., 2009), Table 1 succinctly summaries all the Bayesian nigho
random forests approach (Breiman, 2001; Cordelldescribed above as well as their success in
2009) and MCMC (Chipmast al., 1998; Denisoret determination of the previously known disease &,

al., 1998). Bayesian variable partition and Bayesiarnmore importantly, in the discovery of new multilscu
classification trees are, in fact, conceptually yver jnteractions responsible for complex diseases. For

similar in that prior is assigned to all the treedels oy 5mpie, Zhangt al. (2012) discovered 319 high-order
with the purpose of controlling the tree size (Cleen. interactions across the genome that can potentially

al., 2011a). One main advantage of this approaahas i explain the missing genetic component of the

possible enhancement of finding probability for : .
epistatic interactions with weak marginal effectiedo ~ Xneumatoid Arthritis (RA) susceptibility. Moreover,

ensuring the variable splitting through the prior their findings indicate that nervous system, initod

specification (Chemt al., 2011a). Moreover, due to the t0 autoimmune one, potentially performs a crucedé r

adaptivity of the MCMC algorithm, such Bayesiaretre in RA development. This is an example of the diatib

models detect higher-order interactions by perfagni study in which disease underlying biological preess

thorough searches near trees with the interactingan be extracted from determined statistical agtions.
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Table 1: A comparison of novel Bayesian approadbe$SWAS epistasis analysis. As can be seen fraemtable,studies applying Bayesian
methodology not only confirmed previously deteatiézbase loci in large-scale data sets, but mordwwes already identified potential
missing heritability in the form of multilocus imttions

Statistical method Brief description Genome-wid&adzet Results/detected loci

BEAM (Zhang and Liu, 2007) Epistasis detection ANBEWA data sét More powerful than previous approaches

BEAM2 (Zhanget al., 2011a) Epistasis/LD-block detection WTCCC P1D Many previous loci+new two-way

associations

RBP (Zhanget al., 2011b) Detailed independence dbMHTD data set Confirmed previously known saturated
structure of epistasis interactions

BEAMS3 (Zhang, 2012) Bayesian graph model for WTCIBO! data set All previous IBD loci+2 new+2 interchr.
epistasis/LD interactions

Bayesian Classification Tree Classification treedeib Crohn's disease data Possible epistasis fidenti

(Chenet al., 2011a) recursive partitioning

Haplotype Block Differences Separate LD-block dweieation WTCCC T1D and RA Detected differences around previously

(Kozyryev and Zhang, 2012) for cases and controls hré data sets known loci + near new positions

BEAM+BEAM2 High-order epistatic interactions WTCQORA data set 319 high-order interactions found

(Zhanget al., 2012) study

aage-related macular degeneration genome-wide asmidata set with 116,204 SNPs for 96 cases BrebAtrolsType 1 Diabetes (T1D)
data generated by the Welcome Trust Case-Contrmos@bum;“This data contained resequenced haplotypes of eeor3RB1 and DQB1
genes in the MHC region (Zhamgal., 2011).%Inflammatory bowel disease (IBD) data set from Wiielcome Trust Case-Control Consortium
with 2,005 IBD patients and 3,004 combined cont(@lsang, 2012)°Rheumatoid Arthritis (RA) and Type 1 Diabetes (Ta}a generated by
the Welcome Trust Case-Control Consortilimterchromosome

For sure, many more studies will follow in the nearsophisticated methods for incorporation of prior

future that apply Bayesian methods either to exdsti piological knowledge (like pathway topology) can
GWAS data or to new large scale studies that vell b jncrease the probability of making discoveries in

produced soon (Hayden, 2012). association studies (Chenal., 2011b).

DISCUSSION While the main focus of this review article was on
statistical methods to determine disease-related
ipteractions among genetic variants, it is impdrtm
r\%ep in mind the relationship between determined
mathematical coupling and its  biochemical
underpinnings. Particularly, a common view is that

adverse effect on the statistical results of thehous ~ disease development at large is prompted by
(Zhang and Liu, 2007). Currently, the major prOb|emb|0molecular or protein-protein interactions at the
with GWAS approaches is that the determined diseag@olecular level (Cordell, 2009; Gibson, 2012; Jiang
associated genetic regions explain only a small giar & 2011). While studying specifics of multilocus
the disease heritability (Donnelly, 2008; WTCCCpzp  interactions has _potenua}I to convey the details of
However, it is possibie that with the improved istatal ~ Piological and biochemical disease pathways, the
methods outlined above the situation will soon gean biological interpretation of the determined sing&nd
after the detailed understanding of the interastion Multi-variant effects is the current burning issire
involved emerges. Additionally, the main criticisrthe ~ genetics (Cordell, 2009). The crust of the probisrthe
GWAS based on the SNPs analysis, is that it is tmrd necessity to infer biological interaction from atsitical
understand the causal biology taking place in thease ©One and the straightforwardness of this procebgisly
formation (Hall, 2010); however, with the developme debated by geneticists and epidemiologists (Cqrdell
of the recent Bayesian models that provide theilddta 2009; Greenland, 2009). It has been even suggésaed

Certain issues need to be considered when usi
Bayesian approaches described above. For example,
combination of  genotyping  errors, disease
heterogeneities and population substructures doale

structure of the multilocus interactions (Zhaegal.,  functional epistasis might not be detectable in the
2011b; 2012) detailed etiopathogenesis of manyadese current GWAS as statistical interactions (Greenjand
may soon be elucidated. 2009; Vanderweele, 2009). Soon we will be able to

Improvements to the Bayesian approache§0|Ve this debate using actual results from theoong
mentioned in this article can include incorporatioin ~ Studies. One possible solution is to merge togethea-
environmental factors and population structures a8Ven and hypothesis-motivated approaches (J&ng

covariates in the statistical model (Zhaat@l., 2011b; al., 2011; Hall, 2010).

Lot_)achet al., 2010). Another pos.siblle improvement is CONCLUSION
to impute untyped SNPs and missing genotypes from
the reference panel (Zhamrgal., 2011b; Zhang, 2011; In conclusion, Bayesian approaches are filling an

Marchini et al., 2007). Moreover, utilization of important previously empty niche in bioinformatensd
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genomics research and the future of this sciendifea  Gibson, G., 2012. Rare and common variants: Twenty

looks extremely exciting and, for sure, will promgpt arguments. Nature Rev., 13: 135-145. DOI:
bring a multitude of important surprises. 10.1038/nrg3118
Greenland, S., 2009. Interactions in epidemiology:
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