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Abstract: Rapid changes in the velocity of fluid in closed conduits generate large pressure, which are 
transmitted through the system with the speed of sound. When the fluid medium is a liquid the pressure 
surges and related phenomena are described as water hammer. Water hammer is caused by normal 
operation of the system, such as valve opening or closure, pump starts and stoppages and by abnormal 
condition, such as power failure. Problem statement: Water hammer causes the additional pressure in 
water networks. This pressure maybe defects on pipes and connections.  The likely effects of water 
hammer must be taken into account in the structural design of pipelines and in the design of operating 
procedures for pumps, valves, etc. Approach: The physical phenomena of water hammer and the 
mathematical model which provides the basis for design computations are described. Most water 
hammer analysis involves computer solution by the method of characteristics. In this study water 
hammer is modelled with this method and effect of valve opening and closure will be surveyed with a 
program that is used for this purpose and with a numerical example. Results: The more rapid the 
closure of the valve, the more rapid is the change in momentum and hence, greater is the additional 
pressure developed. Conclusions/Recommendations: For preventing of water hammer defects, is 
recommended that valves should be open or closed slowly. Also with using the method of 
characteristics, we can modelled all pipe networks, and see the affects of water hammer. 
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INTRODUCTION 

 
 Water hammer suddenly changes in the velocity of 
fluid in a closed conduit, which is flowing full cause 
surges of pressures, which are propagated through the 
system with the speed of sound. This is the case 
whether the fluid is liquid or gas. When the fluid is a 
liquid, the pressure surges and related phenomena are 
described as water hammer. When, for example, the 
velocity of flow in a pipe is suddenly reduced, kinetic 
energy is converted into potential energy as the pressure 
increases, the liquid is compressed and the pipe wall is 
stretched. The disturbances so produced travel up and 
down the pipeline as water hammer waves. The 
changes in velocity can be caused by a wide range of 
disturbances such as valve operation, pump operation, 
turbine governing and so on. The roost common 
circumstances which give rise to water hammer of 
engineering significance are those associated with 
pumps; normal starting and stopping of pumps and 
stoppages caused by power failure. In the design of pipe 
systems it is necessary to take into account the 
magnitudes of pressure surges associated with water 
hammer phenomena and, consequently, it is important 
that these water hammer effects be calculated with the 
appropriate accuracy. 

Governing Equation of water hammer: Application 
of Newton's second law of motion to the case of 
unsteady flow of a compressible liquid in an elastic 
pipe leads ultimately to the momentum Equation, 

  H f V Vg V V V 0
x 2D x t

∂ ∂ ∂
+ + + =

∂ ∂ ∂
   (1) 

 From considerations of conservation of matter, the 
continuity Equation is obtained in the form, 

  
2a V H HV( sin ) 0

g x x t
∂ ∂ ∂

+ + α + =
∂ ∂ ∂

   (2) 

 In Eq. 1 and 2, H denotes the piezometric head at 
the centreline of the pipeline at location x and time t, V 
is the average velocity of flow, D is the pipe diameter, f 
is the friction factor in the Darcy-Weisbach formula, x 
is the distance along the centreline of the pipe, α is the 
angle between the horizontal and the centreline of the 
pipe, taken as positive for the pipe sloping downwards 
in the direction of positive x, g is the gravitational 
constant; and a is the celerity of the pressure surge, i.e. 
the velocity with which the surge is propagated relative 
to the liquid. The positive direction for V coincides 
with that for x. 
 The Eq. 1 and 2 are a simultaneous pair of partial 
differential Equations which relate the two dependent 
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variables, H and V, as functions of x and t. All methods 
of analysis of water hammer have these Equations, or 
simplified forms of them, as their starting point and it is 
important to note the assumptions and approximations 
which have been used in their derivation. These are as 
follows: 
• The velocity and pressure are assumed uniform 

across the pipe, i.e., a one-dimensional model is 
used 

• The pipe is full of liquid at all times  
• The effects of changes in velocity head are 

neglected 
• In Eq. 1 the effects of variation in density of the 

liquid are treated as negligible 
• It is assumed that friction factors obtained under 

steady conditions apply to unsteady flows 
 The restrictions listed above cause only slight 
errors of the order of 0.1% in the normal engineering 
situation, except for (ii). If cavitation or separation of 
the water column does occur as a consEq.uence of 
water hammer effects, this must be accounted for 
specifically as an extra internal condition to be 
satisfied. 
 The wave celerity, a, is evaluated from the 
expression: 
    0.5 0.5

1
K K Da ( ) (1 C )

E e
−= +

ρ
   (3) 

 In which K is the bulk modulus of the liquid in the 
pipe, ρ is the density of the liquid, E is young's modulus 
and µ is Poison's ratio of the pipe wall material, e is the 
Eq.uivalent thickness of the pipe wall and C1 is a factor 
which accounts for different conditions of restraint of 
the pipe. The types of axial restraint commonly 
encountered are: 
Case a: The pipe is restrained throughout its length 
against axial movement, 

2
1C 1= − µ  

Case b: The pipe has frEq.uent expansion joints 
throughout its length, 

1C 1=  
Case a, the pipe is restrained at its upstream end only, 

1
5C
4

= − µ  

 In most engineering applications case a or b or 
some condition intermediate between them would 
apply. For the case of water in a steel pipe, 

   0.5
1

Da 1438(1 0.01 C )
e

−= +  (3a) 

 In the derivation of the expression for a, Eq. 3, a 
further assumption is introduced in addition to those 
already listed. This involves the neglect of the 
interaction between the propagation of elastic stress 

waves in the pipe wall and of the pressure surges in the 
liquid. This approximation can cause significant errors 
in the evaluation of water-hammer effects for rapid 
velocity changes in some circumstances. For slower 
operations the effects of the approximation seem not to 
be significant. It is worth noting that, for Case b above, 
there is no approximation involved. 
 
Characteristic relations of governing Equation: The 
pair of partial differential Equations 1 and 2 are of 
hyperbolic type and, consEq.uently, linear 
combinations of them can be found which reduce to 
ordinary differential Equations along two intersecting 
families of curves in the x, t-plane. The Equations 
which specify the two families of curves and the 
ordinary differential relationships along them are 
described as the characteristic relations of the Eq. 1 and 
2. To obtain the characteristic relations we add to Eq. 1 
the 2 multiplied by λ to give, 
 

 

2H g H V a V[ (V ) ] [ (V ) ]
t x t g x

fVsin V V 0
2D

∂ ∂ ∂ ∂
λ + + + + + λ +

∂ λ ∂ ∂ ∂

λ α + =

   (4) 

 Since H and V are functions of x and t, their total 
derivatives can be expanded as, 
 

 dH H H dx dV V V dx;
dt t x dt dt t x dt

∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂
   (5) 

 Consequently, the Eq. 4 can be rewritten as the 
ordinary differential Equation, 

 dH dV fVsin V V 0
dt dt 2D

λ + + λ α + =    (6) 

 If and, only if, λ satisfied the relations, 

 
2g dx aV V

dt g
+ = = + λ

λ
   (7) 

i.e., 

   g
a

λ = ±    (8) 

 For each of the two values of λ given by Eq. 8 
there are two distinct values of dx/dt Eq. 7 and these 
provide the equations to the curves in the x, t-plane 
along which the ordinary differential Eq. 6 valid. 
Substitution of the two values of λ from Eq. 8 into 6 
and 7 produces the set of characteristic relations of the 
Eq. 1 and 2viz, 

  g dH dV f gV V Vsin 0
a dt dt 2D a

+ + + α =   (9) 

Along the direction,  

  dx V a
dt

= +    (10) 
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and 
  g dH dV f gV V Vsin 0

a dt dt 2D a
− + + − α =   (11) 

Along the direction,  
  dx V a

dt
= −    (12) 

 The Eq. 9-12 are Equal t to the Eq. 1 and 2 and 
solutions of Eq. 9-12 are solutions of Eq. 1 and 2. The 
method of solution which uses the characteristic 
relations is called the method of characteristics. In 
essence, in the method of characteristics one sets out to 
find the two intersecting families of curves 
corresponding to Eq. 10 and 12 and integrates the Eq. 9 
and 11 along these curves to produce values of H and V 
at the (x, t) coordinates which are the intersections of 
the curves. The process is illustrated schematically in 
Fig. 1. The curves labelled C+ correspond to Eq. 10 and 
those labelled C− correspond to Eq. 12. For a solution to 
be calculated initial conditions must be known for all 
points and boundary conditions must be specified at 
each end of the pipe for all time. Types of boundary 
conditions encountered are numerous, but ail can be 
expressed ultimately as a relationship between H and V 
at the ends of the pipe. 
 The characteristic relations bring out clearly the 
physical significance of the parameter, a, which denotes 
the celerity of the water hammer waves. They describe 
mathematically the physical phenomena, which consist 
of disturbances travelling in both directions in the pipe 
and causing changes in the velocity and the pressure. 
The Eq. 9 and 10 describe a wave which travels in the 
downstream direction with a velocity a, relative to the 
liquid, as defined by Eq. 10 and which causes changes 
in H and V defined by Eq. 9. Similarly, Eq. 11 and 12 
describe a wave which travels in the upstream direction 
with  a velocity a relative to the liquid, as defined by 
Eq. 12 and which causes changes H and V defined by 
Eq. 11. 

 
Fig. 1: Families of characteristic curves 

 

 
 

Fig. 2: Computational grid 
 
Computer solution by method of characteristics: In 
this section the method for integrating numerically the 
characteristic relations of the full Equations, called the 
method of specified time intervals is presented. In this 
method, values of H and V are calculated at regular 
intervals in x and t, as illustrated in Fig. 2. The curves 
labelled C+ and C- correspond to the curves defined by 
Eq. 10 and 12, respectively.  
 The finite difference approximations to the 
characteristic relations used are: 

  
n 1 n 1
i L i L L

2
L L

g g(H H ) (V V ) V sin
a a

fV V t o( t) 0
2D

+ +− + − + α

+ ∆ + ∆ =
  (9a) 

  2
i L Lx x (V a) t o( t)− = + ∆ + ∆  (10a) 

and 

 
n 1 n 1
i R i R R

2
R R

g g(H H ) (V V ) V sin
a a

fV V t o( t) 0
2D

+ +− − + − − α

+ ∆ + ∆ =

  (11a) 

 2
i R Rx x (V a) t o( t)− = + ∆ + ∆   (12a) 

 
In the finite difference Eq.uitation; 
 
 n 1

i i n 1 0 1 0H H(x , t ) H[x x, t (n 1) t] 0+
+ += = ∆ + + ∆ =   

 
 If the higher order terms are neglected, The Eq. 9a, 
11a can be written as, 
 
  n 1 n 1

i R L
g H V
a

+ ++ = φ   (9b) 

  n 1 n 1
i R R

g H V
a

+ +− + = φ   (11b) 

Where, 

 L L L L L L
g gH V V sin t V V t
a a

φ = + − α∆ − ∆  (9c) 
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 R R R R R R
g gH V V sin t V V t
a a

φ = − + + α∆ − ∆   (11c) 

 The values of V and H at L and R are expressed in 
terms of the values of these quantities at regular grid 
points by linear interpolation and use of the Eq. l0a, 12a 
to give the expressions; 
 

 
n n n
i i i 1

L n n
i i 1

V a(V V ) t/ xV
1 (V V ) t/ x

−

−

− − ∆ ∆
=

+ − ∆ ∆
  (13) 

 
 n n n

L i L i i 1H H (V a)(H H ) t/ x−= − + − ∆ ∆   (14) 
and 

 
n n n
i i i 1

R n n
i i 1

V a(V V ) t/ xV
1 (V V ) t/ x

−

−

− − ∆ ∆
=

− − ∆ ∆
  (15) 

 
 n n n

R i R i i 1H H (V a)(H H ) t/ x−= + − − ∆ ∆   (16) 
 
 The Eq. 9b, l1b and 13 through 16 provide the 
algorithm for advancing the calculations of water 
hammer transients from known conditions at tn to the  

 
Fig. 3: Numerical example 

 
new time tn+1. For an interior point in a length of 
uniform pipe, the Eq. 9b and 11b give simply, 
   n 1

i L RV 0.5( )+ = φ + φ  
 And 
   n 1

i L RH 0.5( )a / g+ = φ − φ  
 At each end of a length of uniform pipe only one of 
the Eq. 9b, 11b is available the first at the downstream 
end and the second at the upstream end. The second 
Equation needed to compute V and H at end points is 
provided by the boundary conditions at the pipe ends, 
which will involve V or H or a relation between them. 

 
Numerical example: We want to survey the water 
hammer effect in this example that involve of two 
reservoirs, one valve and one pump which works in t = 
6 sec. with characteristic curve ( 2

1 2H a a Q a Q= + +o ) 
(Fig 3). 
 The specifications of pipes are shown in Table 1. 
 The specifications of pump and levels of pipe are 
shown in Table 2. 
 
Table 1: The pipes specifications; 
Pipe L(cm) D(cm) e f Restrained 
1 4500 250 5 0.021 - 
2 2400 220 5 0.026 Full 
3 1800 330 5 0.018 Full 
 
Table 2: The specifications of pump and levels of pipe; 
a0(pump) a1(pump) a2(pump) β ρ 
240 20 -300 0.212 10 
H L1(m) H L2(m) H L3(m) H LJ(m) R 
0 130 10 -10 105 
 
• Initial condition 
 At the start time, there is not any flow in pipe 
number 3, because the pump hasn't started yet. So in 
any part of pipe number 3, velocity is 0 (V = 0). Also 
water head in this pipe is the head of intersection joint 
(Point J). Water comes from top reservoir and detour to 
pipe 1and eject from valve. 
 In t = 0, τ =1 means the valve is open. 
Thus, Bernoli Equation between L2 and L1 is 17, 

 
2 2 2 2

1 1 1 1 2 2 2 1
L2 L1 l L1

1 2

V f l V f l V VZ Z h Z
2g D 2g D 2g 2g

= + + = + + +∑  

  

2
2

2 2
1 1

.026 * 2400 *1000 V130 0 *
220 2 *9.81

.021* 4500 *1000 V V*
250 2 *9.81 2 *9.81

= + +

+
  (18) 

Finally, 
  2 2

2 1130 15.90V 19.32V= +   (19) 
with continuity Eq., 
 

2 2
1 1 2 2 1 2 2 1V A V A V * 250 V * 220 V 1.29V= ⇒ = ⇒ =   (20) 

 From two pervious Eq. 19, 20,  
1 2V 1.685m / s,V 2.174m / s= =  

 In finite difference, we must to divide length of 
pipe for calculation. We choose ∆x = 300m. 
 Then in pipe 2 for any location with using Eq. 19 
and 20 head and velocity will be calculated; 
 Also, for pipe 1, 
 Top outputs are our initial conditions in t = 0. 
  A in the wave velocity in pipes, 
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From Eq. 3: 
• Pipe 1 is not Restrained then C1 = 1 and a1 = 1174 
• Pipe 2 is Restrained then C1 = 0.91 and a1=1181 
• Pipe 3 is Restrained then C1 = 0.91 and a1 = 1195 
   1 2 3a (a a a ) /3 1183m / s= + + =   (21) 
Table 3:; 
X 0 300 600 900 1200 1500 1800 2100 2400 
H 130 120.6 111.2 101.8 92.4 83 73.6 64.2 54.8 
V2 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 

 

 
Fig. 4: Upstream boundary conditions 

 

 
Fig. 5: Pipe intersection 

  

 L 1800t 0.254Sec t 0.25Sec
aN 1183* 6

∆ = = = ⇒ ∆ =   (22) 

 
Curant number must be less than 1, 
 

 r
a t 1180* 0.25C 0.9833 1 Ok

x 300
∆

= = = < ⇒
∆

  (23) 

 
 In the next time step, ∆t = 0.25, we have a 
reservoir, an intersection and a pipe which will be 
closed until t = 6 sec. Thus, the boundary condition 
must be evaluated. 
 Each pipe has two boundary conditions, upstream 
and downstream conditions. 
• Upstream boundary conditions 
    p 0RH H 130m= =  

 2
p 1 B P 1 1

g fV V (H H ) tV
a 2D== + − − ∆o o  (24) 

Table 4:  head and velocity for pipe 1; 
X 0 300 600 900 1200 1500 1800 2100 2400 
H 54.8 51.2 47.6 43.9 40.3 36.6 33 29.3 25.7 
V2 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 1.86 
X 2700 3000 3300 3600 3900 4200 4500 - - 
H 22 18.4 17.7 11.1 7.4 3.8 0.138     
V2 1.86 1.86 1.86 1.86 1.86 1.86 1.86     
 
 2

p 1 P 1 1V V 0.00829(H H ) 0.015V= + − −o o   (25) 
 
 Then, Vp. is evaluated. 
• Boundary conditions at the pipes intersection 
 In intersection joint, there are six unknown 
parameters. So we need six equations to find them. 
 From continuity Eq., 
 
 2 1 3 N,2 2 1,1 1 1,3 3Q Q Q V A V A V A= + ⇒ = +   (26) 
 

3,11,12, HHH N ==                                  (27) 

       HH =3,1
                                                              (28) 

 When the information come from downstream we 
should use C− and when the information come from 
downstream we should use C+, 
 

 1,3 1,3 R,3
3

gC : H V
a

− − + = φ   (29) 

 1,1 1,1 R,1
1

gC : H V
a

− − + = φ   (30) 

       N,2 N,2 R,2
2

gC : H V
a

+ + = φ                                       (31) 

 From Eq. 26-31, 
 

   R,2 2 R,1 1 R,3 3

1 2 3

1 2 3

A A A
H A A Ag( )

a a a

φ − φ − φ
=

+ +
  (32) 

 Also, 

   

1,3 R,3
3

1,1 R,1
1

N,2 R,2
2

gV H
a
gV H
a

gV H
a

= φ +

= φ +

= φ −

  (33) 

The pipes have low slope and, sinα is very small and 
will be ignored. 
 
 From Eq. 9.c and 11.c, 
 

   23
R,3 R,3 R,3 R,3

3 3

g fH V V t
a 2D

φ = − + − ∆   (34) 

   2
R,3 R,3 R,3 R,30.00831(H ) V 0.00693Vφ = − + −  
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and 
   2

R,1 R,1 R,1 R,10.00831(H ) V 0.0107Vφ = − + −  (35) 
   2

R,2 R,2 R,2 R,20.00831(H ) V 0.015Vφ = − + −  
 
For VR, VL, HR, HL, we have, 
 

  
n n n
i,3 3 i,3 i 1,3

R,3 n n
i,3 i 1,3

V a (V V ) t/ x
V

1 (V V ) t/ x
+

+

− − ∆ ∆
=

+ − ∆ ∆
 (36) 

 
  n n n

R,3 i,3 R,3 3 i,3 i 1,3H H (V a )(H H ) t/ x+= − + − ∆ ∆  (37) 
 

  
n n n

i,1 1 i,1 i 1,1
R,1 n n

i,1 i 1,1

V a (V V ) t/ x
V

1 (V V ) t/ x
+

+

− − ∆ ∆
=

+ − ∆ ∆
  (38) 

 
  n n n

R,1 i,1 R,1 1 i,1 i 1,1H H (V a )(H H ) t/ x+= − + − ∆ ∆  (39) 
 

  
n n n

i,2 2 i,2 i 1,2
R,2 n n

i,2 i 1,2

V a (V V ) t/ x
V

1 (V V ) t/ x
+

+

− − ∆ ∆
=

+ − ∆ ∆
  (40) 

 
  n n n

R,2 i,2 R,2 2 i,2 i 1,2H H (V a )(H H ) t/ x+= − + − ∆ ∆  (41) 
 

• Valve closing 
 Valve is closed in 6 sec and the rate of closing is 
showed by Table 5. 
 τ = 1 (at t = 0) means that the valve is opened and 
τ = 0 (at t = 6 sec) means that the valve is closed. 
 Fig. 6 shows the curve of t-τ. 
 With trend line in Excel program, the Equation of 
change will be computed. 
 This Equation is very exact because the regression 
coefficient is 0.9988 and we can use it for valve work. 
 Valve Eq. is defined by, 
 
  0.5 0.5V H V 0.212 H= τβ ⇒ = τ   (42) 
 
 This Equation has 2 unknown parameters. Then we 
need another Equation; 
 

  
n 1

n 1 n 1 n 1 3 P
P 3 2 p p

2

C VV C C H H
C

+
+ + + −

= − ⇒ =   (43) 

 
Table 5: Valve open in second 0 and close in 6 second 
t τ% t τ% 
0 1 3.6 0.43 
0.6 0.96 4.2 0.27 
1.2 0.91 4.8 0.16 
1.8 0.84 5.4 0.06 
2.4 0.75 6 0 
3 0.61     

 
y = 0.0016 x4 - 0.0112 x3 - 0.0137 x2 - 0.0347 x + 0.9948

R 2  = 0.9988 

0
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1
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Fig. 6: Valve situation 

  

  2
1

gC
a

=     (44) 

  n n n 21
3 A 3 A A

1

fC V C H t(V )
2D

= + − ∆   (45) 

  n n n 2
3 A A AC V 0.00831H 0.0107(V )= + −   

Thus; 

  2 0.54 4
PN 3 4

C CV [( ) C C ]
2 2

= − + +   (46) 

  
2 2 2 2

2
4

2

*0.212C 5.41
C 0.00831

τ β τ
= = = τ   (47) 

 
 End of pipe 3, until t<6 sec, because of pump, 
works similar to a closed valve. 

  n 1 n 1 3
P P

2

CV 0 H
C

+ += ⇒ =   (48) 

• Boundary condition after t = 6 sec 
 Instantly, after 6 sec, pump is started, whereas the 
valve at the end of pipe 1 has been closed. 
Then we have a problem with two reservoirs and one 
pump.  
 

 
 

Fig. 7: Calculations of pipe 1 at t=0, 
  
 Now we should calculate the new boundary 
conditions. Pump has a characteristic curve, 
 
 2 2

1 2H a a Q a Q H 240 20Q 300Q= + + ⇒ = + −o   (49) 
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Pump is located in downstream of reservoir, therefore 
V is negative, 
 
 2

P R P R 1 2H H H H H a a Q a Q∆ = − ⇒ = + + + + +o  (50) 
 

 
2 2

P R 1 P 2 P

P P L P L P

H H a a AV a A V
g gC : H V H ( V )
a a

+

= + − +
⇒

+ = φ ⇒ = φ −

o

  (51) 

 

 2 2
L P R P P

g ( V ) H 240 20AV 300A V
a

φ − = + − −   (52) 

 
 P P L2.22V 118.56V (250 120.28 ) 0− + + − φ =  
 
 In this Eq., 
 
 2

L L L L0.00821H V 0.00693Vφ = + −   (53) 
 
and VL, HL are, 

 
n n n
i i i 1

L n n
i i 1

V a(V V ) t/ xV
1 (V V ) t/ x

−

−

− − ∆ ∆
=

+ − ∆ ∆
  (54) 

 
 n n n

L i L i i 1H H (V a)(H H ) t/ x−= − + − ∆ ∆   (55) 
 
 Thus, Vp is evaluated from Eq. 52. 
 

RESULTS AND DISCUSSION 
 
We have used Microsoft Excel for calculation. All of 
the equations are explicit and solve by Excel easily. 
This software not only can get function, but also, can 
draw graphical output. 
 For solving of this program; Initial conditions are 
located in first line and with derived Equations and 
conditions of other points will calculated by 
characteristic method. 
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Fig. 8: Velocity changes at the start of pipe 2 
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Fig. 9: Velocity changes at the end of pipe 2 
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Fig. 10: Velocity changes at the start of pipe 1 
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Fig. 11: Velocity changes at the end of pipe 1 
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Fig. 12: Velocity changes at the start of pipe 3 
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Fig. 13: Velocity changes at the end of pipe 3 
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Fig. 14: Head changes at the Intersection Joint 
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Fig. 15: Head changes at the end of pipe 1 
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Fig. 16: Head changes at the end of pipe 3 

 
 Calculations of pipe 1 at t = 0, are shown in Fig 7. 

As it can be seen in the following figures, after 
second 6, when the pipe is closed, some variations will 
be happened.  

Valve closing has no very affection on water 
velocity at end of pipe 2 and velocity changing at the 
start and end of pipe 2, shows that the water hammer 
has not been happened (Fig 8 and Fig 9). 

Velocity changing at the start of pipe 1, shows that 
the water hammer has not been happened (Fig 10). 

Velocity changing at the end of pipe 1, shows that 
the water hammer is near to be happened (Fig 11). 

Velocity changing at the start and end of pipe 3 
shows that the water hammer has been happened (Fig 
12 and Fig 13). 
Compare of water head in Fig 14 and Fig 15 and Fig 
16, approves the water hammer in pipe 3.  

 
CONCLUSION 

 
 In the present study, we could consider water 
hammer by characteristic method for pipe flow and get 
some formula. We can make this method public, for 
other problems. 
 In the pipe 1, when the valve, at t = 6 is closed, 
velocity of its end, gradually goes to 0, Fig 11. 
 But, when the valve, at t = 6 is closed, velocity of 
its  start,  is  not  0,  then  water hammer is occurred, 
Fig 10. Also these changes are in heads of end of pipe 1 
Fig 15. 
 In Fig 12 at the start of pipe 3, a small turbulence 
has been seen. This turbulence has been caused by the 
step of computing. For omit of it, the step of t and x 
should be smaller. 
 After t = 6, we can see the change in velocity and 
head of water in pipe. These changed spread in pipe 
after 6 sec than valve closed. 
 For preventing of water hammer defects, is 
recommended that valves should be open or closed 
slowly. 
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