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Abstract:  A novel approach to signal detection and identification was developed and tested. The new 
algorithm was based on provision of tagging a Matched Filter (MF) with identifiers to recognize the 
source signal with and without noise, so that classification can be carried out. The algorithm was 
applied successfully to chemical Sensor Array Units (SAU). Problem statement: Signals obtained 
from chemical sensors were sometimes contaminated with noise. Detection of known signals from 
noisy surroundings was critical in the field of sensors and their applications. Approach: Six chemical 
sensor array units were tested at different gas concentrations. The testing was carried out under normal 
conditions and with the presence of noise. The developed algorithm was then applied to detect, identify 
and classify the results. Results: The 5-3-1 algorithm produced symmetrical arrays with the source 
signal identifiers at the corners. The symmetry allowed the use of one-third of the produced data for 
identification, saving processing time and memory storage. Conclusion: The obtained data also proved 
that gap separation between conducting electrodes to inversely affect device conductance, with 
different gap widths affected similarly with temperature change per constant deposited film thickness. 
Also, each device conductance increased in response to increase in applied gas concentration.  
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INTRODUCTION 
 

 Noise reduction and elimination is a typical 
problem in signal processing as well as many 
applications in the real world. Known linear system 
adaptive filtering techniques have been widely used in 
noise reduction problems. However, because of the 
linearity of the operation, such filters are unable to 
change the inherent property of the original noised 
signal (Khairnar et al., 2008; Bocchi et al., 2004; 
Abella et al., 2009; Knipp et al., 2006; Zurk et al., 
2003; Soaresa and Jesusb, 2003). 
 Matched filtering is very useful in testing and 
processing an array of N-sensors so as to constantly 
check detection conditions of any of the sensors and 
obtain a numerical and graphical data certifying if that 
sensor or others are working properly. It operates on the 
principle of correlating an input array (known valued 
array) and another array surrounded by noise or 
interference (unknown valued array).The closest match 
can be found by allocating the output with the largest 
correlated value. 
 Matched Filtering algorithms are one of the 
adaptive systems that are widely used in signal 

applications because of their remarkable ability to 
extract patterns from surrounding noise, hence, can be 
applied to many real world problems such as pattern 
recognition, signal processing, optimization, control 
and others. The objective of MF design and application 
is to find the optimum response that can deliver a 
decision regarding the presence of a required signal 
taking into consideration, time, speed, reliability and 
possible future modifications. 
 To address the noise problem over long 
observation times, data-based, time-varying noise 
filtering using matched filters is proposed. The idea is 
to filter noise, which is not effectively cancelled by 
normal adaptive processing (Shi et al., 2007; Imam 
and Barhen, 2009; Zeng et al., 2010; Ricci et al., 
2008; Fan et al., 2004; Tandra and Sahai, 2008). 
 There are at least two aspects that emerge by their 
relevance to the success of MF based techniques: one 
is the ability of an MF algorithm to accurately select 
the   source   while   rejecting side   lobes and the 
other is discrimination   through   highlighting any 
mismatch (Dorronsoro et al., 2003; Chen et al., 2006; 
2009; Mohamed et al., 2008; Pados, 2001; Sheriff, 
2010). 
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 Thus the presented novel 5-3-1 matched filtering 
algorithm is designed to improve the detection, 
classification of the Matched Filter (MF) and adds the 
property of prediction to the overall signal processing 
system with its intelligent identifiers.  
 In this study, a novel approach to using Matched 
Filter algorithm is implemented. The resulted Filter is 
applied to detect and process signals obtained from a 
chemical sensors array units. 

 
MATERIALS AND METHODS 

 
 An array of chemical sensors having different gap 
widths with vacuum sublimed PbPC films on a sapphire 
(α-Al 2O3) substrates are produced as shown in Fig. 1. 
 Testing of the devices response to donor gases in 
particular NO2 is carried out under computer control in 
a specifically designed temperature controlled stainless 
steel testing cells. Each testing cell formed an array of 
three multi-gap (three gaps) chemical sensors making 
an overall array of nine sensing elements per testing 
cell. Figure 2 and 3 show the transient response for 
normal and noisy sensors as a function of gas 
concentration. 
 A known time-limited signal representing sensors 
response to applied gas concentration denoted by f (t) is 
applied to the matched filter part of the system.  
 This is achieved by incorporating the provided 
average ratios obtained through repeated measurements 
of conductance changes of the tested three sensor array 
units comprising nine gaps. By using the ratios 
technique the following is achieved:  
  
• Testing each individual gap for good or bad 

detection output signal 
• Testing the relative gas detection between different 

gap sizes and film thicknesses 
• Integrated large number of sensors or sensor array 

units, each with different properties 
 

 
 

Fig. 1: SAU layout 

 The input matching array consists of gaps 
conductance ratios as shown in Table 1 and 2 with 
noisy average conductance ratios shown in Table 3. As 
a ratio is a dimensionless number+, then conductance 
gap ratio should in theory be the same at all 
temperatures as shown in Eq. 1: 
 

T T T T T T1 2 2

n n n

m m m

G G G

G G G= = =

     
≅          

     
 (1) 

 
 Equation 1 assumes that all gaps are affected 
almost equally by temperature providing no phase 
transformation occurs within the used temperature 
range as it is the case shown in Table 1 and 2 for 
temperatures up to 160°C. This eliminates temperature 
as a variable of concern, when it comes to signal 
detection and gas discrimination and reduces 
significantly the number of necessary data inputs.  
 

 
 
Fig. 2: Transient response for SAU 
 

 
 
Fig. 3: Transient response for noisy SAU 
 
Table 1: Average conductance ratios (Avg. Gr) for sensor unit arrays: 

X1, X2, X3 
Gas concentration Gr (T = 130°C) Gr (T = 160°C) Avg. Gr 
Gap1:Gap2 (10 µm: 33 µm) 
1 1.5532 1.5152 1.5342 
3 1.4978 1.4552 1.4765 
5 1.4673 1.4079 1.4376 
7 1.4492 1.4104 1.4298 
9 1.4342 1.3879 1.4111 
Gap1:Gap3 (10 µm: 100 µm) 
1 2.9428 2.9004 2.9216 
3 2.3125 2.2531 2.2828 
5 2.1812 2.1179 2.1496 
7 2.1083 2.0862 2.0973 
9 2.0688 2.0360 2.0524 
Gap2:Gap3 (33 µm: 100 µm) 
1 1.8886 1.9151 1.9019 
3 1.5406 1.5491 1.5449 
5 1.4836 1.5062 1.4949 
7 1.4510 1.4806 1.4658 
9 1.4389 1.4688 1.4539 
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Table 2: Average conductance ratios (Avg. Gr) for sensor unit arrays: 
X4, X5, X6 

Gas concentration Gr (T=130°C) Gr (T=160°C) Avg. Gr 
Gap1: Gap2 (5 µm: 10 µm) 
1 1.2954 1.2619 1.2787 
3 1.2099 1.1768 1.1934 
5 1.1641 1.1119 1.1380 
7 1.1408 1.1014 1.1211 
9 1.1139 1.0735 1.0937 
Gap1: Gap3 (5 µm: 15 µm) 
1 1.7051 1.6525 1.6788 
3 1.5683 1.5110 1.5397 
5 1.4970 1.4279 1.4625 
7 1.4656 1.4025 1.4295 
9 1.4247 1.3621 1.3934 
Gap2: Gap3 (10 µm: 15 µm) 
1 1.3175 1.3094 1.3135 
3 1.2971 1.2837 1.2904 
5 1.2858 1.2837 1.2848 
7 1.2851 1.2726 1.2789 
9  1.2784 1.2572 1.2678 

 
Table 3: Average conductance ratios for noisy SAU 

Gas concentration Avg. Gr 
X1, X2, X3 Gap1: Gap2 (10 µm: 33 µm) 
1 0.192 
3 0.187 
5 0.183 
7 0.181 
9 0.179 
X4 X5, X6Gap1:Gap3 (5 µm: 15 µm) 
1 0.406 
3 0.378 
5 0.364 
7 0.357 
9 0.349 

 
RESULTS 

 
 The following matrices show the response of the 5-
3-1 rule based matched filter with intelligent identifiers at 
the top and bottom corners to the average conductance of 
six array units with and without noise.  

 
2.380 0.103 0.109

4.296 4.357 -0.031

10.611 4.461 2.235

4.034 4.198 0.166

1.758 0.052 0.009

 
 
 
 
 
 
 − 

 

 
MF: Sensors (1, 2, 3): gap1:gap2 

 
0.481 0.103 0.109

0.529 0.533 -0.031

1.093 0.672 0.315

0.267 0.377 0.166

-0.142 0.052 -0.009

 
 
 
 
 
 
 
 

 

MF: Sensors (1, 2, 3) gap1:gap2 (Noisy) 
 

6.078 0.243 0.224

11.246 12.837 -0.104

31.125 12.678 6.955

10.765 12.323 0.321

5.007 0.061 -0.044

 
 
 
 
 
 
 
 

 

 
MF: Sensors (1, 2, 3) gap1:gap3 

 























0.022-0.0452.141

0.2085.5364.864

3.1705.83913.982

0.060-5.7865.187

0.1440.1522.861
 

 
MF: Sensors (1, 2, 3): gap2:gap3 

1.510 0.089 0.090

2.663 2.735 -0.030

6.606 2.814 1.423

2.448 2.602 0.135

1.016 0.038 -0.010

 
 
 
 
 
 
 
 

 

 
MF: Sensors (4, 5, 6): gap1:gap2 

 

2.372 0.116 0.116

4.278 4.436 -0.041

10.759 4.515 2.306

4.002 4.257 0.174

1.743 0.048 -0.015

 
 
 
 
 
 
 
 

 

 
MF: Sensors (4, 5, 6): gap1:gap3 

 

0.750 0.116 0.116

1.065 1.099 -0.041

2.486 1.220 0.608

0.789 0.935 0.174

0.121 0.048 -0.015

 
 
 
 
 
 
 
 

 

 
MF: Sensors (4, 5, 6): gap1:gap3 (noisy) 

 
1.790 0.083 0.090

3.202 3.219 -0.021

7.84 13.347 1.659

2.983 3.087 0.138

1.255 0.046 -0.003

 
 
 
 
 
 
 
 

 

 
MF: Sensors (4, 5, 6): gap2:gap3 

 
DISCUSSION 

 
 Figure 4 shows matched filter response to the 
normal detected SAU signals after computing 
conductance averages at 130 and 160°C and their ratios, 
while Fig. 5 shows the same SAU delivering noisy 
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signal to the MF. Figure 6 illustrates effect of gap width 
on SAU conductance and in turn the response of the 
MF to the output signals from the sensors. 
 The developed 5-3-1 algorithm provides intelligent 
identifiers per matched filter response with symmetrical 
data difference array, which reduces the amount of 
processed data and achieve excellent identification. The 
5-3-1 algorithm is as follows: 

 
• The detected sensor array unit signals are 

processed and stored into data matrices, each 
matrix has six identifiers at upper and lower 
corners as shown in Eq. 2: 
 

11 1 2

21 22 3

31 32 33

41 42 4

51 5 6

a id id

a a id

S a a a

a a id

a id id

 
 
 
 =
 
 
 
 

 (2) 

 
• Using tagged identifiers, the detected signals are 

identified then compared with reference ones and 
the result is stored in a new matrix as in Eq. 3: 
 

 

11 11

21 21 22 22

identified 31 31 32 32 33 33

41 41 42 42

51 51

a b 0 0

a b a b 0

S a b a b a b

a b a b 0

a b 0 0

− 
 − − 
 = − − −
 

− − 
 − 

 (3) 

 
• The identifiers are reinstated and data is rounded 

up in the new matrix to the nearest integer 
• The resulting matrix is Folded and respective data 

values are compared, knowing that: 
 

11 11 51 51(a b ) (a b )− = −  

21 21 41 41(a b ) (a b )− = −  

22 22 42 42(a b ) (a b )− = −  
 

 
 

Fig. 4: MF response to SAU normal signals 

 The symmetry of the matrix allows us to use either 
half for identification and decision making. If the 
received signals are noisy, the output array would have 
large but decrementing data values; otherwise it will 
contain only zeros. Hence two cases are possible: 

 
Normal signal: 
 

1 2

3

Normal

4

5 6

0 id id

0 0 id

S 0 0 0

0 0 id

0 id id

 
 
 
 =
 
 
 
 

 (4) 

 

1 2

Normal_ Upper 3

0 id id

S 0 0 id

0 0 0

 
 =  
  

 (4a) 

 

Normal_ Lower 4

5 6

0 0 0

S 0 0 id

0 id id

 
 =  
 
 

 (4b) 

 

 
 

Fig. 5: MF response to SAU noisy signals 
 

 
 
Fig. 6: Effect of gap width on MF response to SAU 

signals 
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Noisy signal: 
 

1 2

3

Noisy 31 31 32 32 33 33

4

5 6

0 id id

0 0 id

S a b a b a b

0 0 id

0 id id

 
 
 
 = − − −
 
 
 
 

 (5) 

 

1 2

Noisy _ Upper 3

31 31 32 32 33 33

0 id id

S 0 0 id

a b a b a b

 
 =  
 − − − 

 (5a) 

 

31 31 32 32 33 33

Noisy _ Lower 4

5 6

a b a b a b

S 0 0 id

0 id id

− − − 
 =  
 
 

 (5b) 

 
 Data identifiers are rearranged to produce a 3by 3 
matrix: 
 

1 2 3

Final 1 2 3

6 5 4

id id id

S D D D

id id id

 
 =  
 
 

  (6) 

 
 where, 1 2 3D D D  are interlarded as follows: 

 
31 31 1 32 32

2 33 33 3

(a b ) D 2.5 (a b )

D 5 (a b ) D

− = = −
= = − =

 (7) 

 
Hence: 
 

1 2 3

1 1
Final_ Noisy 1

6 5 4

id id id

D D
S D

2.5 5
id id id

 
 
 =
 
 
 

 (8) 

 

1 2 3

Final_ Normal

6 5 4

id id id

S 0 0 0

id id id

 
 =  
 
 

 (9) 

 
 Now as the identifiers are unique for each sensor 
array unit and there is a relationship between data 
values (D1, D2, D3), then the final output can be sorted 
in any of the line arrays as follows as each one is 
unique to the sensor array unit and provides valuable 
indication to the quality of data obtained, with 
preference to line array A as it has maximum data 
value. Also, each line array has two guarding identifiers 
to mark start and stop of data values: 

Final_ NoisyA 1 1 6S id D id=     (10a) 
 

1
Final_ NoisyB 2 5

D
S id id

2.5
 =  
 

 (10b) 

 

1
Final_ NoisyC 3 4

D
S id id

5
 =  
 

 (10c) 

  
 Applying the previous to prove validity to SAU (1, 
2, 3) Gap1: Gap2, we obtain: 

 From Eq. 3: 
 

1.899 0.000 0.00

3.767 3.824 0.00

9.518 3.789 1.92

3.767 3.821 0.00

1.900 0.000 0.00

 
 
 
 
 
 
 
 

 

 
 From Eq. 5: 
 

1.9 0.103 0.109

3.8 3.8 -0.031

9.5 3.8 1.900

3.8 3.8 0.166

1.9 0.052 -0.009

 
 
 
 
 
 
 
 

 

 
 From Eq. 6-8: 
 

0 0.103 0.109

0 0.000 -0.031

10 4.000 2.000

0 0.000 0.166

0 0.052 -0.009

 
 
 
 
 
 
 
 

 

 
 From (10a), (10b) and (10c): 
 

0.103 0.109 -0.031

10 4.000 2.000

0.052 -0.009 0.166

 
 
 
  

 

 
 The final intelligently guarded sequences that are 
used for identification and signal testing of an SAU are 
given by: 
 

[ ]Final_ NoisyAS 0.103 10 0.052=  

 
[ ]Final_ NoisyBS 0.109 4 0.009= −  

 
[ ]Final_ NoisyCS 0.031 2 0.166= −  

 
CONCLUSION 

 
 The 5-3-1 system is used to correlate all SAU 
parameters with MF parameters. Correlation in the 
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algorithm involves deduction from presented data 
whether the target data is valid or not. The designed and 
tested algorithm proved its validity with the novel 
feature of intelligent identifiers that regardless of the 
noise corrupting or interfering with the signal can 
identify the source and recalls the correct. The tested 
SAU devices proved to be stable over temperature 
variations for the detection of acceptor gases such as 
NO2 with inter-electrode gap separation per fixed 
deposited film thickness playing an important role in 
conductivity level per applied gas concentration. For a 
fixed gap, it is shown that device conductance increased 
as the gas concentration increased. 
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