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Abstract: A novel approach to signal detection and iderdifam was developed and tested. The new
algorithm was based on provision of tagging a Madckilter (MF) with identifiers to recognize the
source signal with and without noise, so that dfi@ssion can be carried out. The algorithm was
applied successfully to chemical Sensor Array U(8#U). Problem statement: Signals obtained
from chemical sensors were sometimes contaminafdd neise. Detection of known signals from
noisy surroundings was critical in the field of sers and their application8pproach: Six chemical
sensor array units were tested at different gasearttrations. The testing was carried out under abrm
conditions and with the presence of noise. The ldpeel algorithm was then applied to detect, idgntif
and classify the result®Results: The 5-3-1 algorithm produced symmetrical arraythwhe source
signal identifiers at the corners. The symmetrgvadid the use of one-third of the produced data for
identification, saving processing time and memaoyagye.Conclusion: The obtained data also proved
that gap separation between conducting electrodemversely affect device conductance, with
different gap widths affected similarly with tempairre change per constant deposited film thickness.
Also, each device conductance increased in resgorieerease in applied gas concentration.

Key words: Signal detection, arrays, sensors, matched filgergsoftware, algorithm, intelligence,
identifiers

INTRODUCTION applications because of their remarkable ability to
extract patterns from surrounding noise, hence,bzn
Noise reduction and elimination is a typical applied to many real world problems such as pattern
problem in signal processing as well as manyrecognition, signal processing, optimization, cohtr
applications in the real world. Known linear systemand others. The objective of MF design and apptioat
adaptive filtering techniques have been widely uged is to find the optimum response that can deliver a
noise reduction problems. However, because of théecision regarding the presence of a required bkigna
linearity of the operation, such filters are unalbbe taking into consideration, time, speed, reliabiléapd
change the inherent property of the original noisecpossible future modifications.

signal (Khairnaret al., 2008; Bocchiet al., 2004; To address the noise problem over long
Abella et al., 2009; Knippet al., 2006; Zurket al.,  observation times, data-based, time-varying noise
2003; Soaresa and Jesusb, 2003). filtering using matched filters is proposed. Theads

Matched filtering is very useful in testing and to filter noise, which is not effectively cancelldyy
processing an array of N-sensors so as to congtanthormal adaptive processing (S al., 2007; Imam
check detection conditions of any of the sensoid anand Barhen, 2009; Zengt al., 2010; Ricciet al.,
obtain a numerical and graphical data certifyinghdt  2008; Faret al., 2004; Tandra and Sahai, 2008).
sensor or others are working properly. It operatethe There are at least two aspects that emerge by thei
principle of correlating an input array (known vadu relevance to the success of MF based techniques: on
array) and another array surrounded by noise ois the ability of an MF algorithm to accurately esgtl
interference (unknown valued array).The closesttmat the source while rejecting side lobes ama t
can be found by allocating the output with the émtg other is discrimination through  highlighting yan
correlated value. mismatch (Dorronsoret al., 2003; Cheret al., 2006;

Matched Filtering algorithms are one of the2009; Mohamedet al., 2008; Pados, 2001; Sheriff,
adaptive systems that are widely used in signaR010).
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Thus the presented novel 5-3-1 matched filtering The input matching array consists of gaps
algorithm is designed to improve the detection,conductance ratios as shown in Table 1 and 2 with
classification of the Matched Filter (MF) and adtle  noisy average conductance ratios shown in Tabkes3.
property of prediction to the overall signal pragieg  a ratio is a dimensionless number+, then conduetanc
system with its intelligent identifiers. gap ratio should in theory be the same at all

In this study, a novel approach to using Matchedemperatures as shown in Eq. 1:

Filter algorithm is implemented. The resulted Filie
Gn Gn
0| =n —n
™ [Gm} T:TZ(Gm]

applied to detect and process signals obtained filom (&]
MATERIALS AND METHODS Equation 1 assumes that all gaps are affected

chemical sensors array units. Gn
An array of chemical sensors having different gapalmost equally by temperature providing no phase

widths with vacuum sublimed PbPC films on a sapphir transforma_tio_n occurs  within th_e used temperature
(a-Al,05) substrates are produced as shown in Fig. 1. range as it is the caseo Sho"Y” n 'I_'able 1 and 2 for

Testing of the devices response to donor gases i mperatures up to 160°C. This ehr_mnates tempezatu
particular NQ is carried out under computer control in as a _vanable of concern, \_/vh_en It comes to signal
a specifically designed temperature controllednitas d_ete_c_t|on and gas discrimination ar_1d reduces
steel testing cells. Each testing cell formed amyapf ~ Significantly the number of necessary data inputs.
three multi-gap (three gaps) chemical sensors rgakin
an overall array of nine sensing elements perngsti
cell. Figure 2 and 3 show the transient response fo
normal and noisy sensors as a function of gas
concentration.

A known time-limited signal representing sensors
response to applied gas concentration denotedtpysf
applied to the matched filter part of the system.

This is achieved by incorporating the providedrig. 2: Transient response for SAU
average ratios obtained through repeated measutemen
of conductance changes of the tested three sermsyr a
units comprising nine gaps. By using the ratios
technique the following is achieved:

1)

T=Ty

Time (sec)

e Testing each individual gap for good or bad
detection output signal

» Testing the relative gas detection between differen
gap sizes and film thicknesses

» Integrated large number of sensors or sensor arrayig. 3: Transient response for noisy SAU
units, each with different properties

Time (sec)

Table 1: Average conductance ratios (Avg) f8r sensor unit arrays:

Z-Plane Y (Im) X1, Xz, X3
Gas concentration @T = 130°C) G(T =160°C) Avg. G
Gapl:Gap2 (10 pm: 33 pm)
1 1.5532 1.5152 1.5342
3 1.4978 1.4552 1.4765
Field lines 5 1.4673 1.4079 1.4376
7 1.4492 1.4104 1.4298
9 1.4342 1.3879 14111
Gapl:Gap3 (10 pm: 100 pm)
1 2.9428 2.9004 2.9216
3 2.3125 2.2531 2.2828
5 2.1812 2.1179 2.1496
7 2.1083 2.0862 2.0973
X (Re) 9 2.0688 2.0360 2.0524
Gap2:Gap3 (33 um: 100 pm)
o AL, PO Pe film Gold  Gaps 1 1.8886 1.9151 1.9019
Substrate electrodes 3 1.5406 1.5491 1.5449
5 1.4836 1.5062 1.4949
; . 7 1.4510 1.4806 1.4658
Fig. 1: SAU layout 9 1.4389 1.4688 1.4539
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Table 2: Average conductance ratios (Avg) f8r sensor unit arrays: MF: Sensors (1, 2, 3) gapgap; (Noisy)
X4, Xz, Xo

Gas concentration  @GI=130°C) G(T=160°C) Avg. G 6.078 0.243 0.22

Gapl: Gap2 (5 pm: 10 um) 11.246 12.837 -0.10

1 1.2954 1.2619 1.2787 31.125 12.678 6.95

3 1.2099 1.1768 1.1934

5 1.1641 1.1119 1.1380 10.765 12.323 0.32

7 1.1408 1.1014 1.1211 5.007 0.061 -0.04

9 1.1139 1.0735 1.0937

Gapl: Gap3 (5 pm: 15 pm) MF: Sensors (1, 2, 3) gapgaps

1 1.7051 1.6525 1.6788

3 1.5683 1.5110 1.5397 2861 0.152 0.144

: 4656 Taoss 14795

9 1.4247 1.3621 1.3934 13.982  5.839 3.170

1 1.3175 1.3094 1.3135 2141 0.045 -0.022

3 1.2971 1.2837 1.2904

5 1.2858 1.2837 1.2848 MF: Sensors (1, 2, 3): gapgaps

7 1.2851 1.2726 1.2789 [1.510 0.089 0.090

9 1.2784 1.2572 1.2678

2.663 2.735 -0.03(
6.606 2.814 1.423
2.448 2.602 0.13
[1.016 0.038 -0.01(

Table 3: Average conductance ratios for noisy SAU
Gas concentration Avg. G
X1, Xz, X3Gapy: Gap, (10 pm: 33 um)

1 0.192
3 0.187 MF: Sensors (4, 5, 6): gapgap;
5 0.183 _ .
7 0181 2.372 0.116 0.116
9 0.179 4278 4.436 -0.041
Xa X5, XeGapr:Gaps (5 um: 15 pm) 10.759 4.515 2.306
1 0.406
3 0.378 4,002 4.257 0.17?
5 0.364 |1.743 0.048 -0.01%
7 0.357
9 0.349 MF: Sensors (4, 5, 6): gapgaps
s s [0.750 0.116 0.11p
RESULT 1.065 1.099 -0.041
_ _ 2.486 1.220 0.608
The following matrices show the response of the 5- 0.789 0935 0.174
3-1 rule based matched filter with intelligent itéers at 0.121 0048 -0.015
the top and bottom corners to the average conduetain ) .
SiX array units with and without noise. MF: Sensors (4, 5, 6): gapgaps (noisy)

[1.790 0.083 0.09
3.202 3219 -0.021
7.84 13347 1659
2.983 3.087 0.138
[1.255 0.046 -0.003

2.380 0.103 0.10
4.296 4.357 -0.03
10.611 4.461 2.23
4.034 4.198 0.16
1.758 0.052 - 0.00

MF: Sensors (4, 5, 6): gapgaps
MF: Sensors (1, 2, 3): gapgap;

0.481 0.103 0.10 DISCUSSION

0.529 0.533 -0.03
1.093 0.672 0.31
0.267 0.377 0.16
-0.142 0.052 -0.00

Figure 4 shows matched filter response to the
normal detected SAU signals after computing
conductance averages at 130 and 160°C and thieis,rat
while Fig. 5 shows the same SAU delivering noisy
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signal to the MF. Figure 6 illustrates effect opgaidth The symmetry of the matrix allows us to use either
on SAU conductance and in turn the response of thhalf for identification and decision making. If the
MF to the output signals from the sensors. received signals are noisy, the output array walde

The developed 5-3-1 algorithm provides intelligentlarge but decrementing data values; otherwise it wi
identifiers per matched filter response with synminat  contain only zeros. Hence two cases are possible:
data difference array, which reduces the amount of
processed data and achieve excellent identificalibe ~ Normal signal:

5-3-1 algorithm is as follows:

L 0 idy id
e The detected sensor array unit signals are 0 01 'd2
processed and stored into data matrices, each %
matrix has six identifiers at upper and lower Snoma=|0 O 0 (4)
corners as shown in Eq. 2: 0 0 idy
0 ids id
a, id, id, > e
ay ap ids FA
S=|a&; & &3 ) 0 1% I.d2
ayg Ay idy SNormaI_Upper: 0 0 |d3 (43-)
as; ids idg 0 0 0
» Using tagged identifiers, the detected signals are [0 0 o
identified _then compared with rgferer}ce ones andsNormal_Lower: 0 0 idy, (4b)
the result is stored in a new matrix as in Eq. 3: ; ;
|0 ids idg
ay-by 00 _
-b a.— b 0 Noisy SAU 1, 2, 3 (Gap;: Gapa)
ap; 21 22 22 127 —*—Response(5) M- Response (3) Response (1)
Sidentified =| @31~ b3y @z~ b3 azy bg 3) N
agp by @by O .
-bs; 0 O -
a1~ D51 2E o)
» The identifiers are reinstated and data is rounded fg 047
up in the new matrix to the nearest integer 5 02
» The resulting matrix is Folded and respective data é EIN
values are compared, knowing that: =:
— = - -0.4 - T 7 T T T T
(811~ by3)= (53~ bsy) . ; ; 3 : p 5
(a21_ b21): (a41_ b4l) Number of data points

(a2 = bap)= (az2~ by2; . o
Fig. 5: MF response to SAU noisy signals

SAU 1,2, 3 (Gap;: Gap,)

] | —e—Response (5) —m— Response (3) Response (1) Effect of gap width on SAU conductance
2 Ll
2 E 1o 2 & 35 mGapl: Gap 2 (5)
£8 gl 2E 307
g 35 R B Gapl:Gap 3 (5)
5 gz
22 2 m} 2:
= § : E 20 1 Gap2: Gap 3 (5)
5 3 g
25 | 3
=z - p 5 =
r Z5
0 L =z ]
25 ‘ ‘ T ‘ ‘ 1 1 2 3 4 3
0 1 2 3 4 5 6 Numiber of data points

Number of data points

_ . Fig. 6: Effect of gap width on MF response to SAU
Fig. 4: MF response to SAU normal signals signals

430



Am. J. Engg. & Applied i, 3 (2): 427-432, 2010

NOiSy Signal: SFinaI_NoisyAzl:idl Dl id 6:| (10&)
0 iy id, Dy .
0 0 id3 SFinaI_NoisyB:PdZ 2_1'-) id 5} (1Ob)
Snoisy =| 831~ D31 as~ bz ags bs ) 5
0 0 id, SFinaI_NoisyC:{id3 ?1 id4:| (10c)
0 idls idg
Applying the previous to prove validity to SAU (1,
0 id; id, 2, 3) Gapl: Gap2, we obtain:
SNoisy_Upper: 0 0 id3 (53-) From Eq' 3
a31— D31 agy— b3y azz bs 1.899 0.000 0.0
3.767 3.824 0.0
a31_ b31 a32_ b32 a33_ b3 9518 3789 19
SNoisy_Lower: 0 0 idy (5b) 3.767 3821 0.0
0 idy idg 1.900 0.000 0.0
. . From Eq. 5:
Data identifiers are rearranged to produce a 3by 3
matrix: 1.9 0.103 0.10
38 38 -0.03
id, id, idg 95 38  1.90
Srinai =| D1 D, D3 (6) 38 38 016
ids ids idg 1.9 0.052 -0.00
From Eg. 6-8:

where,D; D, Dj are interlarded as follows:
0 0103 0.10

(831~ bgy)= D1= 2.5 (855~ byp) 0 0.000 -0.031

(7 10 4.000  2.00
=D; =5(ag3~ bs3)= D3 0 0000 0.16

0 0.052 -0.009

Hence:
id, id, ids From (10a), (10b) and (10c):
_ o D, D 0.103 0.109 -0.03
SFlnaI_Nmsy_ Dl 25 5 (8) 10 4.000 2.000
idg idg id, 0.052 -0.009 0.16
id, id, ids The final intelligently guarded sequences that are
B used for identification and signal testing of anlSare
SFinaI_NormaI_ 0 0 0 (9) given by:
idg idg idy

i . i SFinaLNowsyA:[O'lO3 10 005]2
Now as the identifiers are unique for each sensor

array unit and there is a relationship between data Srinal_noisys = 0-109 4 — 0.00F

values (O, D,, Dj), then the final output can be sorted

in any of the line arrays as follows as each one is Seinal_noiye=|~0.031 2 0.16F

unique to the sensor array unit and provides véduab

indication to the quality of data obtained, with CONCLUSION

preference to line array A as it has maximum data

value. Also, each line array has two guarding iifiens The 5-3-1 system is used to correlate all SAU
to mark start and stop of data values: parameters with MF parameters. Correlation in the
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algorithm involves deduction from presented dataKnipp,

whether the target data is valid or not. The dexigend
tested algorithm proved its validity with the novel
feature of intelligent identifiers that regardlesisthe

D., R.A. Street, H. Stiebig, M. Krauseda
J.P. Luet al., 2006. Color aliasing free thin-film
sensor array. Sensors Actuat., 128: 333-338. DOI:
10.1016/j.sna.2006.02.007

noise corrupting or interfering with the signal canMohamed, S., H.A. Maan, M. Shaker and T.A. Salih,

identify the source and recalls the correct. Thetetd
SAU devices proved to be stable over temperature
variations for the detection of acceptor gases agh
NO, with inter-electrode gap separation per fixed
deposited film thickness playing an important roie
conductivity level per applied gas concentratioar &
fixed gap, it is shown that device conductancedased

as the gas concentration increased.
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