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Abstract: Problem statement: When earthquake is occur, many damages were eckcurrpipelines
that San Francisco (1906) and Manson (1908), Kdapan) and ate are samples of this topic. So many
researchers studied on the pipelines and dynaméedoApproach: Determine static and dynamic
performance parameters of the pipeline and theosnding soil such as static stiffness, dynamic
stiffness, damping and additional mass share dfwbich take part with pipe mass in dynamic
performance. In the static case relationship between frictiorcés and joint deflections in a buried
element pipe had be calculated and with using nfesexperimental results and results are compared
together. For dynamic cases, Dynamic equilibriurnagign of pipeline element axial vibration in
continuous system, with neglecting the effect ol swass share which participates in producing
vibration and with considering of it were abstainaad values of displacement and forces were
calculated. In continuous, these formulations wenaress for many cases and were drawn in graphs
for comparisonResults: Stiffness foro/om,.; doesn’t change much but for the values more thén 1
increase rising. whem/m,<; the ratio of dynamic stiffness to the static stffs is less than unique
except in big amount of damping ratip>0.5) which the ratio becomes more than 1. Finfdly
ol/ons1, the ratio of dynamic to static stiffness risegidéy and by increasing the additional mass, the
value of dynamic stiffness in case offw,-; would increase highlyConclusion: The static
performance between soil and pipe is nonlinearxial airection and when the hysteric dominates
grows, the value of force dominates between sall gipe and dynamic stiffness would ascend. Also
by increasing damping ratio, the dynamic stiffnessild increase too however it depends on the static
to dynamic stiffness ratio and the damping ratio.
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INTRODUCTION axisymmetric, elastic-plastic buckling behavior of
buried pipelines subject to seismic excitationsingls
The purpose of this study is to study on the tatithe seismic records of the 1971 San Fernando
and dynamic properties of buried pipeline andearthquake, a series of numerical results have been
surrounded soil in axial direction due to harmonicobtained, which show that, at strain rates prevaien
dynamic vibration. The stiffness between soil aigep earthquakes, the dynamic buckling axial stresdrairs
in different static and dynamic conditions and ease of a buried pipe is only slightly higher than tloéstatic
based on the dynamic distributed formulation,buckling (Lee, 1984).

considering soil additional mass share and alser tef A comparative study has been performed to obtain
numerical experimental results, has been estimateld the response characteristics of strains in a buried
concluded in the following pages. pipeline section, axial relative displacement and

Poulos and Sim (1979) has presented a methotlansverse relative displacement. The maximumivelat
applying elastic theory that axial vibration loagliof a  displacement response in the transverse directon i
pile would increase the porous pressure, decrdase tsignificant even under the design level of earthgsa
soil modulus and lateral resistance of soil. A guas The maximum transverse displacement response mainly
bifurcation theory of dynamic buckling and a simple occurs at the center of the pipeline and shows ttiet
flow theory of plasticity are employed to analytet pipeline embedded in soft clay is particularly
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vulnerable to earthquake excitation. A minoru and y; are the measured displacements in points i
discrepancy is observed between the responseseof tland i+1 of pipe length in laboratory.

pipeline with various angles of lowering and highgr At this part, the axial stiffness between the soil
bends. In all, the soil type is significant for tlesponse pipe has been calculated by Calton and experimental
of the pipeline (Dcet al., 2009). method. In Calton method, the values of stiffnesgeh

The axial performance of pile is approximately been estimated by dividing the force values toiahit
close to buried pipeline. The pile under axialistitad  deflections. Sample result of Calton method is shaw
resists against the loading with side strength ile p Table 1.
column and end pile strength at the end edge of Ail Here is a sample of calculation in experimental
this research, resistance between pile and suriogind method:
soil is modeled according to Winkler theory witlagtic
springs. Then, the formulation and experimentalAu, =0.13- 0.10= 0.03mr, Au, = 0.10- 0.09= 0.01mr
methods, to find a method for determining dynamic
stiffness (impedance function), damping between they, = 0.09- 0.0%= 0.02 mn
pile and surrounding soil and also the additionals
of soil which contributes with pile in dynamic
performance applying harmonic vibration would be
presented. The formulation methodology is based on
dynamic of structures theory and mechanical vibrati AUs =0.045- 0.0 0.025mi
theory in time and frequency space applying Fourier
transport. An efficient numerical approach based on Mean value of relative deflection = 0.022 mm:
both boundary and finite element methods is desop

Au, =0.07- 0.045 0.025 mr

in this work. This development is capable of relis _131.1 135

. . . - AF = x == 24.16 Kg
three dimensional analyses of soil-structure intiva 6 122
problems in the real time domain and is specifycall Thus:
tailored to buried lifelines. Results are gaugediras) _24.16- 0_ Kg
empirical design formulae. It is shown that the 7 0.022- 0 “mn

seismically induced stress state in a buried pipels
more pronounced in the case of transverse vibmtion  The calculated number is for the initial modulus.

than in the case of longitudinal vibrations (Masetial.,  The second modulus stiffness can be calculateelas/b
1995). Study on the Dynamic responses of buried

pipelines during a quuefaction (Warm al., 1990) and Au, = 0.56- 0.53= 0.03mr, Au, = 0.53- 0.48 0.05mr
subsea pipeline buckling (Neil and Tran, 1996) wereAu3=O.48_ 0.4 0.07mr, Au, = 0.41- 0.25= 0.16mr
done by other researchers.

Aug =0.25- 0.09= 0.16mr

MATERIALSAND MATHODS

In this research, with using of experimental resul Mean value of relative deflection = 0.094 mm:
which was done by first author, static and dynamic
stiffness were calculated in two methods that are _154.6 135_
: . . . AF = x—=28.51Kg
explained in later section. Experiment data ararfany 6 122

cases of pipe depth and water absorption. In coafin
with using of formulation, variation of dynamic and
static stiffness, mass of pipe, the part of soiliclvh
contributes with pipe in dynamic performance, ratfo
frequency to natural frequency and damping raties a K = 28.51- 24.16:60 47Kg
compared together. ° 0.094- 0.022  mn

135/122 is the transformation coefficient:

Study theinteraction of soil and pipein static case:
The relatlonshlp between friction forces and ]OIHtTable 1: Calculation of static stiffness for an wment by Calton

deflections in a buried element pipe can be shosvn a method
Eq. 1: Coleon
EA Ks (Kg mni?) Deflection (mm) Force (Kg)
AF =EeBei oy 1 1115.92 0.13 145.07
' (Us=2u+y,) (1) 305.49 0.56 171.07

1
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Table 2: Calculation of static stiffness for an esment by experimental method

Experimental method

ks F u W-Us Us-Us Uz-Usg Uz-Uz Us-Uz

1098.01 24.18 0.022 0.025 0.025 0.02 0.01 0.03
60.4 28.51 0.094 0.160 0.160 0.07 0.05 0.03
19.8 29.66 0.148 0.295 0.295 0.04 0.06 0.05
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Fig. 1: Comparison of calculated stiffness by two soil over the pipe (water absorption 2.97%)
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Fig. 2: Force-displacement curve for an experiment
and also for the third modulus, we have:

Au, =0.95- 0.906= 0.05mr, Au, =0.9- 0.84= 0.06 mr

Au, =0.84- 0.86= 0.06 mr, Au, =0.80- 0.50= 0.30 mr
Au, =0.50- 0.2 0.29 mr

Mean value of relative deflection = 0.152 mm:

160.6_ 135
—X

AF = =29.66 Kg
6 22
Thus:
K, = 29.66— 28.51:19. Kg
0.152- 0.094 mn
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Fig. 4: Calculation of stiffness for different hbtgof
soil over the pipe (water absorption 10.2%)

Calculation of static stiffness for an experimbt
experimental method is shown in Table 2 and
Comparison of calculated stiffness by two methaus i
an experiment is shown in Fig. 1. Also force-
displacement curve for an experiment is shown gn Zi

Effect of the height of the soil over the pipe to the
axial gtiffness: To study the effect of the height of the
soil over the pipe, it has been assumed that athef
conditions are constant and just the height of sbié

has changed. It means that, a PVC pipe with diamete
of 26 cm and 4 mm thickness has been put in a sand
soil with water absorption percentage of 2.97 and o
pas compaction. The values of stiffness have been
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calculated for different heights of 0, 10 and 20.cmu;, u, , 4, = Displacement, velocity and equivalent
Figure 3 shows the value of stiffness for different joint acceleration in joint i

heights. Also the process has been done for areliffe C; = the equivalent damping in joint i

water absorption of 10.2% which is indicated in.Fg i = The stiffness in joint i to the effect of jojnt
Figure 3 and 4 indicates that when the depth oktike f.(t) = The equivalent force in joint i

increases, the stiffness of the soil increases dth b

methods too. The main reason for increase in s8fn Most of the researchers neglect the effect gfigM

is increasing the lateral pressure to the pipaimthen  pocause of its tiny value but it has been consitiate

producing stronger friction forces between soil andiig study. Equation 3 can be distributed for mibren
pipe. Also, by increasing the water absorptionyy, degree of freedom. In such a case that Eq. 3
percentage of the soil, the value of stiffness woul changes to Eq. 5 the factog is defined as dynamic
Increase too. stiffness or impedance function:

Interaction of soil and pipelinein dynamic condition

under harmonic vibration: Dynamic equilibrium  [Kd{u(®} 2 (0} (5)
equation of pipeline element axial vibration in _
continuous system, neglecting the effect of soiksna In a single degree of freedom case the frequency

share which participates in producing vibration ¢@n dominates impedance function can be shown as Eq. 6:
formulated as Eq. 2:
P et dune Ko() =—0F(M , +M ) +K + oo (6)
u(Xx, u(Xx, u(Xx,
PA, diz )_EpAp d(z )+Ca (jt ‘ .
X ) o is angular frequency andyq(l) and k(t) are the
+KU(x, 1) = K uy(x,1) foriour transform of each other. Thus they transfdne
frequency space to the time space and vise verda an

Equation 2 illustrates the governing equation of aare compatible with Eq. 7:
continuous system that applying the boundary and
initial conditions and solving the corresponding _[e it
deferential equation, the displacement functiorx,t) ( kd(t)_j-wk“(w)e @
can be obtained up to constant values gfakial Ky ):i " k(1) e dt
stiffness between soil and pigg,special mass of pipe, 2md - ¢
E, pipe elasticity modulus, fpipe section area and,C
axial damping of soil and pipe. The same as the relation betwegft)kand k),

The dynamic equilibrium equation can be shown indisplacement u(t) in time space and displacement in
discrete system with multi degree of freedomfrequency space wj and also force f(t) in time space
considering external forces and excluding groundyith force in frequency spaced can be related to
motion as Eq. 3: each other by fourier transform as Eq. 8:

[MI{u} £CKuy # (1)} 3

The axial dynamic equilibrium in the discrete
system with two degree of freedom considering

(@)

U(e) :2%[ mu(edt u(t)=[" U(w)e* do ®)

additional mass of soil (Mg can be shown as Eq. 4: According to theory 01_‘ dynamics_ of structures and
fundamental of mechanical vibration and random
M +M_ 0 g c ol vibrgtion viewpoint, the dynamic stiffnesg(ty in time.
p o add { 1}{ ! }l:q} dominant is the result of the problem due to unique
{0 M, + Madd} u,l |0C,u, 4 impulse, that applying Fourier transform the fremme
KK i f.(0) ) response of the system or the dynamic stiffnessria
l: noe }{ 1}:[ ! } dominant would be determined. Frequency dominant
Ko K JlUo] [FAY) dynamic parameters are the Fourier transform o€ tim
dominant dynamic parameters and hence the frequency
Where: space can be transformed to time frequency by Eouri
M, = The mass of pipe transforms and vise versa.
M add = The part of soil which contributes with In static case, the equivalent dynamic stiffnesms c
pipe in dynamic performance be determined as static stiffnesgch = k. Then the

444



Am. J. Engg. & Applied i, 3 (2): 441-448, 2010

numerical value of dynamic stiffness can be shoen a F(t) = F, sin¢ot) (12)
Eqg. 9:
u (t) =y, sin wt-@) (13)
F w w
—=[Ky(w =K\/[1 -(-)*+H2p(-)]1° 9)
u. K@) , w, That ® is output phase delay (displacement) in

relation to input (dynamic force). The relation\setn
Equation 9 can be drawn as a graph for differenfo and y can be defined as Eq. 14:
values of damping ratiop) and different values for the
division of hysteric frequency to natural frequentie
minimum of dynamic stiffness is produced whers o, 272 2
and by increasing damping ratio the dynamic stiffne K {1-[‘*’] } +{2p[‘°ﬂ
would increase too. For impacting the pile to theugd w,
or penetration of a stick in the ground it can bsumed
that® = o, that ground dynamic stiffness would be in \yhere:
the minimum value. Whem<w, the condition would
decline to static and whem>w, dynamic stiffness c
would increase a lot. When Jy participates in the p
equation, because it is a function®fd, c,m,, M,, the
equation would be a complex equation. In faciyM
becomes a function ef, andw, becomes a function of If we consideru,, -R (that is static displacement).
Maq¢ According to the different conditions ek, and K
>0, smallp (under critical) and big(super critical) ~ Then:
and also with or without M4 the dynamic stiffness
would be determined and drawn. Uy _ Yy _ 1 (15)
To consider the effect of additional mass, it $lou u, u, 272 2

be considered that, natural frequency of a singlrek {1—((‘)] 1 7{2;{‘”}}
of freedom system with additional mass can be ddfin @, 0,

(14)

B 2mw,

c
c
o
<
|

as Eq. 10:
Hence the value of dynamic stiffness is equal to:
K K
w, =\P = (10)
M M p +M add 2 2 2
Bo k(=K 1—[‘*’] +[2p(‘*’ﬂ (16)
If we assume that the additional mass is equal td4o @, ,

0.5 M, and M, the value of natural frequency is equal
to (1N1.5) @, (1N2) w,. It can be said that the natural The Eq. 15 and 16 can be draw as a graph for
frequency is dependent on the mass of pile an((jtlifferent values op and @/wn).the numerical value of
additional mass. When M interferes a complete . n:

couple equation would be produced becausgq\d It WO_Il_JrLd be c_o?stantfatljways._ fiff b i
function of hysteric frequency, phase changing engl h e vana; lon of yn?guc st ng_sslversm n IS
harmonic force dominant and harmonic displacemenrt e reverse of variation of dynamic displacememswe

dominant and the natural frequency is a function oﬁg’;” Zp |}3Iéh%i§?;ﬁe0ff(rj:nr2££g; tgientm?;( |r'r\1/|um i\galue
M.ge in the other hand Eq. 11 is available: n POINL add

considered, the distance would increase, becawse th
situation ofw, would change in that case.

@=tan™ «© 5 Although Eq. 16 is for a harmonic force and
K —-me (11)  displacement, but is different from the real coiodis
K(w) :i(coscp+ ising) because it doesn't interfere the value ofMBut it can
Uo be used for stating the numerical values of dynamic

stiffness. The availability of My is effective in
If the dynamic force represents as a harmonicariation of w, that by elimination of damping and
force, displacement would be harmonic too but with external force terms, it can not be an ordinarerig
phase delay: value problem:
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Table 3 indicates a sample variationudb, for Myqq= 0
considering different values fer. Figure 5-7 show the
o ] variation of dynamic stiffness to static stiffndes the

By eliminating G and f (t) Mg remains dependent raiio of hysteric frequency to natural frequency dor
to the initial conditions of the problem becausgis  gifferent values of additional mass and different
dependant to M4 andp. The equations show that the gamping ratios. Figure 8-15 indicate the variatii
numerical value of dynamic stiffness o/l is  gynamic stiffness to static stifiness for the ratid

independent to the amplitude but dependent toripet i hysteric frequency to natural frequency and fofedént
frequency o and in the other side, that itself \gjyes ofp.

considering the addition of My is against the ordinary

(m+m,)x+ Cx+ Kx=f(t) (17)

structural dynamics and dependent on the input _ - T - _

L. —4—p=0 —#—p=0.0l—p—p=0.05 p=01 ¢ p=02 _s—p=04
conditions of problenm, p. In the laboratory the values OO o e e ) i i
of Fy, W have been gained and the results are

convincing. Experimental results also show that the @ »

numerical value of dynamic stiffness is not so gmes 8 /&.
to amplitude but dependent to the input frequency. K g ////'
.9

The numerical value of dynamic stiffness would
never be a negative number because it is summation

guadratic and positive items. As it has been safdrk 27 —
M aqqis function ofw, ¢, ®,, m. In the other word Mqis 0 R = i ——
a function ofe, and vise versa. Therefore the dynamics 00 02 04 08 08 10 12 14 16 18 20
of structures problem should be solved atalps. /o,
— Fig. 7: Variation of K/K, with o/@n, for Magg= 1 M,
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Table 3: Variation of Ko with @/m,for Mage= 0 and differenps

p 0 0.01 0.05 0.1 0.2 0.4 0.5 0.7 0.9 1 1.1 1.3
o/o,=0 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.00 1.0001.00 1.000 1.000
w/wp=0.2 0.96 0.96 0.960 0.961 0.963 0.973 0.981 1.001.025 1.04 1.056 1.092
w/o,=0.4 0.84 0.84 0.841 0.844 0.855 0.899 0.930 0.010.106 1.16 1.217 1.337
w/w,=0.6 0.64 0.64 0.643 0.651 0.684 0.800 0.877 1.061.255 1.36 1.467 1.686
P=02 ——Mua=0M; —B-DMuaz=05M, Mugg=1Myp 10 oy T Maumo EMgg=o0s Maga =1
8 e Mug=2Mp - Magg=4 My —O Myyg=8M
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RESULTSAND DISCUSSION
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