
American J. of Engineering and Applied Sciences 3 (4): 631-642, 2010 
ISSN 1941-7020 
© 2010 Science Publications 

Corresponding Author: Hichem Taghouti, Laboratory of Analysis and Commands Systems, 
 Department of Electrical Engineering, National Engineering School of Tunis, P.O. Box 37, 
 1002 Tunisia  Tel: + 216 99 97 75 32 

631 

 
Modeling Method of a Low-Pass Filter Based on Microstrip T-Lines with 

Cut-Off Frequency 10 GHz by the Extraction of its Wave-Scattering 
Parameters from its Causal Bond Graph Model 

 
1Hichem Taghouti and 1,2Abdelkader Mami 

1Laboratory of Analysis and Commands Systems, Department of Electrical Engineering, 
National Engineering School of Tunis, P.O. Box 37, 1002 Tunisia 

2Laboratory of Electronic and High Frequency Circuits, Department of Physics, 
Faculty of Sciences of Tunis, 2092 Tunisia 

 
Abstract: Problem statement: This study presented a jointly application of bond graph technique and 
wave-scattering formalism for a new realization called scattering bond graph model which has the 
main advantage to show up explicitly the different wave propagation. Approach: For that, we 
proposed to find the scattering matrix from the causal bond graph model of a low-pass filter based on 
Microstrip lines and with cut-off frequency 10 GHz, while starting with determination of the integro-
differentials operators which is based, in their determination, on the causal ways and causal algebraic 
loops present in the associated bond graph model and which gives rise to the wave matrix which 
gathers the incident and reflected waves propagation of the studied filter. Results: The scattering 
parameters, founded from the wave matrix, will be checked by comparison of the simulation results. 
Conclusion: Thereafter, we use a procedure to model directly this scattering matrix under a special 
bond graph model form often called “Scattering Bond Graph Model”.  
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INTRODUCTION 

 
 The scattering or the wave-scattering formalism 
(Paynter and Busch-Vishniac, 1988) was used in vast 
physique fields such as the characterization of the 
electric circuits.  
 Several work, since the invention of the bond graph 
approach (Di-Filippo et al., 2002), showed that the 
scattering formalism (Newton, 2002) constitutes an 
alternative approach for the physical systems modeling 
(Kamel and Dauphin-Tanguy, 1993). They pointed out 
on the one hand some properties and in particular the 
orthogonality of wave matrix (Magnusson, 2001) 
respectively the scattering matrix (Ferrero and Pirola, 
2006) which respects intrinsically the causal relations 
and includes explicitly the conservation laws (Pedersen, 
2003). They showed in addition that the scattering 
representation exists for systems having neither 
impedance nor admittance such as the junctions of 
Kirchhoff, the gyrateurs and the transformers (Patrick 
and Adrien, 2008).  
 In addition, the bond graph language (Di-Filippo et al., 
2002) is based on a graphic representation of the physical 

systems. These representations are based on the 
identification and the idealization of the intrinsic 
characteristics of the physical environments and on the 
structuring of a complex physical   system in   the    
networks form (Belevich, 1968). Moreover,  in   
physics,  the  analogies  theory  allows   bond      graph     
technique (Di-Filippo et al., 2002) to generalize the 
representation networks with all the traditional physics 
fields of the systems with localized and/or distributed 
(based on Microstrip lines) parameters (Byrnes et al., 
1999).  
 The propose of this study is to present and apply a 
new extraction method of the scattering parameters, 
which constitute the scattering matrix, of any physical 
systems while basing on its causal and reduced bond 
graph model (Taghouti and Mami, 2009).  
 At first and after having to present the method, we 
propose to use the causal bond graph model of a low-
pass filter based on Microstrip lines (distributed 
elements) (Trabelsi et al., 2003) to find, on the one 
hand, the integro-differentials operators (Khachatryan 
and Khachatryan, 2008) which based on the causal 
ways and algebraic loops present in the causal bond 
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graph model and, on the other hand, to extract the wave 
matrix (Magnusson, 2001) from these operators.  
 Then, we extract directly the scattering parameters 
(Newton, 2002) from the found wave matrix 
(Magnusson, 2001) and, at the aim to validate the found 
results; we make a comparison by the simulation of 
these scattering parameters under a simple program and 
under the classic techniques of conception and 
simulation of the microwave circuits by using the HP-
ADS software (Vendelin et al., 2005).  
 Finally, we propose to build a special form of bond 
graph model often named “Scattering Bond 
GraphModel” (Kamel and Dauphin-Tanguy, 1996) 
which able to highlight these transmission and reflexion 
coefficients (Scattering parameters) (Duclos and 
Clement, 2003).  
  
Extraction method of the scattering parameters: The 
new extraction method of the scattering parameters 
(Newton, 2002) is an analytical method which makes it 
possible to establish, for a linear complex system, the 
scattering relations between a fixed entry and exit. 
However, this method implies the succession of the 
following stages:  
 
• Decomposition of the system (causal bond graph 

model) in subsystems (causal bond graph sub-
model) put in cascades which are characterized by 
their respective wave matrix (Magnusson, 2001)  

• Calculating the total wave matrix (Magnusson, 
2001) of the whole system by carrying out the 
product of the elementary wave matrices  

• Finally, the application of a linear transformation 
to this total matrix for extracting the scattering 
parameters (scattering matrix) (Newton, 2002) 
characterizing the complex system 

 
 The step that we propose was thought in this 
objective and consists in establishing a systematic 
method   which    binds the bond graph technique (Di- 
Filippo et al., 2002) to the wave-scattering formalism 
(Paynter and Busch-Vishniac, 1988). This method is 
based on an algebro-graphic procedure (Amara and 
Scavarda, 1991) which uses the causal ways notions 
and the Mason’s rule (Bolton, 1999) applied to a 
causal bond graph transformed and reduced (Taghouti 
and Mami, 2009). 
  
Wave-scattering decomposition and representation 
of complex system: Generally, we can represent any 
complex system functioning in low or high frequency 
by the following model of the Fig. 1 where the process 
is represented by the quadripole Q with different wave 

scattering. These three subsystems (source, quadripole 
(Q) and load) are inter-connected and communicate 
between them by the means of a power transfer which 
is done in a continuous way from the source to the load 
as Fig. 1 indicates it.  
 It is considered that the process, in its quadripole 
form, is in complex form and can be decomposed to 
subsystems which are connected by the intermediary of 
the wave-scattering variables (Paynter and Busch-
Vishniac, 1988) as Fig. 2 indicates it.  
 The incident and reflected waves distribution, 
which is propagated from the source towards the load 
through the quadripole Q, can be translated by a matrix 
representation of the wave  scattering  variables like 
Fig. 3 indicates it, where W is the wave matrix. 
  Let us consider the two processes A and B with 
share where the signal entering B is directed in the 
same direction as the outgoing signal of process A, a 
similar way, the outgoing signal of B is in the same 
direction as the signal entering a as Fig. 3 indicates it. If 
these two processes are coupled, the assumption of the 
power continuity (Paynter and Busch-Vishniac, 1988) 
will imply: 
 

2A 1Ba b=  (1)  

 

2A 1Bb a=  (2)  

  

 
 

Fig. 1: Complex system representation with the wave 
scattering variables  

 

 
 
Fig. 2: Wave scattering representation on the 

decomposed quadripole Q  
 

 
 
Fig. 3: Representation of the wave scattering variables  
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 The aiA and aiB quantities entering the A and B 
processes are called incident waves in the same way, 
the quantities biA and biB associated with the signals 
leaving the A and B processes are called reflected 
waves (Duclos and Clement, 2003).  
 Classically, we express the power circulating in a 
bond and connecting two systems in the shape of a 
product of the two variables effort (noted: ε) and flow 
(noted: ϕ) in reduced form (Amara and Scavarda, 
1991):  
 

2 2

i i
i, i

a b
P

2 2

   
= − = ε ϕ   
   

 (3) 

 
2 2

i i i i
i, i

a b a b

2 2

   + −− = ε ϕ   
   

 (4)  

 
 So we can introduce the following linear 
transformation:  
 

i i i

i i i

1 1 a a1
H

1 1 b b2

      ε
= =      −ϕ       

 (5)  

 
 The linear opposite transformation of the H 
transformation allows the passage of the intrinsic 
variables effort and flows (ε,ϕ) with the wave variables 
(ai, bi) as the following relation indicates it:  
  

i i i

i i i

1 1a 1
H

1 1b 2

       ε ε
= =      − ϕ ϕ      

 (6)  

 
 The processes A and B constitute two processes 
with 2-ports of entry and exit whose wave matrices are:  
  

A A A A
1 11 12 2
A A A B
1 21 22 2

b w w a

a w w b

     
=     

     
 (7)  

 
B B B B
1 11 12 2
B B B B
1 21 22 2

b w w a

a w w b

     
=     

     
 (8)  

 
 The chain of n processes with 2-ports of entry and 
exit, like Fig. 3 indicates it, constitutes a process with 
2-ports of entry and exit where the global wave matrix 
W is:  
 

(A) (B) (N) N (i)
iW W * W *........* W W= = ∏  (9)  

 
So:  

1 11 12 2 2

1 21 22 2 2

b w w a a
[W]

a w w b b

       
= =       

       
 (10)  

 
 The scattering parameters are given by the 
following scattering matrix:  
 

1 11 12 1 2

2 21 22 2 2

b S S a a
[S]

b S S b a

       
= =       

       
 (11)  

 
 The relations between these matrixes are given by 
these following equations:  
 

1
11 21 22

1
12 21

1
21 12 11 22 21

1
22 11 21

W S *S

W S

W S S *S *S

W S *S

−

−

−

−

 = −


=


= − −
 =

 (12)  

 
1

11 22 12

1
21 22

1
12 11 21 12 22

1
22 21 22

S W * W

S S

S W W * W * W

S W * W

−

−

−

−

 =


=


= −
 =

 (13)  

 
Wave scattering parameters and causal bond graph 
model: It is considered that the process, in its quadruple 
form and which inserted between two particular ports 
P1 and P2 which represent respectively the entry 
(source) and the exit (load) of the complex system can 
be represented by the following bond graph model 
transformed and reduced such us:  
 
• ε1 and ε2 are respectively the reduced variable 

(effort) at the entry and the exit of the system  
• φ1 and φ2 are respectively the reduced variable 

(flow) at the entry and the exit of the system  
 

i

0

Effort

R
ε =  (14)  

 

i 0flow * Rϕ =  (15)  

 
 These are the reduced Effort (e) and Flow (f) with 
respect to R0 (scaling resistance).  
and to establish the output-input analytical relations, the 
bond graph model of the studied system must be 
transformed, reduced and especially be causal since 
these relations rest on the concepts of causal way and 
causal algebraic loops which can comprise the reduced 
bond graph model.  
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Fig. 4: The reduced bond graph representation  
 

  
Fig. 5: Flow-effort causality affectation  
 
 The causality assignment to the reduced bond 
graph model of Fig. 4 enables us to notice that they are 
four different cases of causality assignment in input-
output of the process (Amara and Scavarda, 1991).  
 For each type of reduced and causal bond graph 
model given below, we will have one matrix which 
connects the reduced variables to the integro-
differentials operators Hij.  
 From each matrix, we can deduce the 
corresponding wave matrix by referring to the Eq. 5, 6 
and 10.  
 These wave matrices can give us the corresponding 
scattering parameters by referring to the Eq. 13 and the 
following equations: 
   

1 1

1 1

1 1 a1

1 1 b2

    ε
=    −ϕ     

 (16)  

 

2 2

2 2

1 1 a1

1 1 b2

    ε
=    −−ϕ     

 (17)  

 
Reduced bond graph model with flow-effort 
causality (Case 1): The causality assignment on the 
model of Fig. 4 makes it possible to find the first case 
(Case 1) given by Fig. 5 whose bond graph model is 
with flow-effort causality. 
 From this model, we deduce the H matrix of 
integro-differentials operators and his corresponding 
wave matrix W: 
 

1 11 12 1

2 21 22 2

H H

H H

    ε ϕ
=        ϕ ε    

 (18)  

 

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H

2H 2H
W

1 H H H 1 H H H

2H 2H

 − + − ∆ − + − − ∆
 
 =
 − − + − ∆ + − − ∆
 
  

 (19)  

 
 
Fig. 6: Effort-flow causality affectation  
 

 
 
Fig. 7: Flow-flow causality affectation  
 

11 22 12 21H H H H H∆ = −  (20)  

 
Reduced bond graph model with effort-flow 
causality (Case 2): The causality assignment on the 
model of Fig. 4 makes it possible to find the second 
case (Case 2) given by Fig. 6 whose bond graph model 
is with effort-flow causality. From this model, we 
deduce the H matrix of integro-differentials operators 
and his corresponding wave matrix W: 
 

1 11 12 1

2 21 22 2

H H

H H

    ϕ ε
=        ε ϕ    

 (21)  

 

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H

2H 2H
W

1 H H H 1 H H H

2H 2H

 − + − ∆ − − + ∆
 
 =
 + + + ∆ + − − ∆
 
  

 (22)  

 
Reduced bond graph model with flow-flow causality 
(Case 3): The causality assignment on the model of 
Fig. 4 makes it possible to find the third case (Case 3) 
given by Fig. 7 whose bond graph model is with flow-
flow causality. 
 From this model, we deduce the H matrix of 
integro-differentials operators and his corresponding 
wave matrix W: 
 

1 11 12 1

2 21 22 2

H H

H H

    ε ϕ
=        ε ϕ    

 (23)  

 

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H

2H 2H
W

1 H H H 1 H H H

2H 2H

 − + − + ∆ − + − ∆
 
 =
 + + + ∆ + − − ∆
 
  

 (24)  
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Reduced bond graph model with effort-effort 
causality (Case 4): The causality assignment on the 
model of Fig. 4 makes it possible to find the fourth case 
(Case 4) given by Fig. 8  whose  bond graph  model  is 
with effort-effort causality. 
 From this model, we deduce the H matrix of 
integro-differentials operators and his corresponding 
wave matrix W: 
 

1 11 12 1

2 21 22 2

H H

H H

    ϕ ε
=        ϕ ε    

 (25)  

 

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H

2H 2H
W

1 H H H 1 H H H

2H 2H

 − + − + ∆ − − + ∆
 
 =
 − − − − ∆ + − − ∆
 
  

 (26)  

 
 Now, if we like to find the scattering matrix we 
need to use the Eq. 13.  
 We note that Hij are the integro-differentials 
operators which are based, in their determination, on the 
causal ways and algebraic loops present in the associated 
bond graph model (Amara and Scavarda, 1991): 
 

N k k
ij k 1

G
H

=

∆=
∆∑  (27)  

 

i i i i i k1 L L L L L L ..∆ = −∑ + ∑ − ∑ +  (28)  
 
Where:  
∆ = The determinant of the causal bond graph 
Hij = Complete gain between Pj and Pi  
Pi = Input port  
Pj = Output port  
N = Total number of forward paths between Pi and 

Pj  
Gk = Gain of the kth forward path between Pi and Pj  
L i = Loop gain of each causal algebraic loop in the 

bond graph model  
L iL j = Product of the loop gains of any two non-

touching loops (no common causal bond)  
L iL jLk = Product of the loop gains of any three pair 

wise nonteaching loops  
∆k = The cofactor value of ∆ for the kth forward 

path, with the loops touching the kth forward 
path removed; i.e., Remove those parts of the 
causal bond graph which form the loop, while 
retaining the parts needed for the forward path 

 

  
Fig. 8: Effort-effort causality affectation  

MATERIALS AND METHODS 
 
Application to a low-pass filter based on microstrip 
lines: In this paragraph, we will try to apply and check 
the procedure described previously to a low-pass filter 
with distributed elements (based on Microstrip lines) 
like Fig. 9 indicates it.  
 This filter is a Tchebychev low-pass with order 4 
and having the following characteristics:  
 
• Cut-off frequency (fc) 10 GHz  
• Sensibility: k = 0.5  

• Attenuation: Amax = 0.1dB, Amin = 20dB 
 
 The bond graph model of this studied filter is given 
by Fig. 10. 
 
Extraction of the scattering parameters from the 
bond graph model: So that, to extract the scattering 
parameters from the bond graph model and by using the 
new extraction method which is described previously; 
we must transform the bond graph model given by 
Fig.10 into a causal bond graph model often named 
reduced bond graph model like Fig.11 indicate it 
(Amara and Scavarda, 1991; Taghouti and Mami, 2009) 
only containing the reduced variables with respect to a 
scaling resistance R0 (internal source resistance) such 
us:  
 

ic 0 iR *Cτ =  (29)  
 

i
Li

0

L

R
τ =  (30)  

 

 
 
Fig. 9: The low-pass filter with Microstrip lines and its 

tow ends P1 and P2  
 

 
 
Fig. 10: Causal bond graph representation of the filter 

with its ends 
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• zi: The reduced equivalent impedance of the i 
element put in series  

• yi: The reduced equivalent admittance of the i 
element put in parallel 

 
 So we have: 
 

1 L1z * P= τ  (31) 

 

2 L2z * P= τ  (32) 

 

1 c1y * P= τ  (33)  

 

2 c2y * p= τ  (34) 

 
p: Laplace operator.  
 The bond graph model given by Fig. 11 can be 
broken up into tow cells (sub-model) put in cascade form 
while respecting the assumption of the power continuity 
(Paynter and Busch-Vishniac, 1988) between all sub-
models.  
 Each cell is made up with an impedance z in 
parallel with an admittance y often noted [z---y], if the 
studied filter is with T form, or [y---z] if the studied 
filter is with Π form (type).  
 So we have the first sub-model given by Fig. 12, 
this model is in conformity with case 1 described 
previously. So we have the integro-differentials 
operators by taking account to the previously equations: 

 

1
1 1

1
L : Loopgain of the algebraic loop 

z y

−=  

 

1 1

1
1 :Determinantof the associated causal bond graph

z y
∆ = +  

 

1
11

1 1

12
1 1

21
1 1

22

1 1

z
H

z y 1

1
H

z y 1

1
H : Theall integro differentials operators 

z y 1

y1
H

z1y1 1

1
H

z y 1


= +


=

+
 = − +
 −=

+
 −
∆ =

+

  

 
 
Fig. 11: The transformed and reduced causal bond 

graph model  
 

 
 
Fig. 12: The first causal bond graph sub-model  
 

 
 
Fig. 13: The second causal bond graph sub-model  
 
 From these operators, we can deduce directly the 
wave matrix W(1) of the first sub-model of Fig. 12 by 
taking account to equations of case 1:  
 

(1) 1 1 1 1 1 1 1 11
2

1 1 1 1 1 1 1 1

z y z y 2 z y z y
W

z y z y z y z y

 − − + − + +
=  − − + + + 

 

 
and  now  we  have  the  second sub-model given by 
Fig. 13 and in the same manner we can extract the 
second wave matrix W(2) such us:  
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2
2 2

1
L : Loopgain of the algebraic loop 

z y

−=  

 

2 2

1
1 : Determinantof the associated causal bond graph

z y
∆ = +  

  

2
11

2 2

12
2 2

21
2 2

2
22

2 2

2 2

z
H

z y 1

1
H

z y 1

1
H : Theall integro differentials operators

z y 1

y
H

z y 1

1
H

z y 1


=

+

 =

+

 = − +
 −
 =

+
 −∆ =
 +

 

 
and the second wave matrix is: 
 

(2) 2 2 2 2 2 2 2 21
2

2 2 2 2 2 2 2 2

z y z y 2 z y z y
W

z y z y z y z y

 − − + − + +
=  − − + + + 

 

 
 The total wave matrix W(T) is given by the product 
of the first and the second wave matrix such us:  
 

(T) (1) (2) 11 12

21 22

w w
w w * w

w w

 
= =  

 
 (35)  

 
 So the corresponding scattering matrix S(T) is given 
below:  
 

1 1
22 12 11 21 12 22(T)

1 1
22 21 22

w *w w w * w * w
s

w w * w

− −

− −

 −
=  

− −  
 (36)  

 
 From this matrix we can deduce these following 
scattering parameters:  
 

1 2 1 2 1 2 1 2 1 1 2

2 1 2 1 2
11

z z y y z y (y z ) z (y y 1)

z (y y 1) y y
s

d(p)

+ − + − − +

+ − + +=  (37)  

 

12 21

2
s s

d(p)
= =  (38)  

 
 The Fig. 11, represent the reduced bond graph 
model of the studied filter before decomposition.  
 The Fig. 12 and 13 represent respectively the first 
and the second sub-model of the studied filter; they are 

given by the decomposition of the reduced bond graph 
model of Fig. 11 at the appropriate bond (place). 
   

1 2 1 2 1 2 1 2 1 1 2

2 1 2 1 2
22

z z y y z y (y z ) z (y y 1)

z (y y 1) y y
s

d(p)

− + − + − − −

+ − + +=  (39)  

 

1 2 1 2 1 2 1 2 1 2 2

2

d(p) z z y y z y (y z ) z (y z )

(y y1z1 z2 z1 z2\ y1 y2 21)

= − + − + +

+ + + + + = + +
 (40)  

 
RESULTS 

 
 Thus, the validation is carried out by simulate the 
scattering parameters of Eq. 37-39.  
 
Simulation results and checking: A simple 
programming of the following scattering parameters 
equations, give the Fig. 14-17 which represent 
respectively the reflexion and transmission coefficients 
of the studied filter: 
 

4 3
C1 C2 L1 L2 L1 C2 C1 L2

2
C1 L2 L1 C2 L2 L1

C1 C2 L1 L2
11 4 3

C1 C2 L1 L2 L1 C2 C1 L2

2
C1 C2 L2 L1 C1 C2

L1 L2

p ( )p

[ ( ) ( )]P

( )p
S

p ( )p

( )( )P (

)p 2

τ τ τ τ + τ τ τ − τ +

τ τ + τ + τ τ − τ +

τ + τ − τ − τ=
τ τ τ τ + τ τ τ + τ +

τ + τ τ + τ + τ + τ

+ τ + τ +

 (41)  

 
4 3

C1 C2 L1 L2 L1 C2 C1 L2

2
C2 L1 L2 C1 L1 L1

C1 C2 L1 L2
22 4 3

C1 C2 L1 L2 L1 C2 C1 L2

2
C1 C2 L2 L1 C1 C2

L1 L2

p ( )p

[ ( ) ( )]P

( )p
S

p ( )p

( )( )P (

)p 2

−τ τ τ τ + τ τ τ − τ +

τ τ − τ − τ τ + τ +

τ + τ − τ − τ=
τ τ τ τ + τ τ τ + τ +

τ + τ τ + τ + τ + τ

+ τ + τ +

  (42)  

 

 
 
Fig. 14: Reflexion coefficient S11 seen at entry  
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Fig. 15: Transmission coefficient S12 seen from exit to 

entry  
 

 
 
Fig. 16: Transmission coefficient S21 seen from entry 

to exit  
 

 
 

Fig. 17: Reflexion coefficient S22 seen at exit  
 

12 4 3
C1 C2 L1 L2 L1 C2 C1 L2

2
C1 C2 L1 L2 C1

C2 L1 L2

2
S

p ( )p

( )( )P (

)p 2

=
τ τ τ τ + τ τ τ + τ +

τ + τ τ + τ + τ +

τ + τ + τ +

  (43)  

 
 
Fig. 18: The low-pass filter under the HP-ADS software  
 

 

 
 
Fig. 19: Simulation results of the low-pass filter  
 

21 4 3
C1 C2 L1 L2 L1 C2 C1 L2

2
C1 C2 L1 L2 C1

C2 L1 L2

2
S

p ( )p

( )( )P (

)p 2

=
τ τ τ τ + τ τ τ + τ +

τ + τ τ + τ + τ +

τ + τ + τ +

  (44)  

 
 We notice that the reflexions coefficients S11 and 
S22 are equal in module. This result is also checked by 
the figures below: 
 
 11 22S | | S |=  (45)  

 
 To validate and checked the found results, by 
simulation, it is enough to simulate the low-pass filter 
of the Fig. 18 to find the representative curves of the 
reflexion and transmission coefficients respectively Sii  
and Sij  by the HP-ADS software (Advanced Design 
System) (Jansen, 2003) often used in microwave and it 
is regarded as a traditional method in the line’s theory 
(Magnusson, 2001).  
 The Fig. 18 thus represents the system's model 
studied with adapted entry and exit and the numerical 
values of its elements necessary for simulation. 
 The simulation of the low-pass filter above gives 
the graphical representation of the reflexion and 
transmission coefficients Sii and Sij (i ≠ j and i, j = 1...2) 
according to the frequency like Fig. 19 indicate it.  
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 By observing Fig. 19 and Fig. 14-17, we can say 
that our method of extracting the wave matrix from a 
reduced bond graph model is validated because it give 
us the same simulation results. 
 
Modeling of the scattering parameters with bond 
graph technique: We noted that we will use the 
method which is developed by Kamel and Dauphin-
Tanguy (1993; 1996).  
 
Procedure used to model the scattering matrix by 
the bond graph technique: The scattering matrix of 
our studied process is a 2-2 matrix having a particular 
form whatever the expressions complexity of the series 
impedance or parallel admittance; it is orthogonal since 
the process is considered without loss and it admits the 
following general form: 
 

11 n 11 12 n 12
n 0 n 0
21 n 21 22 n 21
n 0 n 0

n n 1
n n 1

b p ... b b p ... b

b p ... b b p ... b
S

a p a p ... ao−
−

 + + + +
 + + + + =

+ + +
 (46)  

 
 We note that:  
 

n n 1
n n 1 0d(p) a p a p .... a−

−= + + +  (47)  

 
 Indeed, if we consider the scattering matrix form 
found above for the process alone, we can say that it is 
not a true transfer matrix (Belevich, 1968) moreover, it 
is not in the adequate form since its various Sii  
parameters and sometimes Sij have the numerator’s 
degree equal to that of denominator and that poses a 
major problem to determinate the scattering bond graph 
model of any physical system studied in a general way.  
 The solution with this problem is to regard the 
scattering matrix of a process as a transfer matrix from 
an input-output point of view, connecting the incident 
and the reflected waves in a symbolic system form.  
 We start by carrying out an Euclidean division of 
each term of the numerator matrix (scattering 
parameters) by the common denominator d(p) what 
leads to the new shape of the scattering matrix 
(Breedveld, 1985) such as:  
  
S S' D= +  (48)  
 
S’ = The new scattering matrix with degrees in the 

numerator at most one less than that of d(s)  
D = Direct transmission matrix: 
 

1 3

4 2

d d
D

d d

 
=  
 

 (49)  

 Thereafter we seek for the new matrix S’ its 
development in continuous fraction in alpha-beta 
starting from the Routh method (Shamash, 1980) and 
build the corresponding bond graph model, since it is 
about a multivariable system (Molisch et al., 2002) 
while being based on the systematic procedure 
according to:  

 
• Calculate the α-Routh table from the common 

denominator d(p) and the β-Routh table from the 
new numerator of the S’-matrix 

• Construct the direct chain by using the adequate 
number of elements I-C (which αi coefficients are 
their modules) in integral causality, equal to the 
degree of d(p) 

• Duplicate this chain and construct the two entries 
of the quadruple 

• Construct the tow outputs by using information 
bonds and a sufficient number of TF and GY 
elements whose modules are precisely the 

ij
nβ coefficients 

• Add the direct part (transmission matrix D) by 
using information bonds  

• To obtain the scattering bond graph model of the 
physical system, it is enough to add the reflexion 

coefficient 0
g

0

z 1
P

z 1

−
=

+
 of the source and the 

reflexion coefficient L
c

L

z 1
P

z 1

−=
+

 of the load to the 

scattering bond graph model of the process to the 
adequate sites 

 
Scattering bond graph model of the low-pass filter: 
To obtain the scattering bond graph model of the 
studied circuit, it is enough to add the reflexion 

coefficient 0
g

0

z 1
P

z 1

−
=

+
 of the source and the reflexion 

coefficient L
c

L

z 1
P

z 1

−=
+

of the load to the scattering bond 

graph model of the process to the adequate sites like 
Fig. 20 indicate it.  
 It is interesting to notice that the structure of the 
scattering bond graph of the process remains the same 
whatever the degree of the common denominator of 
scattering matrix. The only thing that changes is the 
corresponding number of I and C linked to the α-
Routh expansion (Kamel and Dauphin-Tanguy, 1993; 
1996).  
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Fig. 20: Scattering bond graph model of the low-pass filter connecting to its source and load 
 

3 2
C2 L1 L2 L1 C2 L1 L2

11 4 3
C1 C2 L1 L2 L1 C2 C1 L2 C1 C2

2
L2 L1 C1 C2 L1 L2

2 p 2 P 2( )p 2
S'

p ( )p ( )

( )P ( )p 2

τ τ τ + τ τ + τ + τ +=
τ τ τ τ + τ τ τ + τ + τ + τ

τ + τ + τ + τ + τ + τ +

  (50) 

  

12 4 3
C1 C2 L1 L2 L1 C2 C1 L2 C1 C2

2
L1 L2 C1 C2 L1 L2

2
S'

p ( )p ( )

( )P ( )p 2

=
τ τ τ τ + τ τ τ + τ + τ + τ

τ + τ + τ + τ + τ + τ +

  (51)  

 

21 4 3
C1 C2 L1 L2 L1 C2 C1 L2 C1 C2

2
L1 L2 C1 C2 L1 L2

2
S'

p ( )p ( )

( )P ( )p 2

=
τ τ τ τ + τ τ τ + τ + τ + τ

τ + τ + τ + τ + τ + τ +

 (52)  

 
3 2

C2 L1 L2 L1 C2 L1 L2
22 4 3

C1 C2 L1 L2 L1 C2 C1 L2 C1 C2

2
L2 L1 C1 C2 L1 L2

2 p 2 P 2( )p 2
S'

p ( )p ( )

( )P ( )p 2

τ τ τ + τ τ + τ + τ +=
τ τ τ τ + τ τ τ + τ + τ + τ

τ + τ + τ + τ + τ + τ +

  (53)  

 
1 0

D
0 1

 
=  − 

 (54)  

 The alpha-beta coefficients are then:  
 From d(p) we have:  
 

1 2 3 4, , andα α α α  
 
 From S′11 we have:  
 

11 11 11 11
1 2 3 4, , andβ β β β  

 

 From S′12= S′21 we have:  
 

12 12 12 12 12 21 12 21
1 1 2 1 3 1 4 1, , and , andβ β β β β = β β = β  

 

 From S′22 we have:  
 

22 22 22 22
1 2 3 4, , andβ β β β  

 
DISCUSSTION 

 
 We sought to highlight the incident and reflected 
waves and their propagation on a bond graph called 
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“scattering bond graph” which, in addition to the 
simplicity of its structure which remains unchanged 
about or the complexity of the studied system, that it 
has a physical interpretation and easier to handle than 
an abstracted mathematical model and then it proposes 
a temporal approach phenomena usually modeled with 
the frequency tools.  
 Moreover all the panoply of the techniques and 
properties of a bond graph can be used in a unified way 
with the service of a formalism which used from the 
low frequencies to highest. Moreover, this methodology 
which makes it possible to study simultaneously a given 
system with two complementary formalisms can 
supports us a broader comprehension of its behavior.  
 

CONCLUSION 
 
 In this study, we tried to present a method which 
appears new for the determination of the scattering 
parameters of any physical system functioning in high 
frequency.  
 Then, we applied this technique to a low-pass filter 
based on Microstrip lines.  
 Lastly, we validated the results found by a simple 
comparison between two methods of simulation: 
simulation by the traditional methods used in 
microwave under the HP-ADS software and simulation 
by our own method of the reduced bond graph which is 
based on the causal and simplified bond graph model of 
the studied system like on the minimum of the causal 
ways and loops present in this model often decomposed 
to sub-models as we showed previously.  
 Generally, this new analysis method lead us, to use 
this new method which combines at the same time the 
bond graph technical and the scattering formalism for 
modeling and simulation of the scattering matrices of 
any electrical circuits often functioning in high 
frequency and based on localized or distributed 
elements giving rise to the famous model often named: 
Scattering bond graph.  
 This new type of modeling will enable us to 
capture the power transfers in a simple and direct 
manner at the same time and it proposes us a temporal 
approach of the phenomena usually modeled with the 
frequencies tools.  
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