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Abstract: Problem statement: In this article we address the multi-objective i®dic Maintenance
Scheduling Problem (PMSP) of scheduling a set aficynaintenance operations for a given set of
machines through a specified planning period toimmire the total variance of workforce levels
measured in man-hours and maintenance costs withl @gights Approach: The article proposed

a mixed integer non-linear math programming moael a linearised model for the PMSP. Also, we
proposed a Genetic Algorithm (GA) for solving thelplem using a new genome representation
considered as a new addition to the maintenancedsdimg literature. The algorithms were
compared on a set of representative test problBmsults: The developed GA proves its capability
and superiority to find good solutions for the PM&Rd outperforms solutions found by the
commercial optimization package CPLEX. The resultScated that the developed algorithms were
able to identify optimal solutions for small sipeoblems up to 5 machines and 6 planning
periods.The GAs defined solutions in 22 secondssaeming less than two kilobytes with a
reliability of 0.84 while the nonlinear and linemmodels consumes on average 705 and 37 kilobytes
respectively. Conclusion: The developed GA could define solutions of averpgrformance of
0.34 and 0.8 for the linearized algorithm companéth lower bound defined by the nonlinear math
programming model. We hope to expand the develaggdrithms for integrating maintenance
planning and aggregate production planning problems

Key words: Periodic Maintenance, multi-criteria optimizatiomixed-integer non-linear math
programming, linearization, genetic algorithms, m@nhance costs, complexity
parameter, CPU seconds, genome’s fithess

INTRODUCTION Scheduling Problem (FPMSP) and the Periodic
Maintenance Scheduling Problem (PMSP). The FPMSP
The preventive maintenance scheduling is amongonsiders T as a decision variable and aims to tfied
the  most important problems faced by optimal T* optimizing maintenance costs while the
productive/service organizations. The preventivePMSP assumes values of cycle lengths. Bar-&tcg/.
maintenance applied by servicing the equipment 01§2002) have shown that the FPMSP is NP-hard even
regular intervals is for the purpose of increasitey when T* is known so this implies the PMSP is NPehar
reliability as much as possible. The problem hagqGrigorievet al., 2006).
attracted researchers due to its economical impogta The PMSP is to find a cyclic maintenance schedule
and complexity, see for example Dekker (1996). €hesof a given length T for a set of machines to optani
articles and others contained therein were intedest  predefined organization goals. The maintenance
modeling and solving the problem to minimize thetco scheduling problems research work could be broadly
or maximize the machine lifetime. Extensive reskarc categorized as stochastic and deterministic appesac
treated the problem as a stochastic model wheteas tbased on the machine failures pattern. The natfire o
machine failures described by probability distribns  machine failures in stochastic approaches is desari
(see for instance Gertsbakh and Gertsbakh (2000 wh by probability distributions (see for instance Gbekh
a little was concerned with the deterministic cabere and Gertsbakh (2000)) while the deterministic
the failures described by constant parameters (sespproaches are used to describe the cyclic maimtena
Wagneret al. (1964) for an early reference). scheduling activities assuming a fixed cycle lengthe
Two variants of maintenance planning problemsstochastic machine failure maintenance schedulasy h
exist in literature, the Free Periodic Maintenanceattracted researchers more than the determiniase.c
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A precise description for the problem is given et costs are 4227969 and 1361584 with a total variafce
following. 5,589,553. For a set of 15 practical cases of 10
machines and T = 12, we solved each case by both

Problem description: We consider the following random and heuristic approaches. The resulting
practical problem. There is a set of m machineggyp Variance for each case is depicted at the scaltierop
each includes midentical ones where[{1,2,...,m} Fig. 1. The scatter plot shows that the ranglom plan
and a standard machine was defined based on tféere we begin the cycle for each machine by a
experience of maintenance expertise. The standaf@ndom maintenance operation always gives larger
machine maintenance cycle was known and represent@riance than the heuristic approach.
all required maintenance operations during a pieeef Our motivations for investigating the PMSP rather
period. The cycle length (T) equals to the totahber than FPMSP_ are threef_old. First of all, the PMSR is
of maintenance activities for the standard unite Th Moré practical and industrial problem than the
workforce levels measured by the total man-hours an@cademic FPMSP where the number of machines may
the required cash flow to perform each maintenanc&®ach to 500 or more and the cycle length mig2 3,
operation are given. A complexity parametegX@r  92. 30, 7, 24 or 60. The second motivation of sigly
machine number | of type k given for all machinesS Solving the PMSP to optimality whereas most
represents the similarity between each machinethigh ~Previous research work was focused on the complexit
standard unit. The work content for all machinesldo and approximation of the PMSP. A third motivatidn o
be estimated by referencing to the machines coritplex OUr work is to consider a real objective of smoaghi
parameters. The maintenance laborers are hiretieall the workforce levels and maintenance costs throtigh
year so it is fixed. A solution to the problem hasUsing a non-linear objective function (variance).
information on the cyclic schedule and the allogate ~ The purpose of this study is to introduce Genetic
cost for each machine through T. Algorithms (GAs) as a solver for the PMSP with the
To illustrate the problem, consider a PSMP with 20bjective of minimizing the total variance of wookée
machine types A and B each has 3 machineghan-hours and maintenance costs with equal weights.
symbolized as A1,A2,A3,B1,B2 and B3. The standardGAs include features for handling a large number of
machine Al has a cycle of GHb-15-S;-l4-15-16-Sy-17-1 - constraints, modeling flexibility in dealing with
lo (T = 12). C indicates an overhaul iBdicates a half problem complexity, utilizing less CPU memory
overhaul, |-lg indicate various maintenance allocation than mathematical programming technigues
operations. Each machine complexity parameter ifiandling the multi-criteria nature of real-world
given in Table 1. 1800, 200 and 100 man-hrs argyroblems without any modeling complications andeeas
required to perform C, ;Sand | respectively. Bl of implementation. Furthermore, there have been a
machine has a complexity parameter of 0.5, meaningjgnificant number of studies that have shown GAs
that if any operation performed with 200 man-hdors  effectiveness in solving hard combinatorial prokdem
machine Al (the standard one), it will be perforroed £, example, Beasley and Chu (1996) and Lorena and

100 man-hours for B1. C,1$1nd. L costs are 1000, SO opes (1997) applied GA to the set covering problem
and 50 respectively for machine Al. The associate Iso, we proposed a mixed-integer non-linear math

costs for B1 are 500, 40 and 25 respectively. Table rogramming model and a linearized model for the

depicts a random schedule of man-hours and mon MSP to evaluate the performance of the developed
with T = 12. Each machine has the standard machine’ . P . P
A. The evaluation was based on the solution ddfine

maintenance cycle that begins by any maintenanc _
operation C, any of Ss, or any of Is and follow tlyele y math models due to the concerned_problem d|ffer
sequence. The table depicts a fluctuation in mgnthi fom the standard PMSP so the existing solution
man-hours to perform all maintenance work betweefn®thods must developed to handle this difference.
950 and 17100. Also, the monthly money allocated to !N summary, the two primary contributions of this
maintenance operations varies from 525-$10500. Thid'ticle to the PMSP literature are that: (1) we
solution has man-hours and cost variances of 19831 demonstrate the effectiveness of GAs for solving th
and 7328792 with a total of 26,951,900. A possiblePMSP over the developed math programming models;
heuristic solution approach for the PMSP impleménte (2) we handle the problem as a non-linear objective
by the author for many years in the field of manaiece  optimization problem rather than the availablerditare
scheduling is to assign an overhaul to the firstmree  of handling only the linear cases and deal with the
at the first period and an overhaul to the second gpractical rather than the academic problems aJailiab
period 2 and so on. The variances for man-hours anghaintenance planning and scheduling literature.
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Table 1: The distribution of man-hours and costsugh T = 12

Machine T
Type G 1 2 3 4 5 6 7 8 9 10 11 12
Al 1 C b I I3 S ls Is le S Iz lg lg
1800 100 100 100 200 100 100 100 200 100 100 100
1000 50 80 70 80 50 70 80 80 80 50 60
A2 15 S l7 lg lg C Iy I Is S ls Is le
300 150 150 150 300 150 150 150 2700 150 150 150
120 120 75 90 1500 75 120 105 120 75 105 120
A3 2 S la Is le S Iz lg lo C Iy I I3
400 200 200 200 3600 200 200 200 400 200 200 200
160 100 140 160 160 160 100 120 2000 100 160 140
B1 0.5 3 le S l7 lg lo C Iy I Is S la
50 50 100 50 50 50 900 50 50 50 100 50
35 40 40 40 25 30 500 25 40 35 40 25
B2 25 b S la Is le S l7 lg lo C Iy I
250 500 250 250 250 500 250 250 250 4500 250 250
175 200 125 175 200 200 200 125 150 2500 125 200
B3 3 k lg C Iy I Is S ls Is le S l7
300 300 5400 300 300 300 600 300 300 300 600 300
150 180 3000 150 240 210 240 150 210 240 240 240
>'Man-hours 17100 950 950 950 1900 950 950 950 1900 50 9 950 950
> Cost,$ 10500 525 840 735 840 525 735 840 840 84025 5 630
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Fig. 1: A scatter plot of variances for 15 pradticases

Literature

review: The preventive maintenance the set-partitioning model for power generatingtsini

scheduling models and solution widely see techrsiqueDuffuaa and Ben-Daya (1994), Hariga (1994) and Sule
of power generating plants have been considered iand Harmon (1979) investigated preventive
scheduling literature, for example, the articleSherif  maintenance scheduling models for the purpose of
and Smith (1981), Dekker (1996) and Deklatral. coordinating a common resource to a set of machines
(1997). Presented an overview for the optimization  Anily et al. (1998) considered a special case of
techniques including integer programming models for-PMSP for scheduling of maintenance service tota se
optimizing  preventive maintenance  schedulingof machines applied in a multi-item replenishmeht o
problems of power generating plants. Also, Chasest stock environment. They assumed linear increase of
Ferland (1993) applied local search technique®hees maintenance cost coefficients. They prove the emcst
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of a cyclic maintenance schedule for FPMSP andegrovadopted to generate the full factorial design foe t
that the problem has an exact solution by intrautyein ~ factors. Each design was replicated 50 times teigea
exponential complexity network-flow based algorithm 50 instances per design.
that could find the exact solution for up to 4 maeb A standard time-indexed mixed-integer non-linear
problems. Anilyet al. (1999) proposed an algorithm for math programming model was developed in the second
scheduling of maintenance services to three maghingstep to represent the PMSP for minimizing the total
and found the exact optimal solutions for certainyariance of man-hours and costs through the plannin
instances of the problem and the other instana@8d®d  period with equal weights. The model considers the
a heuristic algorithm with a performance ratio @f3B83. maintenance plan sequence of operations for all

Bar-Noy et al. (2002) and Kenyoret al. (2000)  mgachines, the total of man-hours per period must no
constrained the number of machines that can b&serv gy eeq the available and the total maintenance cost
at each perloq to be at most M in a broadC""S'Eioesn’t exceed the available money allocated to
scheduling environment. Bar-Nay al. .(2002.) proved perform maintenance operations. The software packag
the NP-hardiness of the FPMP and investigated IoweIEINGO was applied to solve all non-linear models. A
bounds and proposed % approximation algorithm. linear integer math programming model version far t

. original PSMP was developed by linearizing the

Also, Schabanel (2000) showed that the preempt'v?\onlinear terms in the objective function and addime

FPMP was also NP-hard. Kenyoat al. (2000) : find th lobal ‘mal
introduced a Polynomial-time approximation scheme 'ccessary constraints to find the globa pptlma
olution. The software CPLEX was used to find the

for data broadcast of a bounded service cost . ) . .
environment while the non-identical service timasee  1ne@r solutions. Applying integer math programming

was studied by Kenyon and Schabanel (2001). Braungi°!Vers to handle practical problems usually hasyma
e al. (2001) addressed the complexity of high practical implementation difficulties such as highe

multiplicity scheduling problems that arise from CPU seconds, memory bytes and needs more modeling
compact encodings of solutions. effort to code the problem in the math form.

A dynamic programming technique to minimize GAs were used eXtenSiVEly in SChedU"ng literature
the salvage costs and the discounting of costs dP solve these difficulties whereas they do notrteigh
operating a parallel machine shop whose operation@mount of CPU seconds, consume low memory bytes
costs increase with age. The problem deals with theompared with math programming solvers and they do
possibility of replacing a machine at each planningnot need a lot of coding effort to formulate thelgdem
period at the expense of purchasing costs. in genetic form. Moreover, the math programming

Based on the previous survey, we note that naolvers for large-size problems might fail to fiady
research work done tackling the PMSP with a largeeasible solution in suitable CPU seconds, whetkas
number of machines corresponds to real-worldGAs find a feasible solution during the initial dwiion

manufacturing systems. Also, no research was done process. Unfortunately, GAs need their parameter
minimize the total variance workforce man-hrs andining to find better solutions for complex problem

maintenance costs. Moreover, previous researcByctures.
focused on the parallel machine problem when ateac  The third step is concerned with designing the

pla_nning period - there was one m"%‘Chi”e in_developed GA by conducting a full factorial desfgn
maintenance and other machines in service but thlﬁ,]e factors affecting the GA's efficiency. Each téac
study allowed for more than one machine to be iI’\evels were defined and the GA was run for 100

maintenance. . . , X
replicates per design. The parameter's selection
MATERIALS AND METHODS cntgnc_m_ was the_ best average performance for
minimizing the variance. After the GA’s parameter

The solution methodology:In this article, we adopt a tuning step, we applied the developed GA in thé las
solution methodology shown in Fig. 2. The Step to find the solution of the generated tesblens
methodology consists of four steps. The first stepdt step 1. Each problem was solved 100 times @ fin
begins by generating a set of test problems byhe minimum, average and maximum variances,
considering the factors affecting the complexitytiod  reliability to find the minimum variance, average
PMSP and their levels. The system size, cycle kengtconsumed CPU seconds and the average memory bytes
and the number of different maintenance operationsvere traced with respect to different populatioresi
were considered. A full experimental design wasand number of generation combinations.
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By comparing the three developed solution modelszyy = A binary decision variable equals to 1 if any
for the PSMP, we could find the limitations, maintenance operation will be performed at
advantages, disadvantages and applicability of gusin period j or the machine number | of type k and
each model to solve real-world maintenance schegluli equals to 0 otherwise
problems.

We will propose a mixed-integer non-linear math  pased on the definitions of indexes, parameteds an
programming model for the PSMP and the lineariseqjecision variables we formulate the multi-objective
version of the model. mixed-integer non-linear math programming model for

i the PSMP as follows:
The math programming models: We develop a © as foflows

mixed-integer non-linear math programming model for

PMSP as a standard time-indexed formulation and mm T
linearise it to find the global optimal solutionh& T zzzckl-hj Kkl
notations used in this formulation are listed below Min ool L z k=1 I=1 i=1
T .‘—1 1 T mm T
Indexes: 15 —(?]zzz Gy -1y
j=L k=1 I=1 i=1 1
i = Index for the maintenance operation, | = mme T 2 @
1,2,3,..T
1£39, Cy -G X%
j = Index for the planning period, J =1,2,3,...,T 1)< ;;; k-G i
k = Index for the machine type, K = 1,2,3,...m +(1ﬂ)|3[?}-z Tomom T
I = Index for the number of machine per type =t _(1 -
kI=1,2,3,....,M 722220
j=1 k=1 I=1 i=1
Parameters:
) _ Subject to:
a = Weightto balance man-hours and maintenance
cost variances andas< 1. ltequalsto 0.5in
this article
Cy-hi Xy —H <0
¢ = The cost for maintenance operation j of the;;; 4Ny i = 1
standard machine Oi=12. T )
C = The available money at period j for I =5
maintenance operations
¢i = Complexity parameter for machine number | (0, T T
of type k DD kG Au ~GSO
hiw = The required man-hours to perform k=L 1=l i=l
maintenance operation i for machine number I0j=1,2,..., T 3)
of type k and equals tg, ltg
hy = The required man-hours to perform operation j 1
for the standard machine Zj-xijkl ~Yi =0
H; = The available man-hours at period | =1
M = Number of machine types =12  TOk=12 E 12 4
m, = Number of machines per type k = 2 ML E L2007 @
T = Cycle length
T
Decision variables: Xijd = T-Z =0
. . . . =
Xjg = A t_)lnary decision yarla_ble. equals to 1 if a i =12, TOK= 1,2, £ 1,200 (5)
maintenance operation i will be performed at
period j of the machine type k for the machine
number | and equals to 0 otherwise T
Vi« = An integer variable represents the completionzzikl =1

time of maintenance operation i for the i=
machine number | of type k 0Ok=1,2,..mOdkF12,..m (6)
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Xiiki + 2kl 0{0} known as genomes. Each genome represents a feasible
solution for the problem and has a fitness contrglits
existence in the next generations. At each geroeradi
) , new population is formed by mating genomes as a
0i=12..Tj=12.. Tk 1,2,..n (7 result of applying genetic operators as crossover a
or=12,... m mutation so the good genomes replace the worstiones
the current generation (Michalewicz, 1996). A
The objective function shown in Eg. 1 minimizes systematic GA’s structure is depicted in Fig. 2.
the total variances of man-hours and costs forrpiten We will develop a GA to provide efficient
periods T. Eq. 2 ensures that the total allocatioman-  solutions to the predefined PSMP. We first begithwi
hours per period doesn’t exceed the available pgog introducing a new genome representation for the PSM
J. Equation 3 ensures that the total allocatedsgost and then a detailed GA's structure will be defined
period are not more than the available. EquatioBs 4 terms of initialization, selection, crossover andtation
ensure that maintenance operations assignmentfolloand replacement mechanisms. Also, the genome’s
the sequence of operations for the standard unfitness evaluation is illustrated besides condgctm
maintenance cycle. The variable domains are definedxperiment to define the most affecting GA’s
by Eq. 7. components on maximizing the algorithm performance.
In this article, we reformulate the model to a
mixed-integer linear formulation by performing the Genome representation, initialization, selection ah
following variable transformations. For each pradeic  genetic operators: The proposed genome consists of
binary variable pairg;y x,qin the objective function, number of genes equal to the total number of mashin
in the manufacturing systemy,my for all values of k.
Each gene’s allele was generated from a discrete
uniform distribution with lower and upper bounds
equals to 1 and T respectively. The gene ordehén t

yiy =0 and integers:

replace Xy Xoqrs DY Zijuipgrs @Nd adding the following
three constraints as shown in Eq. 8-11:

Xiji * Xpars ~ 2-Zikipars = 0 (8) genome sequence represents the machine number
while the gene’s allele represents the maintenance
Xiji * Xpqrs ~ Zijkipars < 1 (9) operation that will be performed on that machine at

period 1 of the planning horizon. For example, the
(10) allele value at position 2 of a hypothetical genome
represents the first maintenance operation thdtheil
) ) ) ~ performed at period 1 for machine number 2. Fidure
The linearised model can find the global optimaljjjystrates an industrial system consisting of 5
solution for the non-linear model for small-size machines and it is required to construct a mainteaa
problems and also can find lower bounds for largeschedule for 6 planning periods. The first machine
problems. We will introduce a GA formulation foreth (M1) chosen as a standard machine and has
PSMP by originating a new genome representation fomaintenance schedule of,002,...,0;, while the
minimizing the total variance of man-hours and sost  third machine schedule is,{@;,0,,05,00; and so
on. The depicted schedule could be presented as the

The proposed genetic algorithm: The GA is an genome @ Os, O,, Os, Os. The genome indicates that
optimization heuristic based on a stochastic searchaintenance operations 1, 6, 2, 5 and 4 will be
which mimics the biological process of naturaladopted for machines 1 to 5 as the starting
selection (Goldberg, 1989; Davis, 1991). It haseljd Maintenance operation at period 1. The proposed
applied to solve hard single and multi-criteria 9énome advantages are the small length, avoidiag th
optimization problems as job-shop scheduling, Biexi  representation’s infeasibility that exhausts GAsl an
manufacturing loading, transportation planning,lydai €xistence of the standard genetic operators.

image selection problem (Mansour and Dessouky, The initial population was randomly generated and
2010). The algorithm evolves with a constantcontrolled by various genetic operators through the
population size for a predefined period definedey evolution process. Different selection operatorgewe
stopping criterion. This criterion may be a fixadwmber adopted as tournament, ranking, roulette wheel and
of generations, a certain execution time, or uatii  uniform. One point, two point and uniform crossover
occurrence of a population convergence. The GAoperators were applied. The flip and Gaussian riautat
begins by generating an initial population of irdixals  operators were applied in the developed GA.
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Cvcle length =6
t=1 =2 t=3 1=4 t=35 =6
‘ M1 ‘ | O, | o)} ‘ 0; ‘ Os | Qs ‘ Qs | Objective Oy (0] 0; 04 0: 0
Man-hours 2 7 3 4 5 6
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£ ‘ M3 ‘ | o | o ‘ ) ‘ ) | ) ‘ o, |
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E G N o]
- Genome’s struchue
‘ M5 ‘ | 0. | 0: ‘ O: ‘ o | o ‘ o; |

A feasible maintenance schedule

Fig. 3: The proposed genome representation

Genome’s fitness evaluation:The genome’s fithess generations varied for each problem hence theybeill
determines the power to achieve the objectives oflefined for each one separately. Based on the
solving the problem. It controls the genome’s exise  experiments the factors settings of uniform crossov
through the evolution process. In this article, fitmess ~ probability of 0.93, flip mutation probability of.01
evaluation process evaluates the total varianamanf- ~ and roulette wheel replacement percentage of @ig8,
hours loads and costs per planning period. Thaneei  the best average total variance. For each testigmmb
was computed by the formula shown in Eq. 11. The xthe genetic algorithm was run 100 times, each titie

variable represents the total man-hours or cost& differentinitial random seed. .
= We will test the developed math programming and

allocated by a plan at period | whileis the overall  GA models on a set of test problems considering the
average of all periods and is the average per@¢rio  most affecting factors on the PSMP’s complexitye Th

) objective is to find out the advantages, disadwgeda

T = and limitations for each solution method for sotythe
Z(XJ_X) problem under consideration. The comparison céiteri
Variance = 4= (11) will be solution quality, CPU time measured in set®
T to reach best solutions and the consumed memory

o Megabytes consumed by the CPU during processing the
For the shown example in Fig. 3, the total man-—arious algorithms.

hours for periods are 24, 23, 22, 21, 25 and 20

respectively. The overall average of 22.5 man-hdsirs Computational experiments: We tested the proposed
achieved for the given schedule and variance edaals algorithms on a set of 100 test problems represgnti
0.324. Also, the cost's variance equals to 0.17 T the full factorial design for three factors. Theaetors
total of these two variance components gives there system sizes of {5,10,20,30,50} machines, cycle

genome’s objective. lengths of {6,12,24,36,52} and number of different
maintenance operations per cycle of {2,3,4,5}. We
RESULTS AND DISCUSSION assumed that there are 9 maintenance operations’

options where the first option represented an caudrh

operation. The man-hours required for an overhaul i
aenerated from a discrete uniform random numben fro
nE‘SOO’ 1600] while other operations man-hours is

Genetic algorithm parameter settings:To identify the
best GA's parameters for the PMSP, we conducted
full experimental design on 8 factors. The eiglutdas

milrl?ditne; tig 2%n3(5) 4€;?]%m5|}6 r%zgizﬁ;esd a;edsta %ﬁﬁlﬁingenerated from the discrete uniform distributiorgaf

period of 52 weeks. The experiment’s objectiveas t [45,55], [75,85], ]85,100], ]100,120], _]120'1401’
define the most effective level for each factor ane  [150,180], ]180,200], [700,800] respectively. The
most effective factor combinations associated wign ~ OPeration’s costs were generated from continuous
difference in the GA's behavior. The factors areuniform distributions from [1400,1500], [40,50],
selection, crossover, mutation schemes, crossawr a[70.80], ]80,95], ]95,115], ]115,135], [145,170],
mutation  probabilities, replacement percentage]170,200] and [600,700]. A machine was selected as
population size and number of generations. It isstandard machine randomly and machines’ complexity
indicated that these factors affects the algorithmparameters were generated from a continuous random
efficiency. The population size and number ofnumber distribution from [0.5,2].
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No. Problem characteristics ILP-CPLEX Nlisélution Genetic aigum performance

m CL (6] LB uB Mem CPU LB Mem CPU Best Mean Worst |IRe Mem CPU Pop/Gen
1 30 12 2 3403806.0 1.0765 754 - 0.8299 17 - 2802 0.0695 0.1520 0.79 1 33 300/800
2 50 24 4 4238509.5 1.0847 869 - 0.9122 50 - €207 0.1253 0.2122 0.72 1 21 100/1000
3 50 52 2 5894419.0 1.0896 939 - 0.8849 111 -- 8380 0.1125 0.1940 0.68 2 25 100/800
4 50 24 3 6071650.5 1.0845 794  -- 0.7623 49 - €607 0.1317 0.2130 0.72 1 2 50/200
5 50 52 4 5380607.5 1.0895 969 - 0.8444 111 -- 790 0.1308 0.2092 0.65 2 32 100/1000
6 10 52 2 1311641.3 1.0884 982 - 0.7720 73 - 1m29 0.3711 0.5033 0.90 2 5 100/500
7 10 12 4 2075309.8 1.0678 749 - 0.6128 14 13 IW240.3164 0.4932 992 1 1 50/200
8 50 12 4 4401681.0 1.0804 898 - 0.9777 21 - 8004 0.0716 0.1337 0.73 1 76 300/900
9 30 36 2 3085694.5 1.0875 891 - 0.9277 80 - 1920 0.2457 0.2989 0.76 2 12 100/700
10 20 36 3 21721395 1.0863 746  -- 0.8311 27 - 0@b2 0.2743 0.4424 081 1 16 150/800
11 50 6 2 4109109.0 1.0543 677 - 0.6594 18 - 6803 0.0383 0.0457 0.75 1 40 250/900
12 10 36 3 1210459.8 1.0853 649  -- 0.9982 3B - 0415 0.5527 0.6250 091 1 23 300/800
13 30 12 4 4922834.5 1.0723 739 -- 0.8643 13 - 6120 0.0955 0.2051 0.78 1 10 150/500
14 10 6 2 746805.0 1.0039 561 -- 0.6367 8 15456 13m5 0.5730 0.7019 095 1 2 100/200
15 20 36 2 28451375 1.0862 459  -- 0.9255 28 - 6471 0.2263 0.3442 082 1 11 100/1000
16 50 12 2 6071478.5 1.0801 878 -- 0.4385 21 - 4370 0.0573 0.1035 0.75 1 57 300/1000
17 10 24 2 997639.0 1.0811 698 - 0.9806 23 - 1638 0.5243 0.7593 092 1 7 150/630
18 5 36 5 805725.1 1.0847 562 -- 0.8807 31 -- @M6740.6876 0.7243 096 1 2 100/200
19 10 24 5 1605975.5 1.0816 682  -- 0.8316 25 - 0480 0.3502 0.4399 091 1 11 200/600
20 50 24 5 5075370.5 1.0849 785 -- 0.8689 50 - 6620 0.1146 0.1639 0.71 1 16 100/800
21 10 36 2 980420.9 1.0851 751 - 0.9831 35 - 6641 0.5245 0.6376 091 1 8 100/1000
22 10 24 3 1173904.8 1.0812 748 -- 0.9692 24 - 073 0.3742 0.5063 091 1 5 150/400
23 5 12 2 997639.25 1.0621 600  -- 0.9800 8 243210000 1.0060 1.0315 0.99 1 3 100/500
24 5 36 3 1040183.4 1.0848 764 - 0.9725 30 - 1563 0.6476 0.7712 096 1 1 50/400
25 5 6 5 693812.7*  1.0000* 36 4006 1.0000* 11 321 .00@0* 1.0025 1.0263 1.00 1 1 50/100
26 10 52 5 1348300.5 1.0886 989 -- 0.9982 74 - 07B4 0.4677 0.5971 088 2 10 150/800
27 20 52 2 2776607.8 1.0887 920 -- 0.9064 72 - 0952 0.2763 0.3789 081 2 29 300/600
28 50 52 5 5248176.0 1.0899 967  -- 0.8791 112 - 097 0.1250 0.1838 0.64 2 63 200/1000
29 30 6 4 3627907.5 1.0467 699 - 0.3152 12 143260008 0.0138 0.0499 0.79 1 18 200/800
30 30 36 3 3254959.3 1.0872 782 - 0.9125 81 - 8781 0.2309 0.2800 0.77 2 13 100/900
31 5 6 4 562071.8* 1.0000* 240 33225 1.0000* 13 241 1.0000* 1.0064 1.1259 1.00 1 1 50/100
32 10 6 4 1822084.5 1.0029 781 - 0.2282 9 160002281 0.2364 0.2700 094 1 3 100/400
33 50 6 5 2844184.0 1.0567 746 - 0.5913 20 - 4809 0.0977 0.1405 0.75 1 63 400/900
34 20 12 3 4598747.0 1.0688 811 - 0.4464 17 - 7361 0.2351 0.3641 085 1 15 100/1000
3 5 6 2 925822.7* 1.0000* 10 13207 1.0000* 18 240 1.0000* 1.0000* 1.0000* 1.00 1 1 50/100
36 10 36 4 20839353 1.0856 821  -- 0.6999 36 - 5182 0.3019 0.3617 090 1 8 100/1000
37 20 36 5 2795191.0 1.0863 865 -- 0.9256 28 - 2812 0.2977 0.4691 081 1 14 150/800
38 50 6 4 8237271.0 1.0499 692 - 0.6213 19 - ?04 0.0515 0.0642 0.75 1 49 350/800
39 30 36 4 3038648.3 1.0873 841 -- 0.9369 80 - 6971 0.2217 0.2812 0.77 2 43 100/900
40 10 12 5 2694844.0 1.0698 759 -- 0.2689 12 2000m1987 0.2426 0.3095 9.92 1 2 50/200
41 50 36 3 5990660.5 1.0883 902  -- 0.8389 51 - 5890 0.0971 0.1527 0.70 2 118  250/600
42 50 36 2 8116007.0 1.0881 899 -- 0.9841 50 - 6760 0.1046 0.1434 0.71 2 119  250/600
43 5 36 2 714387.8 1.0846 689  -- 0.9977 29 - (13260.3265 0.3361 0.97 1 1 50/100
4 5 12 3 647220.9 1.0654 800 -- 1.0000 10 25987000D 1.0003 1.0081 0.98 1 26 100/300
45 20 24 2 31132715 1.0824 235  -- 0.6727 36 - 6111 0.2002 0.2632 0.84 1 79 300/700
46 10 6 5 2670231.5 1.0028 662 - 0.0990 8 230000861 0.0920 0.2230 094 1 45 100/500
47 5 12 4 514145.6 1.0675 802  -- 1.0000 9 23987 00DO 1.0073 1.2951 099 1 1 50/100
48 30 12 5 3647181.3 1.0735 873 -- 0.6702 19 - 1410 0.0877 0.1755 0.78 1 69 250/800
49 30 36 5 3610561.5 1.0877 786 @ -- 0.9859 81 - 9721 0.2394 0.2951 0.77 2 36 100/900
50 50 12 5 4940236.0 1.0807 871 -- 0.7553 22 - 4870 0.0702 0.1439 0.73 1 165  350/900
51 10 12 3 2551794.8 1.0653 671  -- 0.3511 13 36 8272 0.2965 0.3147 092 1 2 50/200
52 5 24 2 1644679.0 1.0808 605 - 1.0000 12 - &151 0.5197 0.5742 098 1 2 50/400
53 20 6 4 710320.0 1.0321 853 -- 0.8898 11 218971022 0.1432 0.2123 086 1 1 50/300
54 5 12 5 614612.0 1.0643 887  -- 1.0000 8 22125 4609 0.9573 1.4358 097 1 1 50/100
55 5 24 4 1799209.0 1.0809 451 - 0.4660 14 359864680 0.4679 05387 0.97 1 2 50/400
56 30 6 3 43952345 1.0451 759 - 0.5391 11 234320068 0.0742 0.2418 080 1 9 100/1000
57 20 36 4 3129582.0 1.0865 778 -- 0.9898 28 - 231 0.1606 0.2761 081 1 14 150/800
58 20 6 5 686856.0 1.0309 785  -- 0.9780 10 2567848M 0.5225 0.6316 0.86 1 43 400/1000
59 30 52 3 3166815.2 1.0893 974 - 0.7147 68 - 1761 0.1695 0.2666 0.76 2 22 150/800
60 5 6 3 829884.6*  1.0000* 230 16109 1.0000* 13 289 1.0000* 1.0057 1.0212 1.00 1 1 50/100
61 10 6 3 1357534.4 1.0032 643 - 0.3344 9 1423 3283 0.3539 0.3997 095 1 4 100/500
62 50 12 3 5876042.0 1.0802 888  -- 0.6232 22 - 5160 0.0675 0.0924 074 1 61 350/900
63 20 12 2 4134966.0 1.0699 879 -- 0.6964 18 - 0371 0.1531 0.2220 086 1 1 50/300
64 5 52 2 682198.8 1.0882 180  -- 0.8809 59 - ®B7440.7742 0.8300 0.95 2 1 50/400
65 20 24 5 2480073.5 1.0829 868  -- 09714 36  -- 0@3 0.3538 0.4036 0.82 1 7 150/400
66 10 24 4 1430608.9 1.0803 796 -- 0.8408 23 - 213 0.3505 0.3963 091 1 8 200/400
67 10 36 5 1355656.5 1.0854 878  -- 0.8941 36 6384 0.4974 0.5601 090 1 2 50/500
68 10 12 2 2601934.3 1.0654 589 -- 0.3226 13 23OC[ID2327 0.2857 0.3861 093 1 1 50/200
69 20 52 3 2611331.0 1.0889 894  -- 0.8606 71 - 6@D1 0.2521 0.3411 0.80 2 5 50/800
70 30 6 5 1443468.0 1.0423 684 - 0.8690 14 319870055 0.0721 0.2566 0.79 1 10 100/1000
71 20 6 2 262152 1.0212 675 - 0.9260 11 12345 26.891.0004 1.3207 0.88 1 19 200/1000
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72 20 24 3 2246421.3 1.0825 801 - 0.9541 35 - 6701 0.2378 0.3383 0.83 1 27 300/700
73 50 6 3 5120759.0 1.0563 747  -- 0.4979 19 - 32080.0894  0.1022 0.75 1 50 350/800
74 5 24 3 2384947.1 1.0807 527 - 0.2883 13 - @5260.2754 0.3090 0.97 1 1 50/200
7% 20 6 3 784981.0 1.0234 741 - 0.9074 10 234315423 0.5900 0.6620 0.87 1 43 400/1000
76 30 52 2 5269995.5 1.0892 983  -- 0.8881 68 - 391 0.2094 0.2910 0.77 2 23 150/800
77 30 24 2 23267505 1.0831 812 - 0.9978 54 - 5481 0.2023 0.2660 0.78 1 6 50/900
78 30 24 3 3378980.0 1.0834 798  -- 0.8814 53 - 9610 0.1480 0.2431 0.77 1 30 250/800
79 20 52 5 26749435 1.0896 932  -- 0.9769 71 - 9§81 0.3237 0.4620 0.80 2 11 200/300
80 10 52 3 1200920.0 1.0887 913  -- 0.9147 72 - 4Zp5 0.5816  0.6404 0.89 2 6 100/500
81 50 36 5 8374066.0 1.0881 923  -- 0.4962 51 - 6650 0.0968 0.1402 0.68 2 46 200/900
82 30 12 3 3348554.0 1.0721 769  -- 0.9766 38 - 3420 0.1075 0.2567 0.78 1 26 250/800
83 30 24 4 4475539.5 1.0837 649 - 0.8615 54 - 9980 0.1522 0.2208 0.77 1 5 50/800
84 5 36 4 687471.1 1.0849 765 - 0.7811 29 - Qa74®.7749 09153 097 1 1 50/400
85 50 24 2 5642821.5 1.0842 893  -- 0.9983 48 - 5760 0.0968 0.1565 0.73 1 18 100/900
86 20 24 4 4302062.0 1.0829 768  -- 0.8426 36 - 1761 0.1563 0.2138 0.83 1 7 150/400
87 5 24 5 1499728.1 1.0806 439  -- 0.5497 15 - 80450.4610 0.4851 098 1 1 50/400
88 20 12 5 27622685 1.0709 879  -- 0.8384 20 - 8§10 0.1411 0.2110 084 1 45 400/1000
89 5 52 4 461967.5 1.0888 678  -- 0.8661 58 - ®62D.6522 0.7335 0.96 1 1 50/300
90 20 52 4 3152566.0 1.0891 853  -- 0.6999 72 - 8321 0.2348 0.2848 0.80 2 27 200/1000
91 10 52 4 1358620.6 1.0889 975  -- 0.9207 73 - 56¥4 0.5167 0.5969 0.89 2 15 250/600
92 30 52 5 452829.5 1.0897 987 - 0.5694 68 - €8100.1644 0.2359 0.75 2 22 200/500
93 5 52 5 850346.3 1.0884 765 - 0.8545 62 - ®606.6530 0.7508 0.95 2 1 50/400
94 50 52 3 4834801.5 1.0897 987  -- 0.9056 110 -- 0s@m 0.1158 0.1646 0.66 2 56 200/900
95 50 36 4 5873769.5 1.0884 871 -- 0.7163 50 - 910 0.1246 0.1765 0.69 2 44 250/600
96 30 52 4 37524355 1.0896 956  -- 0.9523 69 - 5901 0.2115 0.2784 0.75 2 37 200/1000
97 5 52 3 684493.8 1.0884 700 - 0.9600 60 - 830@.8446  0.9021 0.96 2 1 50/400
98 30 6 2 6159486.5 1.0409 765 - 0.5498 10 254320006 0.0060 0.0258 0.80 2 29 250/1000
99 30 24 5 3284380.0 1.0838 715 - 0.8871 56 - 1571 0.1745 0.2498 0.76 1 13 100/1000
100 20 12 4 2487208.3 1.0656 865  -- 0.8245 19 - 1441 0.2008 0.2900 0.85 1 16 200/800
Average 2884336.7 1.0709 750 - 0.7958 37 - ®29D.3367 0.4217 084 1 22 -

* Indicates the solution is optimal, -- Indicatbat the math programming stopping criterion 0086, sec

The MATLAB software was used to code the In general, the GA does not consume large memory
developed GA heuristic that tested on a Fujitsungies  bytes compared with the math models although tisere
Laptop, Intel (R) Pentium (R) M with 240 MB RAM, a significant difference between the memory alledat
40 GB HDD, 1.6 GHz speed computer system runnindor linear and nonlinear versions. The nonlineasion
Windows XP. 100 test problems were generated fotakes a smaller memory than the linear one duéeo t
each design resulting 10000 instances. Each problefigh number of extra constraints and binary denisio
was solved by the mixed-integer non-linear andvariables of the linearization process. The GA
linearized math programming models using CPLEXconsumes from 1-2 Megabytes only for each probkem i
software and hence solved by the developed GA.eTablthe test set while the consumed memory could be 1
2 summarizes the experimentation results. Colursfis 1 Gigabytes for some problems in the set.
depict the design number, system size, cycle leagth For the smallest level of 5 machines and 6 plagnin
number of different maintenance operations. Coluins Periods, the nonlinear, linearized math models ted
to 8 present the average lower bounds (LB) of e 1 developed GA were able to identify the optimal
problem per design, the average Upper Bounds (UB)'ajolunon. but the GA solved each design in a second
the memory allocated to the linear solver and et cONSUMINg Megabytes whereas math models consume

consumed in CPU seconds by CPLEX. Columns 8 tg)arger CPU seconds and memory bytes. By increasing

10 give the performance of the mixed-integer non € number of machines, the developed algorithms
. . ; could not define optimal solutions but GA coulddfin
linear programming model in terms of average lower . L
bounds referenced to the lower bounds of the Iinea?OIUtIons better than the math models for all reving
del ai t col 5 th d roblems. The nonlinear math algorithm could find
model given at column o, the consumed memory and,) rions with lower bounds better than the lingzdi

the CPU seconds. Columns 12-18 presents the GAGergion where the linear model defines feasible
performance in terms of best, mean, worst, relighil s ytions for 4 problems. The nonlinear model tepp
(Rel) measured as the average number of times & Gi, |gcal optimal solutions for 25 problems before

could find the best solution divided by 100, memoryachieving the stopping criteria of 36,000 seconds a

consumed (Mem), CPU seconds and populationisted in Table 2.

size/number of generations. The “--” indicates that With regard to the CPU seconds, the developed GA

math programming stopping criterion of 36,000 sdson could find better solutions rather than the math

A random seed was used for each GA’s evolution. programming models where it takes on average 22 sec
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The mixed integer linear math programming modelBar-Noy, A., R. Bhatia, J.S. Naor and B. Schieber,
could not define solutions for 96 and 75 problems  2002. Minimizing service and operation costs of
respectively. The GA success to define solutionth wi periodic scheduling. Math. Operat. Res., 27: 518-
average reliability of 0.84. The Rel, CL and O were 544. DOI: 10.1287/moor.27.3.518.314

interrelated by the equation Rel = 1.02-0.008W3 Beasley, J.E. and P.C. Chu, 1996. A genetic alyuarit
0.0012%CL-0.0038%0 for the developed GA. The for the set covering problem. Eur. J. Operat. Res.,

developed GA outperforms both the math programming ~ 94: 392-404. DOI: 10.1016/0377-2217(95)00159-X
models in finding best solutions in suitable Brauner, N., Y. Crama, A. Grigoriev and J.J. van de

computational time and Megabytes. Klundert, 2001. On the complexity of high
multiplicity scheduling problems.
CONCLUSION http://hal.archives-ouvertes.fr/hal-00083365/

Charest, M. and J.A. Ferland, 1993. Preventive

This article addressed the minimization of a hard ~ maintenance scheduling of power generating units.
mixed-integer non-linear optimization problem retat Annals Operat. Res., 41: 185-206. DOL
to the periodic maintenance scheduling. The problem 10.1007/BF02023074
had a predefined sequence of maintenance operatioR8vis, L., 1991. Handbook on Genetic Algorithmst 1s
on a set of machines for a definite planning peridue Edn., Van Nostrand Reinhold, New York, ISBN:
objective was to minimize the total man-hours aast ¢ 0442001738, pp: 385. _
variances along the planning horizon with equaIDekkerg ‘R., 1996. Application of maintenance
weights. We developed a mixed-integer non-linear ~ OPimization models: A review and analysis.
math programming model and the linearised version o Reliability Eng. Syst. Safety, 51: 229-240. DOL:
the problem. Also, we developed a GA for solving th 10.1016/0951-8320(95)00076-3
problem and compared the performance of aIgoritth ek\k/\?irlael:;ﬁén':ﬁig;?n gerre\fi):v)\//n ofscrgﬁﬁit?cr:)rr?ggngﬁtli
on a generated set of test problems. The results . ' ' : :
indicated the superiority of the developed GA oa th maintenance models with economic dependence.

' i . Math. Methods Operat. Res., 45: 411-435. DOI:
math programming models with respect to solution  14'1007/BE01194788

quality, memory allocated to each algorithm and thepy fuaa. S.O. and M. Ben-Daya, 1994. An extended

CPU seconds. _ _ _ _ model for the joint overhaul scheduling problem.
The natural expansion to this work is to consider  |nt. J. Operat. Prod. Manage., 14: 37-43. DOI:
the relevant and efficient meta-heuristics like dimted 0.1108/01443579410062158

annealing, taboo search, particle swarm and aohgol Gertsbakh, 1. and E. Gertsbakh, 2000. Reliability
optimization  approaches and analyzing their  Theory with Applications to Preventive

performances in order to get a better understanding Maintenance. 1st Edn.,  Springer-Verlag,
how benefits are attained from using each approach. Heidelberg, ISBN3540672753,, pp: 219.

Also, we can consider the integration betweenGoldberg, D.E., 1989. Genetic Algorithms in Search,
maintenance planning and aggregate production Optimization and Machine Learning. 1st Edn.,
planning problems. A possible work could be done by ~ Addison-Wesley, ~ Reading, = MA.,  ISBN:

considering other maintenance strategies as rktjabi 0201157675, pp: 412.

based and condition-based approaches. Analyzing tHerigoriev, A., J. Joris van de Klundert and F. &prea,
resulting linear integer programming model for figg 2006. Modeling and solving the periodic
out integrality gaps and valid inequalities strévegting maintenance problem. Eur. J. Operat. Res., 172:
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