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Abstract:  Problem statement: In this article we address the multi-objective Periodic Maintenance 
Scheduling Problem (PMSP) of scheduling a set of cyclic maintenance operations for a given set of 
machines through a specified planning period to minimize the total variance of workforce levels 
measured in man-hours and maintenance costs with equal weights. Approach: The article proposed 
a mixed integer non-linear math programming model and a linearised model for the PMSP. Also, we 
proposed a Genetic Algorithm (GA) for solving the problem using a new genome representation 
considered as a new addition to the maintenance scheduling literature. The algorithms were 
compared on a set of representative test problems. Results: The developed GA proves its capability 
and superiority to find good solutions for the PMSP and outperforms solutions found by the 
commercial optimization package CPLEX. The results indicated that the developed algorithms were 
able to identify  optimal solutions for small size problems up to 5 machines and 6 planning 
periods.The GAs defined solutions in 22 seconds consuming less than two kilobytes with a 
reliability of 0.84 while the nonlinear and linear models consumes on average 705 and 37 kilobytes 
respectively.  Conclusion:  The developed GA could define solutions of average performance of 
0.34 and 0.8 for the linearized algorithm compared with  lower bound defined by the nonlinear math 
programming model. We hope to expand the developed algorithms for integrating maintenance 
planning and aggregate production planning problems. 
 
Key words: Periodic Maintenance, multi-criteria optimization, mixed-integer non-linear math 

programming, linearization, genetic algorithms, maintenance costs, complexity 
parameter, CPU seconds, genome’s fitness 

 
INTRODUCTION 

 
 The preventive maintenance scheduling is among 
the most important problems faced by 
productive/service organizations. The preventive 
maintenance applied by servicing the equipment on 
regular intervals is for the purpose of increasing its 
reliability as much as possible. The problem has 
attracted researchers due to its economical importance 
and complexity, see for example Dekker (1996). These 
articles and others contained therein were interested in 
modeling and solving the problem to minimize the cost 
or maximize the machine lifetime. Extensive research 
treated the problem as a stochastic model whereas the 
machine failures described by probability distributions 
(see for instance Gertsbakh and Gertsbakh (2000) while 
a little was concerned with the deterministic case where 
the failures described by constant parameters (see 
Wagner et al. (1964) for an early reference). 
 Two variants of maintenance planning problems 
exist in literature, the Free Periodic Maintenance 

Scheduling Problem (FPMSP) and the Periodic 
Maintenance Scheduling Problem (PMSP). The FPMSP 
considers T as a decision variable and aims to find the 
optimal T* optimizing maintenance costs while the 
PMSP assumes values of cycle lengths. Bar-Noy et al. 
(2002) have shown that the FPMSP is NP-hard even 
when T* is known so this implies the PMSP is NP-hard 
(Grigoriev et al., 2006). 
 The PMSP is to find a cyclic maintenance schedule 
of a given length T for a set of machines to optimize 
predefined organization goals. The maintenance 
scheduling problems research work could be broadly 
categorized as stochastic and deterministic approaches 
based on the machine failures pattern. The nature of 
machine failures in stochastic approaches is described 
by probability distributions (see for instance Gertsbakh 
and Gertsbakh (2000)) while the deterministic 
approaches are used to describe the cyclic maintenance 
scheduling activities assuming a fixed cycle length. The 
stochastic machine failure maintenance scheduling has 
attracted researchers more than the deterministic case. 
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A precise description for the problem is given in the 
following. 
  
Problem description: We consider the following 
practical problem. There is a set of m machines types, 
each includes mi identical ones where i∈{1,2,…,m} 
and a standard machine was defined based on the 
experience of maintenance expertise. The standard 
machine maintenance cycle was known and represents 
all required maintenance operations during a predefined 
period. The cycle length (T) equals to the total number 
of maintenance activities for the standard unit. The 
workforce levels measured by the total man-hours and 
the required cash flow to perform each maintenance 
operation are given. A complexity parameter (Ckl) for 
machine number l of type k given for all machines 
represents the similarity between each machine with the 
standard unit. The work content for all machines could 
be estimated by referencing to the machines complexity 
parameters. The maintenance laborers are hired all the 
year so it is fixed. A solution to the problem has 
information on the cyclic schedule and the allocated 
cost for each machine through T. 
 To illustrate the problem, consider a PSMP with 2 
machine types A and B each has 3 machines 
symbolized as A1,A2,A3,B1,B2 and B3. The standard 
machine A1 has a cycle of C-I1-I2-I3-S1-I4-I5-I6-S2-I7-I8-
I9 (T = 12). C indicates an overhaul S1 indicates a half 
overhaul, I1-I8 indicate various maintenance 
operations. Each machine complexity parameter is 
given in Table 1. 1800, 200 and 100 man-hrs are 
required to perform C, S1 and I1 respectively. B1 
machine has a complexity parameter of 0.5, meaning 
that if any operation performed with 200 man-hours for 
machine A1 (the standard one), it will be performed on 
100 man-hours for B1. C, S1 and I1 costs are 1000, 80 
and 50 respectively for machine A1. The associated 
costs for B1 are 500, 40 and 25 respectively. Table 1 
depicts a random schedule of man-hours and money 
with T = 12. Each machine has the standard machine’s 
maintenance cycle that begins by any maintenance 
operation C, any of Ss, or any of Is and follow the cycle 
sequence. The table depicts a fluctuation in monthly 
man-hours to perform all maintenance work between 
950 and 17100. Also, the monthly money allocated to 
maintenance operations varies from 525-$10500. This 
solution has man-hours and cost variances of 19623108 
and 7328792 with a total of 26,951,900. A possible 
heuristic solution approach for the PMSP implemented 
by the author for many years in the field of maintenance 
scheduling is to assign an overhaul to the first machine 
at the first period and an overhaul to the second at 
period 2 and so on. The variances for man-hours and 

costs are 4227969 and 1361584 with a total variance of 
5,589,553. For a set of 15 practical cases of 10 
machines and T = 12, we solved each case by both 
random and heuristic approaches. The resulting 
variance for each case is depicted at the scatter plot of 
Fig. 1. The scatter plot shows that the random plan 
where we begin the cycle for each machine by a 
random maintenance operation always gives larger 
variance than the heuristic approach. 
 Our motivations for investigating the PMSP rather 
than FPMSP are threefold. First of all, the PMSP is a 
more practical and industrial problem than the 
academic FPMSP where the number of machines may 
reach to 500 or more and the cycle length might be 250, 
52, 30, 7, 24 or 60. The second motivation of this study 
is solving the PMSP to optimality whereas most 
previous research work was focused on the complexity 
and approximation of the PMSP. A third motivation of 
our work is to consider a real objective of smoothing 
the workforce levels and maintenance costs through T 
using a non-linear objective function (variance). 
 The purpose of this study is to introduce Genetic 
Algorithms (GAs) as a solver for the PMSP with the 
objective of minimizing the total variance of workforce 
man-hours and maintenance costs with equal weights. 
GAs include features for handling a large number of 
constraints, modeling flexibility in dealing with 
problem complexity, utilizing less CPU memory 
allocation than mathematical programming techniques, 
handling the multi-criteria nature of real-world 
problems without any modeling complications and ease 
of implementation. Furthermore, there have been a 
significant number of studies that have shown GAs 
effectiveness in solving hard combinatorial problems. 
For example, Beasley and Chu (1996) and Lorena and 
Lopes (1997) applied GA to the set covering problem. 
Also, we proposed a mixed-integer non-linear math 
programming model and a linearized model for the 
PMSP to evaluate the performance of the developed 
GA. The evaluation was based on the solution defined 
by math models due to the concerned problem differ 
from the standard PMSP so the existing solution 
methods must developed to handle this difference.  
 In summary, the two primary contributions of this 
article to the PMSP literature are that: (1) we 
demonstrate the effectiveness of GAs for solving the 
PMSP over the developed math programming models; 
(2) we handle the problem as a non-linear objective 
optimization problem rather than the available literature 
of handling only the linear cases and deal with the 
practical rather than the academic problems available in 
maintenance planning and scheduling literature. 
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Table 1: The distribution of man-hours and costs through T = 12 
Machine  T 
----------------- -------------------------------------------------------------------------------------------------------------------------------------------------------- 
Type Ckl 1 2 3 4 5 6 7 8 9 10 11 12 
A1 1 C I1 I2 I3 S1 I4 I5 I6 S2 I7 I8 I9 

  1800 100 100 100 200 100 100 100 200 100 100 100 
  1000 50 80 70 80 50 70 80 80 80 50 60 
A2 1.5 S2 I7 I8 I9 C I1 I2 I3 S1 I4 I5 I6 

  300 150 150 150 300 150 150 150 2700 150 150 150 
  120 120 75 90 1500 75 120 105 120 75 105 120 
A3 2 S1 I4 I5 I6 S2 I7 I8 I9 C I1 I2 I3 

  400 200 200 200 3600 200 200 200 400 200 200 200 
  160 100 140 160 160 160 100 120 2000 100 160 140 
B1 0.5 I5 I6 S2 I7 I8 I9 C I1 I2 I3 S1 I4 

  50 50 100 50 50 50 900 50 50 50 100 50 
  35 40 40 40 25 30 500 25 40 35 40 25 
B2 2.5 I3 S1 I4 I5 I6 S2 I7 I8 I9 C I1 I2 

  250 500 250 250 250 500 250 250 250 4500 250 250 
  175 200 125 175 200 200 200 125 150 2500 125 200 
B3 3 I8 I9 C I1 I2 I3 S1 I4 I5 I6 S2 I7 

  300 300 5400 300 300 300 600 300 300 300 600 300 
  150 180 3000 150 240 210 240 150 210 240 240 240 
∑Man-hours 17100 950 950 950 1900 950 950 950 1900 950 950 950 
∑Cost,$  10500 525 840 735 840 525 735 840 840 840 525 630 

 

 
 

Fig. 1: A scatter plot of variances for 15 practical cases 
 
Literature review:  The preventive maintenance 
scheduling models and solution widely see techniques 
of power generating plants have been considered in 
scheduling literature, for example, the article by Sherif 
and Smith (1981), Dekker (1996) and Dekker et al. 
(1997). Presented an overview for the optimization 
techniques including integer programming models for 
optimizing preventive maintenance scheduling 
problems of power generating plants. Also, Charest and 
Ferland (1993) applied local search techniques to solve 

the set-partitioning model for power generating units. 
Duffuaa and Ben-Daya (1994), Hariga (1994) and Sule 
and Harmon (1979) investigated preventive 
maintenance scheduling models for the purpose of 
coordinating a common resource to a set of machines. 
 Anily et al. (1998) considered a special case of 
FPMSP for scheduling of maintenance service to a set 
of machines applied in a multi-item replenishment of 
stock environment. They assumed linear increase of 
maintenance cost coefficients. They prove the existence 
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of a cyclic maintenance schedule for FPMSP and prove 
that the problem has an exact solution by introducing an 
exponential complexity network-flow based algorithm 
that could find the exact solution for up to 4 machines 
problems. Anily et al. (1999) proposed an algorithm for 
scheduling of maintenance services to three machines 
and found the exact optimal solutions for certain 
instances of the problem and the other instances provided 
a heuristic algorithm with a performance ratio of 1.0333. 
 Bar-Noy et al. (2002) and Kenyon et al. (2000) 
constrained the number of machines that can be served 
at each period to be at most M in a broadcast 
scheduling environment. Bar-Noy et al. (2002) proved 
the NP-hardiness of the FPMP and investigated lower 

bounds and proposed a 
9

8
 approximation algorithm. 

Also, Schabanel (2000) showed that the preemptive 
FPMP was also NP-hard. Kenyon et al. (2000) 
introduced a Polynomial-time approximation scheme 
for data broadcast of a bounded service costs 
environment while the non-identical service times case 
was studied by Kenyon and Schabanel (2001). Brauner 
et al. (2001) addressed the complexity of high 
multiplicity scheduling problems that arise from 
compact encodings of solutions. 
 A dynamic programming technique to minimize 
the salvage costs and the discounting of costs of 
operating a parallel machine shop whose operational 
costs increase with age. The problem deals with the 
possibility of replacing a machine at each planning 
period at the expense of purchasing costs. 
 Based on the previous survey, we note that no 
research work done tackling the PMSP with a large 
number of machines corresponds to real-world 
manufacturing systems. Also, no research was done to 
minimize the total variance workforce man-hrs and 
maintenance costs. Moreover, previous research 
focused on the parallel machine problem when at each 
planning period there was one machine in 
maintenance and other machines in service but this 
study allowed for more than one machine to be in 
maintenance.  
 

MATERIALS AND METHODS 
  
The solution methodology: In this article, we adopt a 
solution methodology shown in Fig. 2. The 
methodology consists of four steps. The first step 
begins by generating a set of test problems by 
considering the factors affecting the complexity of the 
PMSP and their levels. The system size, cycle length 
and the number of different maintenance operations 
were considered. A full experimental design was 

adopted to generate the full factorial design for the 
factors. Each design was replicated 50 times to generate 
50 instances per design. 
 A standard time-indexed mixed-integer non-linear 
math programming model was developed in the second 
step to represent the PMSP for minimizing the total 
variance of man-hours and costs through the planning 
period with equal weights. The model considers the 
maintenance plan sequence of operations for all 
machines, the total of man-hours per period must not 
exceed the available and the total maintenance cost 
doesn’t exceed the available money allocated to 
perform maintenance operations. The software package 
LINGO was applied to solve all non-linear models. A 
linear integer math programming model version for the 
original PSMP was developed by linearizing the 
nonlinear terms in the objective function and adding the 
necessary constraints to find the global optimal 
solution. The software CPLEX was used to find the 
linear solutions. Applying integer math programming 
solvers to handle practical problems usually has many 
practical implementation difficulties such as higher 
CPU seconds, memory bytes and needs more modeling 
effort to code the problem in the math form. 
 GAs were used extensively in scheduling literature 
to solve these difficulties whereas they do not need high 
amount of CPU seconds, consume low memory bytes 
compared with math programming solvers and they do 
not need a lot of coding effort to formulate the problem 
in genetic form. Moreover, the math programming 
solvers for large-size problems might fail to find any 
feasible solution in suitable CPU seconds, whereas the 
GAs find a feasible solution during the initial evolution 
process. Unfortunately, GAs need their parameter 
tuning to find better solutions for complex problem 
structures.  
 The third step is concerned with designing the 
developed GA by conducting a full factorial design for 
the factors affecting the GA’s efficiency. Each factor 
levels were defined and the GA was run for 100 
replicates per design. The parameter’s selection 
criterion was the best average performance for 
minimizing the variance. After the GA’s parameter 
tuning step, we applied the developed GA in the last 
step to find the solution of the generated test problems 
at step 1. Each problem was solved 100 times to find 
the minimum, average and maximum variances, 
reliability to find the minimum variance, average 
consumed CPU seconds and the average memory bytes 
were traced with respect to different population sizes 
and number of generation combinations. 
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Fig. 2: The solution methodology 
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 By comparing the three developed solution models 
for the PSMP, we could find the limitations, 
advantages, disadvantages and applicability of using 
each model to solve real-world maintenance scheduling 
problems. 
 We will propose a mixed-integer non-linear math 
programming model for the PSMP and the linearised 
version of the model. 
 
The math programming models: We develop a 
mixed-integer non-linear math programming model for 
PMSP as a standard time-indexed formulation and 
linearise it to find the global optimal solution. The 
notations used in this formulation are listed below. 
  
Indexes: 
 
i = Index for the maintenance operation, I = 

1,2,3,…T 
j = Index for the planning period, J = 1,2,3,…,T 
k = Index for the machine type, K = 1,2,3,..,m 
l = Index for the number of machine per type 

k,l=1,2,3,….,mk 
 
Parameters: 
 
a = Weight to balance man-hours and maintenance 

cost variances and 0 ≤ a ≤ 1. It equals to 0.5 in 
this article 

cj = The cost for maintenance operation j of the 
standard machine 

Cj = The available money at period j for 
maintenance operations 

cki = Complexity parameter for machine number l 
of type k 

hikl = The required man-hours to perform 
maintenance operation i for machine number l 
of type k and equals to hj, ckl 

hj = The required man-hours to perform operation j 
for the standard machine 

Hj = The available man-hours at period j 
M = Number of machine types 
mk = Number of machines per type k 
T = Cycle length 
 
Decision variables: 
 
xijkl = A binary decision variable equals to 1 if a 

maintenance operation i will be performed at 
period j of the machine type k for the machine 
number l and equals to 0 otherwise  

yikl = An integer variable represents the completion 
time of maintenance operation i for the 
machine number l of type k 

zjkl = A binary decision variable equals to 1 if any 
maintenance operation will be performed at 
period j or the machine number l of type k and 
equals to 0 otherwise 

 
 Based on the definitions of indexes, parameters and 
decision variables we formulate the multi-objective 
mixed-integer non-linear math programming model for 
the PSMP as follows: 
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{ }ijkl iklx ,z 0,1∈  

ikly 0≥  and integers: 

 

k

i 1,2,...,T; j 1,2,...,T; k 1,2,...,m;

l 1,2,...,m

∀ = = ∀ =
∀ =

 (7) 

 
 The objective function shown in Eq. 1 minimizes 
the total variances of man-hours and costs for planning 
periods T. Eq. 2 ensures that the total allocation of man-
hours per period doesn’t exceed the available per period 
J. Equation 3 ensures that the total allocated costs per 
period are not more than the available. Equations 4-6 
ensure that maintenance operations assignment follow 
the sequence of operations for the standard unit 
maintenance cycle. The variable domains are defined 
by Eq. 7.  
 In this article, we reformulate the model to a 
mixed-integer linear formulation by performing the 
following variable transformations. For each product of 
binary variable pairsijkl pqrsx .x in the objective function, 

replace ijkl pqrsx .x by ijklpqrsz and adding the following 

three constraints as shown in Eq. 8-11: 
 

ijkl pqrs ijklpqrsx x 2.z 0+ − ≥  (8) 

 

ijkl pqrs ijklpqrsx x z 1+ − ≤  (9) 

 
{ }ijklpqrsz 0,1∈  (10) 

 
 The linearised model can find the global optimal 
solution for the non-linear model for small-size 
problems and also can find lower bounds for larger 
problems. We will introduce a GA formulation for the 
PSMP by originating a new genome representation for 
minimizing the total variance of man-hours and costs. 
 
The proposed genetic algorithm: The GA is an 
optimization heuristic based on a stochastic search 
which mimics the biological process of natural 
selection (Goldberg, 1989; Davis, 1991). It has widely 
applied to solve hard single and multi-criteria 
optimization problems as job-shop scheduling, flexible 
manufacturing loading, transportation planning, daily 
image selection problem (Mansour and Dessouky, 
2010). The algorithm evolves with a constant 
population size for a predefined period defined by a 
stopping criterion. This criterion may be a fixed number 
of generations, a certain execution time, or until an 
occurrence of a population convergence. The GA 
begins by generating an initial population of individuals 

known as genomes. Each genome represents a feasible 
solution for the problem and has a fitness controlling its 
existence in the next generations. At each generation, a 
new population is formed by mating genomes as a 
result of applying genetic operators as crossover and 
mutation so the good genomes replace the worst ones in 
the current generation (Michalewicz, 1996). A 
systematic GA’s structure is depicted in Fig. 2. 
 We will develop a GA to provide efficient 
solutions to the predefined PSMP. We first begin with 
introducing a new genome representation for the PSMP 
and then a detailed GA’s structure will be defined in 
terms of initialization, selection, crossover and mutation 
and replacement mechanisms. Also, the genome’s 
fitness evaluation is illustrated besides conducting an 
experiment to define the most affecting GA’s 
components on maximizing the algorithm performance.  
 
Genome representation, initialization, selection and 
genetic operators: The proposed genome consists of 
number of genes equal to the total number of machines 
in the manufacturing system, ∑mk for all values of k. 
Each gene’s allele was generated from a discrete 
uniform distribution with lower and upper bounds 
equals to 1 and T respectively. The gene order in the 
genome sequence represents the machine number 
while the gene’s allele represents the maintenance 
operation that will be performed on that machine at 
period 1 of the planning horizon. For example, the 
allele value at position 2 of a hypothetical genome 
represents the first maintenance operation that will be 
performed at period 1 for machine number 2. Figure 3 
illustrates an industrial system consisting of 5 
machines and it is required to construct a maintenance 
schedule for 6 planning periods. The first machine 
(M1) chosen as a standard machine and has 
maintenance schedule of O1, O2,….,O6, while the 
third machine schedule is O2,O3,O4,O5,O6,O1 and so 
on. The depicted schedule could be presented as the 
genome O1, O6, O2, O5, O4. The genome indicates that 
maintenance operations 1, 6, 2, 5 and 4 will be 
adopted for machines 1 to 5 as the starting 
maintenance operation at period 1. The proposed 
genome advantages are the small length, avoiding the 
representation’s infeasibility that exhausts GAs and 
existence of the standard genetic operators. 
 The initial population was randomly generated and 
controlled by various genetic operators through the 
evolution process. Different selection operators were 
adopted as tournament, ranking, roulette wheel and 
uniform. One point, two point and uniform crossover 
operators were applied. The flip and Gaussian mutation 
operators were applied in the developed GA. 
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Fig. 3: The proposed genome representation 
 
Genome’s fitness evaluation: The genome’s fitness 
determines the power to achieve the objectives of 
solving the problem. It controls the genome’s existence 
through the evolution process. In this article, the fitness 
evaluation process evaluates the total variance of man-
hours loads and costs per planning period. The variance 
was computed by the formula shown in Eq. 11. The XJ 
variable represents the total man-hours or costs 

allocated by a plan at period j while x is the overall 
average of all periods and is the average per period j: 
 

( )
2T

j

j 1

x x

Variance  
T

=

−

=
∑

 (11) 

 
 For the shown example in Fig. 3, the total man-
hours for periods are 24, 23, 22, 21, 25 and 20 
respectively. The overall average of 22.5 man-hours is 
achieved for the given schedule and variance equals to 
0.324. Also, the cost’s variance equals to 0.179. The 
total of these two variance components gives the 
genome’s objective. 
 

RESULTS AND DISCUSSION 
 
Genetic algorithm parameter settings: To identify the 
best GA’s parameters for the PMSP, we conducted a 
full experimental design on 8 factors. The eight factors 
were tested on 5 randomly generated test problems 
including 10,20,30,40 and 50 machines and a planning 
period of 52 weeks. The experiment’s objective is to 
define the most effective level for each factor and the 
most effective factor combinations associated with the 
difference in the GA’s behavior. The factors are 
selection, crossover, mutation schemes, crossover and 
mutation probabilities, replacement percentage, 
population size and number of generations. It is 
indicated that these factors affects the algorithm 
efficiency. The population size and number of 

generations varied for each problem hence they will be 
defined for each one separately. Based on the 
experiments the factors settings of uniform crossover 
probability of 0.93, flip mutation probability of 0.01 
and roulette wheel replacement percentage of 0.25, give 
the best average total variance. For each test problem, 
the genetic algorithm was run 100 times, each time with 
a different initial random seed. 
 We will test the developed math programming and 
GA models on a set of test problems considering the 
most affecting factors on the PSMP’s complexity. The 
objective is to find out the advantages, disadvantages 
and limitations for each solution method for solving the 
problem under consideration. The comparison criteria 
will be solution quality, CPU time measured in seconds 
to reach best solutions and the consumed memory 
Megabytes consumed by the CPU during processing the 
various algorithms. 
 
Computational experiments: We tested the proposed 
algorithms on a set of 100 test problems representing 
the full factorial design for three factors. These factors 
are system sizes of {5,10,20,30,50} machines, cycle 
lengths of {6,12,24,36,52} and number of different 
maintenance operations per cycle of {2,3,4,5}. We 
assumed that there are 9 maintenance operations’ 
options where the first option represented an overhaul 
operation. The man-hours required for an overhaul is 
generated from a discrete uniform random number from 
[1500, 1600] while other operations man-hours is 
generated from the discrete uniform distributions from 
[45,55], [75,85], ]85,100], ]100,120], ]120,140], 
[150,180], ]180,200], [700,800] respectively. The 
operation’s costs were generated from continuous 
uniform distributions from [1400,1500], [40,50], 
[70,80], ]80,95], ]95,115], ]115,135], [145,170], 
]170,200] and [600,700]. A machine was selected as a 
standard machine randomly and machines’ complexity 
parameters were generated from a continuous random 
number distribution from [0.5,2]. 
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Table 2: The experimental results 
No. Problem characteristics  ILP-CPLEX         NLIP solution                              Genetic algorithm performance 
       ----------------------------- -------------------------------------------------- ------------------------------- ----------------------------------------------------------------------------- 
 m CL O LB UB Mem CPU LB Mem CPU Best Mean Worst Rel Mem CPU Pop/Gen 
1 30 12 2 3403806.0 1.0765 754 -- 0.8299 17 -- 0.0223 0.0695 0.1520 0.79 1 33 300/800 
2 50 24 4 4238509.5 1.0847 869 -- 0.9122 50 -- 0.0769 0.1253 0.2122 0.72 1 21 100/1000 
3 50 52 2 5894419.0 1.0896 939 -- 0.8849 111 -- 0.0838 0.1125 0.1940 0.68 2 25 100/800 
4 50 24 3 6071650.5 1.0845 794 -- 0.7623 49 -- 0.0766 0.1317 0.2130 0.72 1 2 50/200 
5 50 52 4 5380607.5 1.0895 969 -- 0.8444 111 -- 0.0791 0.1308 0.2092 0.65 2 32 100/1000 
6 10 52 2 1311641.3 1.0884 982 -- 0.7720 73 -- 0.2911 0.3711 0.5033 0.90 2 5 100/500 
7 10 12 4 2075309.8 1.0678 749 -- 0.6128 14 13 0.2439 0.3164 0.4932 9.92 1 1 50/200 
8 50 12 4 4401681.0 1.0804 898 -- 0.9777 21 -- 0.0450 0.0716 0.1337 0.73 1 76 300/900 
9 30 36 2 3085694.5 1.0875 891 -- 0.9277 80 -- 0.2019 0.2457 0.2989 0.76 2 12 100/700 
10 20 36 3 2172139.5 1.0863 746 -- 0.8311 27 -- 0.2005 0.2743 0.4424 0.81 1 16 150/800 
11 50 6 2 4109109.0 1.0543 677 -- 0.6594 18 -- 0.0363 0.0383 0.0457 0.75 1 40 250/900 
12 10 36 3 1210459.8 1.0853 649 -- 0.9982 35 -- 0.5041 0.5527 0.6250 0.91 1 23 300/800 
13 30 12 4 4922834.5 1.0723 739 -- 0.8643 13 -- 0.0612 0.0955 0.2051 0.78 1 10 150/500 
14 10 6 2 746805.0 1.0039 561 -- 0.6367 8 15456 0.5130 0.5730 0.7019 0.95 1 2 100/200 
15 20 36 2 2845137.5 1.0862 459 -- 0.9255 28 -- 0.1647 0.2263 0.3442 0.82 1 11 100/1000 
16 50 12 2 6071478.5 1.0801 878 -- 0.4385 21 -- 0.0437 0.0573 0.1035 0.75 1 57 300/1000 
17 10 24 2 997639.0 1.0811 698 -- 0.9806 23 -- 0.3875 0.5243 0.7593 0.92 1 7 150/630 
18 5 36 5 805725.1 1.0847 562 -- 0.8807 31 -- 0.6740 0.6876 0.7243 0.96 1 2 100/200 
19 10 24 5 1605975.5 1.0816 682 -- 0.8316 25 -- 0.0043 0.3502 0.4399 0.91 1 11 200/600 
20 50 24 5 5075370.5 1.0849 785 -- 0.8689 50 -- 0.0669 0.1146 0.1639 0.71 1 16 100/800 
21 10 36 2 980420.9 1.0851 751 -- 0.9831 35 -- 0.4166 0.5245 0.6376 0.91 1 8 100/1000 
22 10 24 3 1173904.8 1.0812 748 -- 0.9692 24 -- 0.3072 0.3742 0.5063 0.91 1 5 150/400 
23 5 12 2 997639.25 1.0621 600 -- 0.9800 8 24321 1.0000 1.0060 1.0315 0.99 1 3 100/500 
24 5 36 3 1040183.4 1.0848 764 -- 0.9725 30 -- 0.6315 0.6476 0.7712 0.96 1 1 50/400 
25 5 6 5 693812.7* 1.0000* 36 4006 1.0000* 11 321 1.0000* 1.0025 1.0263 1.00 1 1 50/100 
26 10 52 5 1348300.5 1.0886 989 -- 0.9982 74 -- 0.4073 0.4677 0.5971 0.88 2 10 150/800 
27 20 52 2 2776607.8 1.0887 920 -- 0.9064 72 -- 0.2096 0.2763 0.3789 0.81 2 29 300/600 
28 50 52 5 5248176.0 1.0899 967 -- 0.8791 112 -- 0.0975 0.1250 0.1838 0.64 2 63 200/1000 
29 30 6 4 3627907.5 1.0467 699 -- 0.3152 12 14326 0.0008 0.0138 0.0499 0.79 1 18 200/800 
30 30 36 3 3254959.3 1.0872 782 -- 0.9125 81 -- 0.1878 0.2309 0.2800 0.77 2 13 100/900 
31 5 6 4 562071.8* 1.0000* 240 33225 1.0000* 13 241 1.0000* 1.0064 1.1259 1.00 1 1 50/100 
32 10 6 4 1822084.5 1.0029 781 -- 0.2282 9 16000 0.2281 0.2364 0.2700 0.94 1 3 100/400 
33 50 6 5 2844184.0 1.0567 746 -- 0.5913 20 -- 0.0948 0.0977 0.1405 0.75 1 63 400/900 
34 20 12 3 4598747.0 1.0688 811 -- 0.4464 17 -- 0.1736 0.2351 0.3641 0.85 1 15 100/1000 
35 5 6 2 925822.7* 1.0000* 10 13207 1.0000* 18 240 1.0000* 1.0000* 1.0000* 1.00 1 1 50/100 
36 10 36 4 2083935.3 1.0856 821 -- 0.6999 36 -- 0.2518 0.3019 0.3617 0.90 1 8 100/1000 
37 20 36 5 2795191.0 1.0863 865 -- 0.9256 28 -- 0.2281 0.2977 0.4691 0.81 1 14 150/800 
38 50 6 4 8237271.0 1.0499 692 -- 0.6213 19 -- 0.0494 0.0515 0.0642 0.75 1 49 350/800 
39 30 36 4 3038648.3 1.0873 841 -- 0.9369 80 -- 0.1697 0.2217 0.2812 0.77 2 43 100/900 
40 10 12 5 2694844.0 1.0698 759 -- 0.2689 12 20000 0.1987 0.2426 0.3095 9.92 1 2 50/200 
41 50 36 3 5990660.5 1.0883 902 -- 0.8389 51 -- 0.0589 0.0971 0.1527 0.70 2 118 250/600 
42 50 36 2 8116007.0 1.0881 899 -- 0.9841 50 -- 0.0675 0.1046 0.1434 0.71 2 119 250/600 
43 5 36 2 714387.8 1.0846 689 -- 0.9977 29 -- 0.3261 0.3265 0.3361 0.97 1 1 50/100 
44 5 12 3 647220.9 1.0654 800 -- 1.0000 10 25987 1.0000 1.0003 1.0081 0.98 1 26 100/300 
45 20 24 2 3113271.5 1.0824 235 -- 0.6727 36 -- 0.1614 0.2002 0.2632 0.84 1 79 300/700 
46 10 6 5 2670231.5 1.0028 662 -- 0.0990 8 23000 0.0861 0.0920 0.2230 0.94 1 45 100/500 
47 5 12 4 514145.6 1.0675 802 -- 1.0000 9 23987 1.0000 1.0073 1.2951 0.99 1 1 50/100 
48 30 12 5 3647181.3 1.0735 873 -- 0.6702 19 -- 0.0141 0.0877 0.1755 0.78 1 69 250/800 
49 30 36 5 3610561.5 1.0877 786 -- 0.9859 81 -- 0.1972 0.2394 0.2951 0.77 2 36 100/900 
50 50 12 5 4940236.0 1.0807 871 -- 0.7553 22 -- 0.0487 0.0702 0.1439 0.73 1 165 350/900 
51 10 12 3 2551794.8 1.0653 671 -- 0.3511 13 36 0.2827 0.2965 0.3147 0.92 1 2 50/200 
52 5 24 2 1644679.0 1.0808 605 -- 1.0000 12 -- 0.5181 0.5197 0.5742 0.98 1 2 50/400 
53 20 6 4 710320.0 1.0321 853 -- 0.8898 11 21897 0.1024 0.1432 0.2123 0.86 1 1 50/300 
54 5 12 5 614612.0 1.0643 887 -- 1.0000 8 22125 0.9469 0.9573 1.4358 0.97 1 1 50/100 
55 5 24 4 1799209.0 1.0809 451 -- 0.4660 14 35986 0.4660 0.4679 0.5387 0.97 1 2 50/400 
56 30 6 3 4395234.5 1.0451 759 -- 0.5391 11 23432 0.0066 0.0742 0.2418 0.80 1 9 100/1000 
57 20 36 4 3129582.0 1.0865 778 -- 0.9898 28 -- 0.1235 0.1606 0.2761 0.81 1 14 150/800 
58 20 6 5 686856.0 1.0309 785 -- 0.9780 10 25678 0.4876 0.5225 0.6316 0.86 1 43 400/1000 
59 30 52 3 3166815.2 1.0893 974 -- 0.7147 68 -- 0.1176 0.1695 0.2666 0.76 2 22 150/800 
60 5 6 3 829884.6* 1.0000* 230 16109 1.0000* 13 289 1.0000* 1.0057 1.0212 1.00 1 1 50/100 
61 10 6 3 1357534.4 1.0032 643 -- 0.3344 9 1423 0.3328 0.3539 0.3997 0.95 1 4 100/500 
62 50 12 3 5876042.0 1.0802 888 -- 0.6232 22 -- 0.0515 0.0675 0.0924 0.74 1 61 350/900 
63 20 12 2 4134966.0 1.0699 879 -- 0.6964 18 -- 0.1037 0.1531 0.2220 0.86 1 1 50/300 
64 5 52 2 682198.8 1.0882 180 -- 0.8809 59 -- 0.7443 0.7742 0.8300 0.95 2 1 50/400 
65 20 24 5 2480073.5 1.0829 868 -- 0.9714 36 -- 0.3000 0.3538 0.4036 0.82 1 7 150/400 
66 10 24 4 1430608.9 1.0803 796 -- 0.8408 23 -- 0.3212 0.3505 0.3963 0.91 1 8 200/400 
67 10 36 5 1355656.5 1.0854 878 -- 0.8941 36 -- 0.4633 0.4974 0.5601 0.90 1 2 50/500 
68 10 12 2 2601934.3 1.0654 589 -- 0.3226 13 23000 0.2327 0.2857 0.3861 0.93 1 1 50/200 
69 20 52 3 2611331.0 1.0889 894 -- 0.8606 71 -- 0.1600 0.2521 0.3411 0.80 2 5 50/800 
70 30 6 5 1443468.0 1.0423 684 -- 0.8690 14 31987 0.0055 0.0721 0.2566 0.79 1 10 100/1000 
71 20 6 2 262152 1.0212 675 -- 0.9260 11 12345 0.8926 1.0004 1.3207 0.88 1 19 200/1000 
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Table 2: Continue 
72 20 24 3 2246421.3 1.0825 801 -- 0.9541 35 -- 0.1670 0.2378 0.3383 0.83 1 27 300/700 
73 50 6 3 5120759.0 1.0563 747 -- 0.4979 19 -- 0.0832 0.0894 0.1022 0.75 1 50 350/800 
74 5 24 3 2384947.1 1.0807 527 -- 0.2883 13 -- 0.2665 0.2754 0.3090 0.97 1 1 50/200 
75 20 6 3 784981.0 1.0234 741 -- 0.9074 10 23431 0.5423 0.5900 0.6620 0.87 1 43 400/1000 
76 30 52 2 5269995.5 1.0892 983 -- 0.8881 68 -- 0.1394 0.2094 0.2910 0.77 2 23 150/800 
77 30 24 2 2326750.5 1.0831 812 -- 0.9978 54 -- 0.1548 0.2023 0.2660 0.78 1 6 50/900 
78 30 24 3 3378980.0 1.0834 798 -- 0.8814 53 -- 0.0961 0.1480 0.2431 0.77 1 30 250/800 
79 20 52 5 2674943.5 1.0896 932 -- 0.9769 71 -- 0.1958 0.3237 0.4620 0.80 2 11 200/300 
80 10 52 3 1200920.0 1.0887 913 -- 0.9147 72 -- 0.5429 0.5816 0.6404 0.89 2 6 100/500 
81 50 36 5 8374066.0 1.0881 923 -- 0.4962 51 -- 0.0665 0.0968 0.1402 0.68 2 46 200/900 
82 30 12 3 3348554.0 1.0721 769 -- 0.9766 18 -- 0.0342 0.1075 0.2567 0.78 1 26 250/800 
83 30 24 4 4475539.5 1.0837 649 -- 0.8615 54 -- 0.0998 0.1522 0.2208 0.77 1 5 50/800 
84 5 36 4 687471.1 1.0849 765 -- 0.7811 29 -- 0.7421 0.7749 0.9153 0.97 1 1 50/400 
85 50 24 2 5642821.5 1.0842 893 -- 0.9983 48 -- 0.0576 0.0968 0.1565 0.73 1 18 100/900 
86 20 24 4 4302062.0 1.0829 768 -- 0.8426 36 -- 0.1176 0.1563 0.2138 0.83 1 7 150/400 
87 5 24 5 1499728.1 1.0806 439 -- 0.5497 15 -- 0.4550 0.4610 0.4851 0.98 1 1 50/400 
88 20 12 5 2762268.5 1.0709 879 -- 0.8384 20 -- 0.0854 0.1411 0.2110 0.84 1 45 400/1000 
89 5 52 4 461967.5 1.0888 678 -- 0.8661 58 -- 0.6226 0.6522 0.7335 0.96 1 1 50/300 
90 20 52 4 3152566.0 1.0891 853 -- 0.6999 72 -- 0.1852 0.2348 0.2848 0.80 2 27 200/1000 
91 10 52 4 1358620.6 1.0889 975 -- 0.9207 73 -- 0.4567 0.5167 0.5969 0.89 2 15 250/600 
92 30 52 5 452829.5 1.0897 987 -- 0.5694 68 -- 0.1083 0.1644 0.2359 0.75 2 22 200/500 
93 5 52 5 850346.3 1.0884 765 -- 0.8545 62 -- 0.6062 0.6530 0.7508 0.95 2 1 50/400 
94 50 52 3 4834801.5 1.0897 987 -- 0.9056 110 -- 0.0800 0.1158 0.1646 0.66 2 56 200/900 
95 50 36 4 5873769.5 1.0884 871 -- 0.7163 50 -- 0.0910 0.1246 0.1765 0.69 2 44 250/600 
96 30 52 4 3752435.5 1.0896 956 -- 0.9523 69 -- 0.1590 0.2115 0.2784 0.75 2 37 200/1000 
97 5 52 3 684493.8 1.0884 700 -- 0.9600 60 -- 0.8307 0.8446 0.9021 0.96 2 1 50/400 
98 30 6 2 6159486.5 1.0409 765 -- 0.5498 10 25432 0.0005 0.0060 0.0258 0.80 2 29 250/1000 
99 30 24 5 3284380.0 1.0838 715 -- 0.8871 56 -- 0.1157 0.1745 0.2498 0.76 1 13 100/1000 
100 20 12 4 2487208.3 1.0656 865 -- 0.8245 19 -- 0.1441 0.2008 0.2900 0.85 1 16 200/800 
Average  2884336.7 1.0709 750 -- 0.7958 37 -- 0.2929 0.3367 0.4217 0.84 1 22 -- 

*  Indicates the solution is optimal, -- Indicates that the math programming stopping criterion of 36,000 sec  
 

 The MATLAB software was used to code the 
developed GA heuristic that tested on a Fujitsu Siemens 
Laptop, Intel (R) Pentium (R) M with 240 MB RAM, 
40 GB HDD, 1.6 GHz speed computer system running 
Windows XP. 100 test problems were generated for 
each design resulting 10000 instances. Each problem 
was solved by the mixed-integer non-linear and 
linearized math programming models using CPLEX 
software and hence solved by the developed GA. Table 
2 summarizes the experimentation results. Columns 1-4 
depict the design number, system size, cycle length and 
number of different maintenance operations. Columns 5 
to 8 present the average lower bounds (LB) of the 100 
problem per design, the average Upper Bounds (UB), 
the memory allocated to the linear solver and the time 
consumed in CPU seconds by CPLEX. Columns 8 to 
10 give the performance of the mixed-integer non-
linear programming model in terms of average lower 
bounds referenced to the lower bounds of the linear 
model given at column 5, the consumed memory and 
the CPU seconds. Columns 12-18 presents the GA’s 
performance in terms of best, mean, worst, reliability 
(Rel) measured as the average number of times the GA 
could find the best solution divided by 100, memory 
consumed (Mem), CPU seconds and population 
size/number of generations. The “--” indicates that a 
math programming stopping criterion of 36,000 seconds. 
A random seed was used for each GA’s evolution.  

 In general, the GA does not consume large memory 
bytes compared with the math models although there is 
a significant difference between the memory allocated 
for linear and nonlinear versions. The nonlinear version 
takes a smaller memory than the linear one due to the 
high number of extra constraints and binary decision 
variables of the linearization process. The GA 
consumes from 1-2 Megabytes only for each problem in 
the test set while the consumed memory could be 1 
Gigabytes for some problems in the set. 
 For the smallest level of 5 machines and 6 planning 
periods, the nonlinear, linearized math models and the 
developed GA were able to identify the optimal 
solution but the GA solved each design in a second 
consuming Megabytes whereas math models consume 
larger CPU seconds and memory bytes. By increasing 
the number of machines, the developed algorithms 
could not define optimal solutions but GA could find 
solutions better than the math models for all remaining 
problems. The nonlinear math algorithm could find 
solutions with lower bounds better than the linearised 
version where the linear model defines feasible 
solutions for 4 problems. The nonlinear model trapped 
in local optimal solutions for 25 problems before 
achieving the stopping criteria of 36,000 seconds as 
listed in Table 2.  
 With regard to the CPU seconds, the developed GA 
could find better solutions rather than the math 
programming models where it takes on average 22 sec. 
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The mixed integer linear math programming model 
could not define solutions for 96 and 75 problems 
respectively. The GA success to define solutions with 
average reliability of 0.84. The Rel, CL and O were 
interrelated by the equation Rel = 1.02-0.00573×M-
0.00123×CL-0.00388×O for the developed GA. The 
developed GA outperforms both the math programming 
models in finding best solutions in suitable 
computational time and Megabytes.  

 
CONCLUSION 

 
 This article addressed the minimization of a hard 
mixed-integer non-linear optimization problem related 
to the periodic maintenance scheduling. The problem 
had a predefined sequence of maintenance operations 
on a set of machines for a definite planning period. The 
objective was to minimize the total man-hours and cost 
variances along the planning horizon with equal 
weights. We developed a mixed-integer non-linear 
math programming model and the linearised version of 
the problem. Also, we developed a GA for solving the 
problem and compared the performance of algorithms 
on a generated set of test problems. The results 
indicated the superiority of the developed GA on the 
math programming models with respect to solution 
quality, memory allocated to each algorithm and the 
CPU seconds. 
 The natural expansion to this work is to consider 
the relevant and efficient meta-heuristics like simulated 
annealing, taboo search, particle swarm and ant colony 
optimization approaches and analyzing their 
performances in order to get a better understanding of 
how benefits are attained from using each approach. 
Also, we can consider the integration between 
maintenance planning and aggregate production 
planning problems. A possible work could be done by 
considering other maintenance strategies as reliability-
based and condition-based approaches. Analyzing the 
resulting linear integer programming model for figuring 
out integrality gaps and valid inequalities strengthening 
the formulation would be a nice expansion to the field. 
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