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Abstract: Problem statement: Main purpose of this study was to investigation toothed gear loading 
problems using the Finite Element Method. Approach: We used Niemann’s equations to compare 
maximum bending stress which was developed at critical gear-tooth flank point during gear meshing, 
applied for three distinct spur-gear sizes, each having different teeth number, module and power rating. 
Results: The results emerging after the application of Niemann’s equations were compared to the results 
derived by application of the Finite Element Method (FEM) for the same gear-loading input data. Results 
were quite satisfactory, since von Mises’ equivalent stresses calculated with FEM were of the same order 
with the results of classical analytical method. Conclusion: Judging from the emerging results, deviation 
of the two methods, analytical (Niemann’s equations) and computational (FEM), referring to maximum 
bending stress is fairly slight, independently of the applied geometrical and loading data of each gear. 
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INTRODUCTION 

 
Finite element method: One of the earliest 
applications of the Finite Element Method.is attributed 
to Hrenikoff 1941 and Raptis et al. (2010) in 1941, who 
presented an early method interpretation after 
replacement of a plane elastic means with an apparatus 
consisted of bars and beams. Courant (1943) applied 
piecewise polynomial interpolation on triangular sub-
domains in order to investigate torsion problems. 
“Finite Elements” term occurred first in 1960 and was 
used by Clough (1960). Mathematical foundations were 
developed during the decade between 1960 and 1970 
and include the invention of novel elements types, 
convergence studies and other related research. 
 Some of the most famous computational methods 
for engineering problem solving are the variational 
methods, which include Rayleigh-Ritz method (Pierce 
and Varga, 1972) and the methods of weighted 
residuals, one of which is Galerkin’s method 
(Belytschko et al., 1994). The Finite Element Method 
can be assumed as a special formulation of Rayleigh-
Ritz (Pierce and Varga, 1972) and weighted residuals 
methods, which is advantageous compared to the early 

formulations of the later due to the greater convenience 
with which it resolves complex geometries. 
 Classical approach to gear-tooth strength 
estimation: The first systematic investigation for gear-
tooth critical point location is attributed to Lewis 
(1882), who assumed that the inscribed isosceles 
parabola which osculates internally with gear-tooth 
profile at tooth root defines the critical point exactly as 
the point of tangency of parabola with tooth profile at 
the tension side of the tooth. 
 Furthermore, an alternative method is the one of 
30-degree inclined tangent, which assumes that critical 
point does not depend on the application point of gear 
load, but it occurs at a fixed location at gear-tooth root. 
This method, although adopted by DIN 3990 1987 and 
ISO 6336 1996 standards, is approximate and valid 
only for lightly loaded gears. 
 According to DIN 3990 1987 method, calculation 
of bending stresses at gear-tooth root is based on 30° 
inclined tangent theory (Niemann and Winter, 1985), a 
fact that constitutes a disadvantage of this 
approximate method which is inappropriate for 
heavily loaded gearings. 



Am. J. Engg. & Applied Sci., 4 (3): 350-354, 2011 
 

351 

MATERIALS AND METHODS 
 
 The aforementioned methods for the 
implementation of finite elements calculations will not 
be applied because calculation of necessary geometrical 
properties is a time-consuming procedure, while 
calculation of normal stress at maximum loading point 
will be represented by von Mises’ equivalent stress. 
 Gear-tooth bending strength estimation according 
to the classical theory: Gear strength calculations will 
be conducted separately for pinion and gear. We 
assume that gear-tooth can be modeled as a cantilever 
beam and calculate stresses at gear-tooth root resulting 
from gear meshing load Fn. After decomposing Fn in 
two components, on tangential and radial directions 
respectively, the first acts as a perpendicular load 
causing bending and shearing, while the later causes 
compression. Consequently, gear-tooth supports three 
kinds of stresses, namely bending, compressive and 
shearing stresses, as shown in Fig. 1. Since overlap 
coefficient is greater than unity (ε>1), for a specified 
time period during gear meshing two pairs of gear teeth 
are simultaneously in contact, while at this period 
operating load Fn is split to both gear-teeth pairs. From 
Fig. 2 is obvious that: 
 A is contact point at pinion tooth root. This is the 
point where teeth contact initiates and Fn is split to both 
teeth pairs, 
 B is an intermediate point where contact exists 
only between a single teeth pair.  
 Dual teeth pair contact is completed at point E and 
onwards the working load Fn is transmitted only by a 
single teeth pair at point B. 
 Equations for gear-tooth strength estimation: For 
example , sF, at tooth root (Fig. 1), which is inserted in 
the following equations, can be estimated using either 
30-degree inclined tangent method or any other 
appropriate method. Bending strength calculation of 
gear tooth is given by the following Eq. 1-4: 
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Gear tooth length b: 

 
 
Fig. 1: Gear-tooth root loading 
 

 
 
Fig. 2: Points of single contact at external gearing 
 
b m.= λ   (4) 
 
Where: 
λ = Factor of direction depended on gearing quality 

and bearing design 
YF = Tooth-profile shape coefficient depended on 

displacement factor and gear teeth number 
Yε = Overlap factor 
ΚFα = Load distribution coefficient depended on 

gearing quality 
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Table 1: Analytical data for each distinct gear 
 m  b1  P n Fu Mt σF 
z1 (mm) (mm) YF (KW) (rpm) (Nt) (Nm) (N mm−2) 
18 6 162 3.02 18 1250 2548 137.6 7.900 
20 10 178 2.91 20 1450 2636 131.8 4.300 
22 8 149 2.87 16 1250 1389 122.3 3.346 

 

 
 
Fig. 3: Modeling of gear No.1 
 

 
 
Fig. 4: Maximum normal stress of gear No.1 at y-

direction (maximum bending stress) (σy = 5,177 
Nm m−2) 

 

 
 
Fig. 5: Von Mises’ equivalent stress of gear No.1 (6,680 

N m m−2) 

 
 

Fig. 6: Modeling of gear No.2 
 
 Application of Niemann’s equations: We will 
investigate if results from the application of maximum-
stress equations from the concurrent bibliography 
(1965), meet the results of Finite Element Method 
(FEM) application. 
 For this reason we choose three different gear 
materials, like Ck - 45 (gear No.1), AISI 1045 (gear 
No.2) and Ck- 60 (gear No.3) steels, combined with 
arbitrarily selected values for the following parameters: 
 
Gear teeth numbers: 
 
z = 18, 20 και 22 
 
Module: 
 
m = 10, 6 και 8 mm  
 
Tooth length: 
 
b1= 162, 178 και 149 mm  
 
Input power: 
 
PW = 18, 20 και 16 kW  
 
 In the Table 1, concentrates all analytical input data 
for each distinct gear. 
 Application of the finite element method: 
Furthermore, each gear with involute gear-tooth 
profile is modeled with finite elements through the 
implementation of CAD and FEM tools (Fig. 3, 6 
and 9). A finite element mesh is thus created which 
is then refined as much possible. The corresponding 
normal load is then applied on a single gear tooth. 
Results from the application of load at maximum loading 
position for each gear can be seen at the respective 
figures, namely maximum normal stresses (σy) at Fig. 4, 
7 and 10 and for von Mises’ equivalent stresses at Fig. 5, 
8 and 11. Maximum normal stress (σy) occurs at gear-
tooth root at the side of normal load application. 
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Fig. 7: Maximum normal stress of gear No.2 at y-

direction (maximum bending stress) (σy = 3,192 
N m m−2) 

 

 
 
Fig. 8: Von Mises’ equivalent stress of gear No.2 

(4,135 N m m−2) 

 

 
 
Fig. 9: Modeling of gear No.3 

 
 
Fig. 10: Maximum normal stress of gear No.3 at y-

direction (maximum bending stress) (σy = 
2,186 N m m−2) 

 

 
 
Fig. 11: Von Mises’ equivalent stress of gear No.3 

(3,341 N m m−2) 
 

RESULTS 
 
 Although classical Niemann’s method, which was 
applied, calculates bending stresses, it covers not only 
the respective bending stress that we estimated using 
FEM, but also the equivalent von Mises’ stress. 
 This fact is explained if we take into account that 
Finite Element Method is a much more advanced and 
accurate method compared to Niemann’s one. This also 
constitutes a criterion for the correctness of our results, as 
classical analytical method should provide overestimated 
results compared to that of FEM’s and furthermore the 
calculated equivalent von Mises’ stresses should be of 
the same order with Niemann’s results. 
 Results are concentrated at the Table 2. 
 From the above results, we conclude that the classical 
method of bending strength estimation gives results 
overestimated compared to FEM’s results concerning both 
normal  stresses   σy  and  von  Mises’  equivalent  stresses. 
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Table 2: Results and concentrated 
   Niemann’s  
 FEM results  Analytical results 
 ---------------------------------------- ----------------------- 
Gear No. σy(Ν mm−2) von Mises(Ν mm−2) σF(Ν mm−2)  
1 5.177 6.680 7.900 
2 3.192 4.135 4.300 
3 2.186 3.341 3.346 

 
Results are quite satisfactory, since von Mises’ 
equivalent stresses calculated with FEM are of the same 
order with the results of classical analytical method. 
 Finite Element Method solves numerous problems 
from the fields of solid and fluid mechanics, heat 
transfer, electromagnetic and many other areas, due to 
its accuracy without the need for time-consuming and 
expensive experimental test, in many occasions. 
 

DISCUSSION 
 
 Apart from solid mechanics failure, it has been 
noticed that cracks are developed on gear-tooth flank 
due to surface fatigue caused by high contact pressure 
at the neighborhood of pitch point where the whole 
working load is transmitted by a single gear teeth pair. 
Fine lubricants can enter these initially small cracks and 
apply high hydraulic pressure during operation which 
further propagates cracks resulting to surface pitting.  
 For this reason it is very important to check surface 
fatigue strength of gears. Future study should 
investigate the accurate location of load application 
which results to maximum gear-tooth stresses, as well 
as its maximum value that a gear can withstand in 
connection with geometrical and mechanical properties 
of gear (Raptis et al., 2010). 
 

CONCLUSION 
 
 In this study we ascertained minimal divergence 
of maximum bending stress of gear-teeth occurring 
during gear meshing, applied for different spur gear 
materials, gear-teeth numbers, modules and power 
ratings, after the application of Niemann’s equations 
at maximum bending stress location and the Finite 
Elements Method (FEM). 
 
 
 
 
 
 
 
 

 After comparing the results of the aforementioned 
methods applied for many different case studies, it was 
concluded that their values have acceptable divergence, 
which is normally expected, since the difference 
between normal stresses σy and σF is regularly greater 
than the difference between σF and von Mises’s 
equivalent stresses, because safety factors are taken into 
account when applying Niemann’s method. This results 
in a bending stress value greater than von Mises’ 
equivalent stress, which in turn is always greater than 
normal stress σy. 
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