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Abstract: Problem statement: Main purpose of this study was to investigatiooted gear loading
problems using the Finite Element Methdtpproach: We used Niemann’s equations to compare
maximum bending stress which was developed atalijear-tooth flank point during gear meshing,
applied for three distinct spur-gear sizes, eaclngadifferent teeth number, module and power atin
Results: The results emerging after the application of Niamis equations were compared to the results
derived by application of the Finite Element Meth{g&M) for the same gear-loading input data. Result
were quite satisfactory, since von Mises’ equivalresses calculated with FEM were of the samerord
with the results of classical analytical meth@dnclusion: Judging from the emerging results, deviation
of the two methods, analytical (Niemann’s equafiarel computational (FEM), referring to maximum
bending stress is fairly slight, independentlytwf applied geometrical and loading data of each gea
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INTRODUCTION formulations of the later due to the greater coiemce
o ) with which it resolves complex geometries.
Finite element method: One of the earliest Classical approach to gear-tooth strength

applications of the Finite Element Method.is atitdtl  ggtimation: The first systematic investigation g@ar-
to Hrenikoff 1941 and Rapte al. (2010) in 1941, who  qoth critical point location is attributed to Leswi

presented an early method interpretation afte{1ggy) who assumed that the inscribed isosceles
repla_cement of a plane elastic means with an appara parabola which osculates internally with gear-tooth
consisted of bars and beams. Courant (1943) applle-Isifl

) ) o : : ofile at tooth root defines the critical pointaexly as
piecewise polynomial interpolation on triangulatbsu the point of tangency of parabola with tooth peofilt
domains in order to investigate torsion problems, . .

. \ o the tension side of the tooth.

Finite Elements” term occurred first in 1960 andswv Furthermore. an alternative method is the one of

used by Clough (1960). Mathematical foundationsewer '

developed during the decade between 1960 and 197?6)_-degree inclined tangent, which assumes t_heil:airit
and include the invention of novel elements typespo'nt does not depend on the application pointeirg

convergence studies and other related research. load, but it occurs at a fixed location at gearttomot.
Some of the most famous computational methodd Nis method, although adopted by DIN 3990 1987 and
for engineering problem solving are the variationallSO 6336 1996 standards, is approximate and valid
methods, which include Rayleigh-Ritz method (PiercePnly for lightly loaded gears.
and Varga, 1972) and the methods of weighted According to DIN 3990 1987 method, calculation
residuals, one of which is Galerkin's method of bending stresses at gear-tooth root is base806n
(Belytschkoet al., 1994). The Finite Element Method inclined tangent theory (Niemann and Winter, 1986),
can be assumed as a special formulation of Rayleigifact that constitutes a disadvantage of this
Ritz (Pierce and Varga, 1972) and weighted resglualapproximate method which is inappropriate for
methods, which is advantageous compared to thg earheavily loaded gearings.
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MATERIALS AND METHODS /\
. 90°-(0ip+0)

The aforementioned methods for the /_1
implementation of finite elements calculations witht I
be applied because calculation of necessary geimaletr
properties is a time-consuming procedure, while -
calculation of normal stress at maximum loadingnpoi =
will be represented by von Mises’ equivalent stress =]

Gear-tooth bending strength estimation according
to the classical theory: Gear strength calculatioiib
be conducted separately for pinion and gear. We
assume that gear-tooth can be modeled as a cantilev
beam and calculate stresses at gear-tooth rodtingsu
from gear meshing load,FAfter decomposing Fin L
two components, on tangential and radial directions 12229 Pas
respectively, the first acts as a perpendiculad loa X
causing bending and shearing, while the later cause ‘ TJ:%/
compression. Consequently, gear-tooth supportse thre ’
kinds of stresses, namely bending, compressive and
shearing stresses, as shown in Fig. 1. Since @verlaFig. 1: Gear-tooth root loading
coefficient is greater than unitgX1), for a specified
time period during gear meshing two pairs of geatht
are simultaneously in contact, while at this period
operating load [Fis split to both gear-teeth pairs. From
Fig. 2 is obvious that:

A is contact point at pinion tooth root. This et
point where teeth contact initiates andid=split to both
teeth pairs,

B is an intermediate point where contact exists
only between a single teeth pair.

Dual teeth pair contact is completed at point B an
onwards the working load,Hs transmitted only by a
single teeth pair at point B.

Equations for gear-tooth strength estimation: For
example , s at tooth root (Fig. 1), which is inserted in
the following equations, can be estimated usingeeit
30-degree inclined tangent method or any other
appropriate method. Bending strength calculation of
gear tooth is given by the following Eq. 1-4:

u.. e,
ﬁ\

GF = € Fa S OFET[ (1)
b.m Fig. 2: Points of single contact at external gearin
Normal gear load F
g F b=m\ 4)
2.M
R = dol @) Where:
A = Factor of direction depended on gearing quality
Torsion moment (torque) M and bearing design
Ye = Tooth-profile shape coefficient depended on
_ P 3) displacement factor and gear teeth number
to2mn Y. = Overlap factor

Kr,= Load distribution coefficient depended on
Gear tooth length b: gearing quality
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Table 1: Analytical data for each distinct gear

m b P n F M OF
7 (mm) (mm) ¥ (KW) (pm) (N (Nm) (N mnP)
18 6 162 3.02 18 1250 2548 137.6 7.900
20 10 178 291 20 1450 2636 131.8 4.300
22 8 149 287 16 1250 1389 122.3 3.346

Fig. 3: Modeling of gear No.1

Fig. 4: Maximum normal stress of gear No.l at y-
direction (maximum bending stress), & 5,177
Nm m?)

Fig. 5:Von Mises’ equivalent stress of gear N&,5680
N m ni?)
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Fig. 6: Modeling of gear No.2

Application of Niemann's equations: We will
investigate if results from the application of nraxim-
stress equations from the concurrent bibliography
(1965), meet the results of Finite Element Method
(FEM) application.

For this reason we choose three different gear
materials, like Ck - 45 (gear No.1), AISI 1045 (gea
No.2) and Ck- 60 (gear No.3) steels, combined with
arbitrarily selected values for the following paegters:

Gear teeth numbers:

z =18, 20k 22
Module:

m =10, 6kou 8 mm
Tooth length:

b;= 162, 17801 149 mm
Input power:

Py = 18, 20kou 16 kW

In the Table 1, concentrates all analytical ingata
for each distinct gear.

Application of the finite element method:
Furthermore, each gear with involute gear-tooth
profile is modeled with finite elements through the
implementation of CAD and FEM tools (Fig. 3, 6
and 9). A finite element mesh is thus created which
is then refined as much possible. The corresponding
normal load is then applied on a single gear tooth.
Results from the application of load at maximundiog
position for each gear can be seen at the respectiv
figures, namely maximum normal stresseg &t Fig. 4,

7 and 10 and for von Mises’ equivalent stressésgats,
8 and 11. Maximum normal stress,)(occurs at gear-
tooth root at the side of normal load application.
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Fig. 10: Maximum normal stress of gear No.3 at y-

Fig. 7: Maximum normal stress of gear No.2 at y- direction (maximum bending stresspy, (=
direction (maximum bending stress), & 3,192 2,186 N m )
N m m?)

Fig. 11: Von Mises’ equivalent stress of gear No.3
(3,341 N m v

Fig. 8: Von Mises’ equivalent stress of gear No.2
(4,135 N m ri¥) RESULTS

Although classical Niemann’s method, which was
applied, calculates bending stresses, it coversoniyt
the respective bending stress that we estimataty usi
FEM, but also the equivalent von Mises’ stress.

This fact is explained if we take into accountttha
Finite Element Method is a much more advanced and
accurate method compared to Niemann’s one. This als
constitutes a criterion for the correctness ofresults, as
classical analytical method should provide ovenestid
results compared to that of FEM’'s and furthermdre t
calculated equivalent von Mises’ stresses shoulafbe
the same order with Niemann'’s results.

Results are concentrated at the Table 2.

From the above results, we conclude that theickdss
method of bending strength estimation gives results
overestimated compared to FEM'’s results concermirtly
Fig. 9: Modeling of gear No.3 normal stressess, and von Mises' equivalent stresses.
353




Am. J. Engg. & Applied i, 4 (3): 350-354, 2011

Table 2: Results and concentrated After comparing the results of the aforementioned
Niemann's i i ; ;
FEM results Analytical results methods applied fqr many different case stud@s/aﬂ;
concluded that their values have acceptable divese
Gear No. o(Nmm?) von MisesN mm?)  oe(N mni?) which is normally expected, since the difference
1 5.177 6.680 7.900 between normal stresseg andoe is regularly greater
2 3.192 4.135 4.300 : -
3 > 186 3341 3346 than the difference betweens and von Mises's

equivalent stresses, because safety factors ae tato

Results are quite satisfactory, since von Misesf”lccount when applying Niemann's method. This result

equivalent stresses calculated with FEM are oftrae in-a bending stress_vallue gregter than von Mises

order with the results of classical analytical noeth equivalent stress, which in turn is always greten
Finite Element Method solves numerous problemd10rmal stress,.
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