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Abstract: Problem statement: This study derives the optimal motion vector with arbitrary pixel 
precisions in a single step. Approach: A non-linear block matched motion model was proposed. Based 
on the proposed non-linear block matched motion model, the optimal motion vector which minimizes the 
mean square error was solved analytically in a single step via a gradient approach. Results: The mean 
square error based on the proposed method was guaranteed to be lower than or equal to that based on 
conventional methods. The computational efforts for the proposed method were lower than that of 
conventional methods particularly when the required pixel precision is higher than or equal to the quarter 
pixel precisions. Conclusion: As integer pixel locations, half pixel locations and quarter pixel locations 
are particular locations represented by the proposed model, the mean square error based on the proposed 
method is guaranteed to be lower than or equal to that based on these conventional methods. Also, as the 
proposed method does not require searching from coarse pixel locations to fine pixel locations, the 
computational efforts for the proposed method are lower than that of the conventional methods. 
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INTRODUCTION 
 
 Motion estimations play an important role in 
motion tracking applications, such as in a respiratory 
motion tracking application (Chun and Fessler, 2009) 
and in a facial motion tracking application (Lin et al., 
2002). The most common motion estimation algorithm 
is the block matched motion estimation algorithm 
(Saha et al., 2008). The current frame is usually 
partitioned into numbers of macro blocks with fixed or 
variable sizes. Each macro block in the current frame is 
compared with a number of macro blocks in the 
reference frame translated within a search window. 
Block matching errors are calculated based on a 

predefined cost function. The macro block in the 
reference frame that gives the minimum block matching 
error is considered as the best approximation of the 
macro block in the current frame. Each macro block in 
the current frame is represented by the best macro block 
in the reference frame, the motion vector (the motion 
vector is the vector representing the translation of the 
macro block in the reference frame) and the residue (the 
residue is the difference between the macro block in the 
current frame and the best translated macro block in the 
reference frame). 
 The most common block matched motion 
estimation algorithm is the full integer pixel search 
algorithm. The full integer pixel search algorithm is a 
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centre based algorithm in which all integer pixel 
locations in the search window are examined. However, 
the motion vectors are not necessarily represented by 
integer pixel precisions and a large portion of macro 
blocks in the current frame are best approximated by 
the macro blocks in the reference frame translated 
within a plus or a minusone pixel range around integer 
pixel locations. Hence, block matching errors could be 
further reduced if motion vectors are represented by 
non-integer pixel precisions. Conventional non-
integerpixel search algorithms start searching pixels at 
half pixel locations. Half pixels are interpolated by 
nearby pixels at integer pixel locations. Block matching 
errors at some or all half pixel locations are evaluated. 
The half pixel location with the minimum block 
matching error is chosen. Similarly, quarter pixels are 
interpolated by nearby pixels at half pixel and integer 
pixel locations. The quarter pixel location with the 
minimum block matching error is chosen. Finer pixel 
locations could be evaluated successively. Since the 
block matching errors at finer pixel locations are 
evaluated via interpolations from the coarser pixel 
locations, if motion vectors with very fine pixel 
precisions are required, then many pixel locations are 
required to be evaluated. Hence, computational 
complexities of these algorithms are very high and 
these algorithms are very inefficient. Also, existing 
pixel search algorithms could only achieve motion 
vectors with rational pixel precisions. If the true motion 
vector is with an irrational pixel precision, then an 
infinite number of pixel locations have to be evaluated. 
 Interpolations are implemented via some 
predefined functions, such as a real valued quadratic 
function with two variables (Li and Gonzales, 1996), a 
parabolic function (Du et al., 2003) and a straight line 
(Lee et al., 2003). As the block matching error is a 
highly non-linear and non-convex function of the 
motion vector, it is very difficult to solve the motion 
vector that globally minimizes the block matching 
error. Hence, many pixel locations are still required to 
be evaluated and the pixel location with the lowest 
block matching error is chosen. Similar to conventional 
quarter pixel search algorithms, computational 
complexities of these algorithms are still very high and 
these algorithms are still very inefficient. Also, if the 
true motion vector is with an irrational pixel precision, 
then an infinite number of pixel locations still have to 
be evaluated. 
 In this study, we propose a non-linear block 
matched motion model and solve the motion vectors 
with arbitrary pixel precisions in a single step. Our 
proposed algorithm has the following salient features. 
(1) The block matching error is evaluated in a single 

step which globally minimizes the mean square error. 
As the calculation of the mean square error at a finer 
pixel location is not derived from the coarser pixel 
locations, the computational complexity of our 
proposed algorithm is much lower than that of 
conventional quarter pixel search algorithms. (2) Our 
proposed algorithm could achieve the true motion 
vector even though the true motion vector is with an 
irrational pixel precision. Numerical computer 
simulation results show that the mean square errors of 
various video sequences based on our proposed 
algorithm are lower than that based on conventional 
half pixel search algorithms and quarter pixel search 
algorithms. 

 
Proposed non-linear block matched motion model: 
Denote the size of a macro block as N×N, where 
N∈Z+. ∀k∈Z+, let Bk+l be a subset of pixels in the 
k+1th current frame and Bk+1(x, y) be the pixel value 
of Bk+l at the pixel location (x, y). Similarly, ∀k∈Z+, 
let Bk be a subset of pixels in the kth reference frame 
and Bk(x, y) be the pixel value of Bk at the pixel 
location (x, y). ∀k∈Z+, denote the motion vector of Bk 
as (p0,k+pk,q0,k+qk), where (p0,k, q0k)∈Z2 and (pk, 
qk)∈S≡[0,1]×[0,1]\{(0,1),(1,0),(1,1)}. ∀k∈Z+, (p0,k, 
q0k)

 is the best integer pixel location which 
minimizes the block matching error and can be 
obtained via existing full integer pixel search 
algorithms. On the other hand, ∀k∈Z+, (pk,qk) is the 
fine shift within S around (p0,k,q0k) and the values of 
pk and qk could be either rational or irrational. 
Motion vectors could be any vectors in one of the 
four quadrants in ℜ2 and the motion vectors in 
different quadrants are interpolated by different 
pixels based on different orientations. 
 ∀k∈Z+ and ∀(pk,qk)∈S, denote 

k k

UL
k,p ,qB%  as the 

translated Bk if the motion vector moves in the upper 
left direction, 

k k

UR
k,p ,qB%  as the translated Bk if the motion 

vector moves in the upper right direction, 
k k

LL
k,p ,qB%  as the 

translated Bk if the motion vector moves in the lower 
left direction and 

k k

LR
k,p ,qB%  as the translated Bk if the 

motion vector moves in the lower right direction. 
∀k∈Z+ and ∀(pk,qk)∈S, denote ( )

k k

UL
k,p ,qB x,y% , ( )

k k

UR
k,p ,qB x,y% , 

( )
k k

LL
k,p ,qB x,y%  and ( )

k k

LR
k,p ,qB x,y%  be the pixel values of 

k k

UL
k,p ,qB% , 

k k

UR
k,p ,qB% , 

k k

LL
k,p ,qB%  and 

k k

LR
k,p ,qB%  at the pixel location (x,y), 

respectively. In this study, ∀k∈Z+, ∀(pk,qk)∈S, 
∀x∈{0,….N-1} and ∀y∈{0,….N-1}, ( )

k k

UL
k,p ,qB x,y% , 

( )
k k

UR
k,p ,qB x,y% , ( )

k k

LL
k,p ,qB x,y%  and ( )

k k

LR
k,p ,qB x,y%  are constructed via 

the following models: 
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( ) ( )( ) ( )
( ) ( )

( ) ( )
( )

k k

UR
k,p ,q k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

B x,y 1 p 1 q B x p ,y q

1 q p B x p 1,y q

q 1 p B x p ,y q 1

p q B x p 1,y q 1

≡ − − + +

+ − + + +

+ − + + +

+ + + + +

%

 

 
( ) ( )( ) ( )

( ) ( )
( ) ( )

( )

k k

LR
k,p ,q k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

B x,y 1 p 1 q B x p ,y q

1 q p B x p 1,y q

q 1 p B x p ,y q 1

p q B x p 1,y q 1

≡ − − + +

+ − + + +

+ − + + −

+ + + + −

%

 

 
( ) ( )( ) ( )

( ) ( )
( ) ( )

( )

k k

UL
k,p ,q k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

B x,y 1 p 1 q B x p ,y q

1 q p B x p 1,y q

q 1 p B x p ,y q 1

p q B x p 1,y q 1

≡ − − + +

+ − + − +

+ − + + +

+ + − + +

%

 

 
and: 
 

( ) ( )( ) ( )
( ) ( )

( ) ( )
( )

k k

LL
k,p ,q k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

k k k 0,k 0,k

B x,y 1 p 1 q B x p ,y q

1 q p B x p 1,y q

q 1 p B x p ,y q 1

p q B x p 1,y q 1

≡ − − + +

+ − + − +

+ − + + −

+ + − + −

%

 

 
respectively. ∀k∈Z+ and ∀(pk,qk)∈S, let the mean 
square error between the translated Bk and Bk+1 be 
MSEk (pk ,qk). That is, ∀k∈Z+ and ∀(pk,qk)∈S: 
 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

k k

k k

k k

k k

N 1 N 1 2UL
k,p ,q k 12

x 0 y 0

N 1 N 1 2UR
k,p ,q k 12

x 0 y 0

k k k N 1 N 1 2LL
k,p ,q k 12

x 0 y 0

N 1 N 1 2LR
k,p ,q k 12

x 0 y 0

1
B x,y B x,y ,

N

1
B x,y B x,y ,

N
MSE p ,q min

1
B x,y B x,y ,

N

1
B x,y B x,y

N

− −

+
= =

− −

+
= =

− −

+
= =

− −

+
= =

 − 
 
 

− 
 ≡  
 −
 
 
 −
 

∑∑

∑∑

∑∑

∑∑

%

%

%

% 


 

 
 It is worth noting that: 
 

( )( ) ( ) ( )k k k k k k k k1 p 1 q p 1 q 1 p q p q 1− − + − + − + =   

 
∀k∈Z+ and ∀(pk,qk)∈S. Hence, the average intensity of 

k k

UL
k,p ,qB% , 

k k

UR
k,p ,qB% , 

k k

LL
k,p ,qB%  and 

k k

LR
k,p ,qB%  will not be boosted up 

orattenuated down ∀k∈Z+ and ∀(pk,qk)∈S. 
 If the true motion vector is located at the integer 
pixel locations, then it is obvious to see that pk = qk = 0. 
If the true motion vector is located at the half pixel 

locations, then it is obvious to see that pk = 0 and 

k

1
q

2
= , or k

1
p

2
=  and qk = 0, or k

1
p

2
=  and qk = 1, or 

that pk = 1 and k

1
q

2
= , or k k

1
p q

2
= = . If the true 

motion vector is located at the quarter pixel locations, 

then it is obvious to see that k k

1
p q

4
= = , or k

3
p

4
=  and 

k

1
q

4
= , or k

1
p

4
=  and k

3
q

4
= , or k k

3
p q

4
= = , or pk = 0 

and k

1
q

4
= , or pk = 0 and k

3
q

4
= , or pk = 1 and k

1
q

4
= , 

or pk = 1 and k

3
q

4
= , or k

1
p

4
=  and qk = 0, or k

3
p

4
=  

and qk = 0, or k

1
p

4
=  and qk = 1, or k

3
p

4
=  and qk = 1, 

or k

1
p

2
=  and k

1
q

4
= , or  k

1
q

4
=  and k

1
q

2
= , or k

1
p

2
=  

and k

3
q

4
= , or k

3
p

4
=  and k

1
q

2
= . Hence, integer pixel 

locations, half pixel locations and quarter pixel 
locations are particular locations represented by our 
proposed model. 
 
Derivation of optimal motion vector: The objective of 
the block matched motion estimation problem is to find 
∀(pk,qk)∈S such that MSEk (pk, qk) is minimized 
∀k∈Z+. ∀k∈Z+ and∀(pk,qk)∈S, denote: 
 

( )

( )( ) ( )
( ) ( )

( ) ( )
( )

( )

2

k k k 0,k 0,k

k k k 0,k 0,k
N 1 N 1

UR
k k k k k k 0,k 0,k2

x 0 y 0

k k k 0,k 0,k

k 1

1 p 1 q B x p , y q

1 q p B x p 1, y q
1

MSE p ,q q 1 p B x p , y q 1
N

p q B x p 1, y q 1

B x, y

− −

= =

+

 − − + +
 
 + − + + +
 
 ≡ + − + + +
 
 + + + + +
 
 −
 

∑∑  

 

( )

( )( ) ( )
( ) ( )

( ) ( )
( )

( )

2

k k k 0,k 0,k

k k k 0,k 0,k
N 1 N 1

LR
k k k k k k 0,k 0,k2

x 0 y 0

k k k 0,k 0,k

k 1

1 p 1 q B x p ,y q

1 q p B x p 1,y q
1

MSE p ,q q 1 p B x p , y q 1
N

p q B x p 1, y q 1

B x, y

− −

= =

+

 − − + +
 
 + − + + +
 
 ≡ + − + + −
 
 + + + + −
 
 −
 

∑∑  

 

( )

( )( ) ( )
( ) ( )

( ) ( )
( )

( )

2

k k k 0,k 0,k

k k k 0,k 0,k
N 1 N 1

UL
k k k k k k 0,k 0,k2

x 0 y 0

k k k 0,k 0,k

k 1

1 p 1 q B x p , y q

1 q p B x p 1,y q
1

MSE p ,q q 1 p B x p , y q 1
N

p q B x p 1, y q 1

B x, y

− −

= =

+

 − − + +
 
 + − + − +
 
 ≡ + − + + +
 
 + + − + +
 
 −
 

∑∑  
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and: 

 

( )

( )( ) ( )
( ) ( )

( ) ( )
( )

( )

2

k k k 0,k 0,k

k k k 0,k 0,k
N 1 N 1

LL
k k k k k k 0,k 0,k2

x 0 y 0

k k k 0,k 0,k

k 1

1 p 1 q B x p ,y q

1 q p B x p 1,y q
1

MSE p ,q q 1 p B x p ,y q 1
N

p q B x p 1,y q 1

B x,y

− −

= =

+

 − − + +
 
 + − + − +
 
 ≡ + − + + −
 
 + + − + −
 
 −
 

∑∑  

 
 Then ∀k∈Z+ and∀(pk, qk)∈S, we have: 

 

( )

( )
( )
( )
( )

( )
( )

( )
( )

k 0,k 0,k

k 0,k 0,k

k k

k 0,k 0,k

k 0,k 0,k

UR
k k k k 0,k 0,k2

k

k 0,k 0,k

k 0,k 0,k

k

k 0,k 0,k

k

B x p ,y q

B x p , y q 1
p q

B x p 1, y q

B x p 1, y q 1
1

MSE p ,q B x p , y q 1
N q

B x p , y q

B x p 1, y q
p

B x p , y q

B x p

 + +
 
 − + + +
 
 − + + +
 
 + + + + + 

 = + + +
 +
 − + + 

 + + +
 +
 − + + 

+ +( ) ( )

2

N 1 N 1

x 0 y 0

0,k 0,k k 1, y q B x, y

− −

= =

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + − 

∑∑
 

 
 This further implies that∀k∈Z+ and ∀(pk,qk)∈S: 

 

( )

( )
( )
( )
( )

( )
( )

( )
( )

k 0,k 0,k

k 0,k 0,k

k k

k 0,k 0,k

k 0,k 0,k

k 0,k 0,k

k

k 0,k 0,k

k 0,k 0,k

k

k 0,k 0,k

UR
k k k

2
k

B x p ,y q

B x p , y q 1
p q

B x p 1,y q

B x p 1, y q 1

B x p , y q 1
q

B x p ,y q

B x p 1, y q
p

B x p , y q

B

MSE p ,q 2

p N

 + +
 
 − + + +
 
 − + + +
 
 + + + + + 

 + + +
 +
 − + + 

 + + +
 +
 − + + 

+

∂
=

∂

( )
( )

( )
( )
( )
( )

( )

k 0,k 0,k

k 1

k 0,k 0,k

k 0,k 0,k

k

k 0,k 0,k

k 0,k 0,k

k 0,k 0,k

k 0,k

x p , y q

B x,y

B x p , y q

B x p , y q 1
q

B x p 1,y q

B x p 1, y q 1

B x p 1,y q

B x p ,y q

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + + 
 −
 
 
 
 
 
 
 
 
 
 

 + +
 
 − + + +
 
 − + + +
 
 + + + + + 

+ + + +

− + +( )

N 1 N 1

x 0 y 0

0,k

− −

= =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

∑∑

 

( )
( )
( )
( )

( )
( )
( )
( )

2

k 0,k 0,k

N 1 N 1
k 0,k 0,k2

k k 2
x 0 y 0 k 0,k 0,k

k 0,k 0,k

k 0,k 0,k

k 0,k 0,k

k k 2

k 0,k 0,k

k 0,k 0,k

B x p , y q

B x p ,y q 12
p q

N B x p 1,y q

B x p 1,y q 1

B x p , y q

B x p ,y q 14
p q

N B x p 1,y q

B x p 1,y q 1

− −

= =

 + +
 
 − + + +
 =
 − + + +
 
 + + + + + 

 + +

− + + +
+
− + + +

+ + + + + 

∑∑

( )
( )

N 1 N 1
k 0,k 0,k

x 0 y 0 k 0,k 0,k

B x p 1,y q

B x p ,y q

− −

= =


 + + +
 
  − + + 


∑∑

 

( )
( )

( )
( )

( )
( )
( )
( )

2
N 1 N 1

k 0,k 0,k

k 2
x 0 y 0 k 0,k 0,k

k 0,k 0,k

k 0,k 0,k k 0,k 0,k2
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 Then ∀k∈Z+ and ∀(pk,qk)∈S, we have: 
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∀k∈Z+, denote a stationary point of ( )UR
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If 2k,pq
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which further implies that Eq. 1: 
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∗ ∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗

 + + 
 

− + + + + 
 
  + + +
 

+ + +
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2
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c c q c q c

z c q c q c 0

∗ ∗ ∗

∗ ∗

+ + +

+ + + =

 (1) 

 
 If 2k,pq

c 0=  and k,pqc 0=  and k,pc 0= , but 2k,qp
z 0≠  

or k,qpz 0≠  or k,qz 0≠ , then we have: 

 
2

2

UR 2 UR
k k,p k kk,pUR

k UR 2 UR
k k,qp k k,qk,qp

z p z p z
q

z p z p z

∗ ∗
∗

∗ ∗
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and: 
 

2
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2
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 + +
 −
 + +
 

 + +
 + − + =
 + +
 

 

 
which further implies that Eq. 2: 
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 If 2k,pq
c 0=  and k,pqc 0=  and k,pc 0=  and 2k,qp

z 0=  

and k,qpz 0=  and k,qz 0= , then we have Eq. 3: 

 

2

2

UR 2 UR
k k,q k kk,q

UR 2 UR
k k,p k kk,p

c q c q c 0and

z p z p z 0

∗ ∗

∗ ∗

+ + =

+ + =
 (3) 

 
 By solving Eq. 1 or 2 or 3, UR* UR*

k k(p ,q )  can be 

found ∀k∈Z+. ∀k∈Z+, denote the total number of 
vectors UR* UR*

k k(p ,q )  within S as UR
kM . If UR

kM 1≥ , then 

denote those vectors as ( )UR UR
k,m k,mp ,q∗ ∗  for UR

km 1,2,...,M=  

and denote ( ){UR UR UR
k k,m k,mF p ,q∗ ∗≡  for 

UR
km 1,2,...,M } {(0,0)}= ∪ . 

 However, in general it is not guaranteed that 
UR
kM 1≥  ∀k∈Z+. If UR

kM 0= , then there may be no 

stationary point or the stationary points are not in S. For 
these two cases, the global minimum of the 

UR
k k kMSE (p ,q ) could be on the boundaries of S. Hence, 

it is required to check if there exist some stationary 
points on the boundaries of S. The following 
procedures are employed for the checking. ∀k∈Z+ and 
∀qk∈[0,1]: 
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( )( ) ( )
( ) ( )

( ) ( )
( )
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k
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1
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N
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1 q B x p ,y q
1
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N
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+
=
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∑∑

 

 
 This implies that ∀k∈Z+ and ∀qk∈[0,1]: 
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( )

( )
( )
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∀k∈Z+, denote: 
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2
N 1 N 1
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k,0,q
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c
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and: 
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then ∀k∈Z+ and∀qk∈[0,1] we have: 
 

UR
k k

k,0,q k,0k
k

MSE (0,q )
c q c

q

∂ = +
∂

% % . 

 
 ∀k∈Z+ denote a stationary point of UR

k kMSE (0,q ) 

as %0,UR

k(0,q ). If k,0,qc 0≠% , then 
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k q q
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q
=

∂
=

∂
%

 

 

implies that%
0,UR k,0

k

k,0,q

c
q

c
= −

%

%
. If this value is in S, that is if 

k,0

k,0,q

c
[0,1]

c
− ∈

%

%
, then this stationary point could be the 

global minimum. For this case, define 

k,0UR
k,0,q

k,0,q

c
F 0,

c

   ≡ −   
   

%
%

%
. 

 However, the following three cases could be 
happened. (Case i) This stationary point may be outside 

S, that is k,0,qc 0≠%  and k,0

k,0,q

c
[0,1]

c
− ∉

%

%
. (Case ii) k,0,qc 0=%  
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and 0~
0, =kc . Then, all the points on the boundary of S 

are stationary points. (Case iii) k,0,qc 0=%  and k,0c 0≠% . 

Then, there is no stationary point on the boundary of S. 
For all these three cases, we do not consider that the 
global minimum is on the boundary of S. Hence, for 
these three cases, define UR

k,0,qF ≡ ϕ% , where Ø is denoted 

as the empty set. Similarly, ∀k∈Z+ and ∀qk∈[0,1]: 
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 This implies that ∀k∈Z+ and ∀qk∈[0,1]: 
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and: 
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then ∀k∈Z+ and∀qk∈[0,1] we have: 
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 ∀k∈Z+, denote a stationary point of UR

k kMSE (1,q ) 

as %1,UR

k(1,q ) . If k,1,qc 0≠%  and [ ]k,1
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%

%
, then this 

stationary point could be the global minimum. For this 

case, define k,1UR
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c
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 However, if k,1,qc 0≠%  and k,1

k,1,q

c
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c
− ∉

%

%
, or k,1,qc 0=% , 

then we do not consider that the global minimum is on 
the boundary of S . For these two cases, define 
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k,1,qF ≡ ϕ% . ∀k∈Z+  and ∀pk∈[0,1]: 
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 This implies that ∀k∈Z+ and ∀pk∈[0,1]: 
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∀k∈Z+, denote: 
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then ∀k∈Z+ and∀pk∈[0,1] we have: 
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stationary point could be the global minimum. For this 
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%
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k,0,pz 0=% , then we do not consider that the global 

minimum is on the boundary of S. For these two cases, 
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 This implies that ∀k∈Z+ and ∀pk∈[0,1]: 
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 ∀k∈Z+ denote: 
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then ∀k∈Z+ and∀pk∈[0,1] we have: 
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k

MSE p ,1
z p z

p

∂
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∂
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 ∀k∈Z+ denote a stationary point of UR

k kMSE (p ,1) as 

%1,UR

k(p ,1) . If k,1,pz 0≠%  and [ ]k,1
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z
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z
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%

%
, then this 

stationary point could be the global minimum. For this 

case, define k,1UR
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z
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z
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 However, if k,1,pz 0≠%  and [ ]k,1

k,1,p

z
0,1

z
− ∉

%

%
, or k,1,pz 0=% , 

then we do not consider that the global minimum is on 
the boundary of S. For these two cases, define UR

k,1,pF ≡ ϕ% . 

∀k∈Z+, define ( ){ }UR UR UR UR UR
k k,0,q k,1,q k,0,p k,1,pF F F F F 0,0≡ % % % %U U U U . 

Similarly, ∀k∈Z+, denote the set of motion vectors 
corresponding to the stationary points of 

( )UL
k k kMSE p ,q , ( )LL

k k kMSE p ,q  and ( )LR
k k kMSE p ,q  

(including the point ( )0,0 ) as UL
kF , LL

kF  and LR
kF , 

respectively. The algorithm for finding the globally 
optimal motion vector can be summarized as follow: 
 
Algorithm: 
Step 1: Implement an existing full integer pixel search 

algorithm to obtain (p0,k, q0,k) ∀k∈Z+. 
Step 2: ∀k∈Z+, evaluate UL

kF , UR
kF , LL

kF  and LR
kF .  

Step3: ∀k∈Z+, evaluate 
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( )
( ){ }
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( ){ }
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( ){ }
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( ){ }
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k k k

UR
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k k k
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p ,q F
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k k
LL
k k k

p ,q F
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k k k

p ,q F

arg min MSE p ,q ,

arg min MSE p ,q ,

p ,q arg

arg min MSE p ,q ,

arg min MSE p ,q

∈

∈∗ ∗

∈

∈

 
 
 
 
 
 ≡  
 
 
 
 
  

 

 
 ∀k∈Z+, take * *

k k(p ,q )  as the globally optimal 

motion vector of Bk. 
 Since the global minimum of the mean square error 
is not necessarily located at rational pixel locations, 
while the full integer pixel search, full half pixel search 
and full quarter pixel search algorithms only evaluate at 
rational pixel locations, the mean square errors based 
on these conventional methods are very large and these 
conventional methods are very ineffective. On the other 
hand, our proposed method guarantee to find the 
motion vector that globally minimizes the mean square 
error no matter the motion vector is located at either 
rational pixel locations or irrational pixel locations. 
Hence, our proposed method is more effective that 
conventional methods. Besides, as integer pixel 
locations, half pixel locations and quarter pixel 
locations are particular locations represented by our 
proposed model, the mean square error based on our 
proposed method is guaranteed to be lower than or 
equal to that based on these conventional methods.  
 The computational complexity of our proposed 
algorithm can be analyzed as follows. As the orders of 
the polynomials in (1), (2) and (3) are 5, 4 and 2, 
respectively, UR

k0 M 5≤ ≤  ∀k∈Z+. 

 Hence, if UR
kM 1≥ , then the maximum number of 

the evaluation points of our proposed method is less 
than or equal to 21. If UR

kM 0= , as the maximum 

number of the evaluation points in UR
kF is 5, the 

maximum number of the evaluation points of our 
proposed method are less than or equal to 17. 
 For full half pixel search algorithms and full 
quarter pixel search algorithms, there are 21 and 72 
evaluation points, respectively. Hence, the total number 
of the evaluation points of our proposed method is 
lower than that of full quarter pixel search algorithms 
and is lower than or the same as that of the full half 
pixel search algorithms depending on whether 

UR
kM 1≥ or not. As conventional block matched motion 

estimation algorithms evaluate block matching errors 
from coarse pixel locations to fine pixel locations, the 
computational complexities grow exponentially as the 
pixel precisions get finer and finer. From this point of 
view, the conventional methods are very inefficient. On 
the other hand, our proposed method does not require 
searching from the coarse pixel locations to the fine 
pixel locations. Our proposed method is more efficient 
than the conventional methods particularly when the 
required pixel precision is higher than or equal to the 
quarter pixel precisions.  
 
Optimal motion vectors with arbitrary pixel 
precisions: For practical motion estimation 
applications, motion vectors are usually represented by 
finite pixel precisions. Denote round(z) as the rounding 
operator that rounds z to the nearest integer and L as the 
number of bits for the representation of the motion 
vectors. Then, define: 
 

( ) ( )L L
k k

k,L k,LL L

round p 2 round q 2
p and q

2 2

∗ ∗
∗ ∗≡ ≡  

 
 Obviously, *

k,Lp  and *
k,Lq  are the L bits 

representation of *kp  and *
kq , respectively. It is worth 

noting that *
k ,Lp  and *

k,Lq  is the suboptimal solution 

only. This is because an error may be introduced when 
applying the rounding operator to *

kp  and *
kq . Although 

the globally optimal solution could be found by solving 
the corresponding integer programming problem, 
solving the corresponding integer programming 
problem requires a numerical optimizer and the 
computational complexities are very high. In fact, the 
difference between the obtained suboptimal solution 
and the globally optimal solution is very small. Hence, 
it is more practical to solve the problem via our 
proposed method. Also, it is worth noting that the 
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computational complexity of our proposed method is 
independent of the required pixel precisions. Hence, the 
computational complexity of our proposed method is 
lower than that of conventional methods when the 
required pixel precision is high. 
 

MATERIALS AND METHODS 
 
 In order to have complete investigations, video 
sequences with fast motion, medium motion and slow 
motion are studied. The video sequences, Foreman, 
Coastguard and Container, are, respectively, the most 
common fast motion, medium motion and slow motion 
video sequences. Hence, motion estimations are 
performed to these video sequences. Except the first 
frame of these video sequences, the mean square errors 
of all the frames of these video sequences are evaluated. 
Each current frame takes its immediate predecessor as the 
reference frame. The sizes of the marco blocks are chosen 
as 8×8 and 16×16 and the sizes of the search windows are 
chosen as 32×32 and 40×40, which are the most common 
block sizes and window sizes used in international 
standards. The comparisons are made with the full integer 
pixel search algorithm, the full half pixel search algorithm 
and the full quarter pixel search algorithm. 
 The mean square error performances of our 
proposed method with the motion vectors having 1-4 bits 
representations, the full integer pixel search algorithm, 
the full half pixel search algorithm and the full quarter 
pixel search algorithm with the size of the macro blocks 
8×8 and the size of the search windows 32×32 applied to 
the video sequences Coastguard, Container and Foreman 
are shown in Fig. 1a-c, respectively. 
 

RESULTS 
  
 It can be seen from the Fig. 1 that the 
improvements on the average mean square errors of  the 
full half pixel search algorithm, the full quarter  pixel 
search algorithm, our proposed method with the motion 
vectors having 1 bit representation, our proposed 
method with the motion vectors having 2 bits 
representation, our proposed method with the motion 
vectors having 3 bit representation and our proposed 
method with the motion vectors having 4 bits 
representation over the full integer search algorithm for 
the video sequences Coastguard are 1.4894×10−4, 
2.2242×10−4, 1.4892×10−4, 2.2163×10−4, 2.5293×10−4 
and 2.6433×10−4, respectively, which correspond to 
17.8531%, 28.8039%, 17.8526%, 28.7715%, 34.1366% 
and 36.2830%, respectively, that for the video 
sequences Container are 1.4406×10−6, 3.6476×10−6, 
1.5171×10−6, 3.7159×10−6, 1.7249×10−5 and 
1.9126×10−5, respectively, which correspond to 
1.0115%, 4.4170%, 1.0432%, 4.4460%, 27.0415% and 
30.1629%, respectively and that for the video 

sequences Foreman are 1.5788×10−4, 2.2863×10−4, 
1.5927×10−4, 2.2883×10−4, 2.4908×10−4 and 
2.5469×10−4, respectively, which correspond to 
24.7674%, 39.1977%, 25.0038%, 39.3369%, 44.2051% 
and 45.5749%, respectively.  
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 1: The mean square error performances of our 

proposed method with the motion vectors having 
1 to 4 bits representations, the full integer pixel 
search algorithm, the full half pixel search 
algorithm and the full quarter pixel search 
algorithm with the size of the macro blocks 8×8 
and the size of the search windows 32×32 
applied to the video sequences Coastguard, 
Container and Foreman 
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Fig. 2: The mean square error performances of our 

proposed method with the motion vectors having 
1 to 4 bits representations, the full integer pixel 
search algorithm, the full half pixel search 
algorithm and the full quarter pixel search 
algorithm with the size of the macro blocks 
16×16 and the size of the search windows 40×40 
applied to the video sequences Coastguard, 
Container and Foreman 

 
Similar results are obtained for different size of macro 
blocks and different size of the search windows. Figure 
2 shows the improvements on the average mean square 

errors of various algorithms with the size of the   marco  
blocks 16×16 and the size of the search windows 40×40 
applied to the same set of video sequences. The 
improvements on the average mean square errors of the 
full half pixel search algorithm, the full quarter pixel 
search algorithm and our proposed method with the 
motion vectors having 1 bit representation, our 
proposed method with the motion vectors having 2 bits 
representation, our proposed method with the motion 
vectors having 3 bit representation and our proposed 
method with the motion vectors having 4 bits 
representation for the video sequences Coastguard are 
1.7838×10−4, 2.5650×10−4, 1.7828×10−4, 2.5511×10−4, 
2.8711×10−4 and 2.9943×10−4, respectively, which 
correspond to 18.4666%, 27.6579%, 18.4517%, 
27.5624%, 31.7472% and 33.5302%, respectively, that 
for the video sequences Container are 1.8757×10−6, 
2.5444×10−6, 2.0329×10−6, 2.6633×10−6, 1.4967×10−5 
and 1.6661×10−5, respectively, which correspond to 
0.7710%, 1.5106%, 0.7993%, 1.5294%, 21.7783% and 
24.5069%, respectively and that for the video 
sequences Foreman are 2.1073×10−4 , 2.9528×10−4 
2.1438×10−4, 2.9723×10−4, 3.2154×10−4 and 
3.2816×10−4, respectively, which correspond to 
21.6021%, 34.2148%, 21.7420%, 34.2884%, 38.6100% 
and 39.8738%, respectively. 
 

DISCUSSION 
 
 From the above numerical computer simulation 
results, it can be concluded that the mean square error 
performances of our proposed method with the motion 
vectors having 1 bit representation is very close to that 
of the full half pixel search algorithm and that of our 
proposed method with the motion vectors having 2 bit 
representation is very close to that of the full quarter 
half pixel search algorithm. For our proposed method 
with the motion vectors having more than 2 bits 
representations, the mean square error performances of 
our proposed method are always better than that of the 
full half pixel search algorithm and the full quarter 
pixel search algorithm for all of the above three video 
sequences. In particular, for slow motion video 
sequences, such as the video sequence Container, our 
proposed method significantly outperforms the full 
integer pixel search algorithm, the full half pixel search 
algorithm and the full quarter pixel search algorithm. 
This is because the globally optimal motion vectors for 
these slow motion video sequences are very close to the 
origin and far from the half pixel locations and the 
quarter pixel locations. In this case, the full half pixel 
search algorithm and the full quarter pixel search 
algorithm would not yield very significant 
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improvements over the full integer pixel search 
algorithm. On the other hand, our proposed method 
could give a better solution by introducing one more bit 
for the representation of the motion vectors and hence 
yields very significant improvements. 
 

CONCLUSION 
  
 A nonlinear block matched motion model is 
proposed in this study. The motion vector with arbitrary 
pixel precisions which globally minimizes the mean 
square error is solved analytically in a single step. As 
integer pixel locations, half pixel locations and quarter 
pixel locations are particular locations represented by 
our proposed model, the mean square error based on 
our proposed method is guaranteed to be lower than or 
equal to that based on these conventional methods. 
Also, as our proposed method does not require 
searching from coarse pixel locations to fine pixel 
locations, our proposed method is more efficient than 
conventional methods particularly when the required 
pixel precision is higher than or equal to the quarter 
pixel precisions. 
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