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Abstract: Problem statement: Due to significant developments in the processing power and parallel 
processing technologies, the existing encryption algorithms are increasingly susceptible to attacks, such as 
side-channel attacks, for example. Designing new encryption algorithms that work efficiently on different 
platforms and security levels to protect the transmitted data from any possible attacks is one of the most 
important issues in today’s information and network security. The aim is to find more secure, reliable and 
flexible systems that can run as a ratified standard, with reasonable computational complexity for a 
sufficient service time. To expand the longevity of the algorithm, it is important to be designed to work 
efficiently on a variety of block sizes and key lengths according to the security demand. A sensible solution 
is the suggested use of a parameter transform. Approach: The present study evaluates the appropriateness 
of the New Mersenne Number Transform for security applications by analyzing and estimating its 
avalanche and diffusion power. Results: The results confirm that the transform in general reflects good 
avalanche characteristics that are for most cases over 50% and can be up to 100%. The lower bound can be 
further improved by increasing the modulus and/or the transform length. Conclusion: This New Mersenne 
Number Transform is highly flexible and adaptable for this application. It can be involved in the design of a 
secure cryptosystem for the following reasons; changing a single input element makes drastic changes in the 
output elements and vice versa (sensitivity), provides variable block size and key length (parameterization). 
Has long transform length (power of two), is error free and its inverse is the same with a scale factor of 
(1/N) which simplifies implementation of both encryption and decryption. Finally, it is appropriate for real 
time implementations such as fast algorithms, which can be applied to it, to speed up processing.  
 
Key words: Diffusion power, Number Theoretic Transform (NTT), fast algorithms, parameter 
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INTRODUCTION 
 
 Shannon (1949) introduced two main principles for 
designing secure cryptographic systems; confusion and 
diffusion. Substitution is one of the processes of 
confusion, in which the elements of the plaintext are 
mapped into other elements in order to complicate the 
relationship between the plaintext and the 
corresponding cipher text and its strength depends on 
the strength of the non-linear properties of the applied 
substitution box (S-box). Diffusion is the process that 
rearranges the plaintext into the cipher text. 
Accordingly, the measure of how influential the 
diffusion process is; can be measured by how the 
plaintext is redistributed across the cipher text. 
Additionally a small change in the influencer of the 
diffusion process (such as the key or the plaintext itself) 
should have a significant impact on the resulting cipher 

text. This effect is called the avalanche effect and a 
system is considered to have good avalanche 
characteristics if roughly half of the output data is 
affected for a single input change. Hence this impact is 
important to verify that the system is resilient to 
statistical attacks (Feistel, 1973; Heys and Tavares, 
1995). However, after differential (Biham and Shamir, 
1991) and linear (Matsui, 1994) cryptanalysis have 
been involved, designing the diffusion part of 
algorithms by relaying only on elements transposition 
or permutation has no longer become secure and 
algorithms become subject to attacks. Hence more 
sophisticated techniques have been involved to improve 
and strengthen the diffusion part, such as the use of 
transforms. For instance, in the Twofish algorithm 
(Schneier, 1999), a fixed transform, (4×4) Maximum 
Distance Separable (MDS) matrix over Galois field GF 
(28) is utilized. Where at each round an input vector of 
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four bytes in length is multiplied by the MDS over GF 
(28). A MDS matrix in hexadecimal form is given in (1) 
(Schneier, 1999) Eq. 1: 
 

01 EF 5B 5B

5B EF EF 01
MDS

EF 5B 01 EF

EF 01 EF 5B

 
 
 =
 
 
 

 (1) 

 
 In the current state of the art, the Advanced 
Encryption Standard (AES) algorithm (Daemen and 
Rijmen, 2002), which was announced by National 
Institute of Standards and Technology (NIST) as U.S. 
Federal Information Processing Standards Publications 
197 (FIPS PUB 197) on November 26, 2001 FIPS197 
2001, a transform called mix columns is used for 
diffusion purposes, where the columns of the state are 
considered as a polynomial over GF(28) and a mix 
columns operation is undertaken by multiplying the 
columns modulo (x4+1) with a fixed polynomial c(x). 
For inverse mix columns, the fixed polynomial d(x) is 
alternatively used. The c(x) and d(x) in hexadecimal 
values are given in (2) and (3) respectively (Daemen 
and Rijmen, 2002) Eq. 2 and 3:  
 
c (x) = ‘03’ x3+‘01’ x2+‘01’ x+‘02’  (2)  
 
d (x) = ‘0B’ x3+‘0D’ x2+‘09’ x+‘0E’  (3)  
 
 These transforms are powerful in diffusing data. 
However, their lengths are fixed for these dedicated 
algorithms. The disadvantage of this is that there is a 
need for an alternative algorithm, should the key length 
or block size becomes insufficient to suit the security 
requirements, due to future increases in processor 
power and parallel processing technologies, as was the 
case with the previous standard Data Encryption 
Standard (DES) algorithm FIPS_PUB_46-2 1977. 
Accordingly, a practical solution is the use of a 
parameter-based transform such that the key length 
and/or the block size can be changed by changing the 
transform size to adhere to the required level of 
security, i.e., a revision free algorithm, ensuring 
practical usage for the proposed lifespan.  
 In this study, a parameter-based New Mersenne 
Number Transform (NMNT) has been considered for 
security applications by evaluating its diffusion power 
and avalanche characteristics.  
 Consider that diffusion power of the algorithm in 
the design is very important, as the number of rounds 
for any iterated block cipher cryptosystem is inversely 
proportional to that value. Accordingly, building round 

functions with a higher diffusion rate will likely result 
in an efficient algorithm with a lesser number of 
rounds, which improves system performance, regarding 
speed and complexity.  
 

MATERIALS AND METHODS 
 
New Mersenne Number Transform (NMNT): 
NMNT is one of the Number Theoretic Transform 
(NTT) family. NTTs use modular arithmetic operations 
on a field or ring of integers, without the errors inherent 
to normal floating-point operations, such as those found 
in the Discrete Fourier Transform (DFT) for example. 
NTTs have wide applications in different areas 
including; digital signal processing (Agarwal, 1980), 
digital filtering (Agarwal and Burrus, 1974; Boussakta 
and Holt, 1994), image processing (Boussakta and Holt, 
1999), decoding (Reed et al., 1978) and cryptography 
(Yang et al., 2010; Yang and Boussakta, 2008). 
 In the field of cryptography, NTTs are mainly used 
to improve the diffusion of the algorithm, in addition to 
other relevant applications in digital image information 
hiding (Yanqun and Qianping, 2009). The NMNT has 
been previously involved in the design of a 
cryptosystem by utilizing a cascade of such a 
transform with different transform lengths to ensure 
high diffusion rate throughout the processing (Yang et 
al., 2010). The NMNT is defined modulo of the 
Mersenne numbers (Mp). A detailed description of the 
transform can be found in Boussakta and Holt (1992; 
1995). The transform can be used in one or multi 
dimensional (Boussakta and Holt, 1993; Boussakta et 
al., 2001). Both the forward and inverse transforms 
have a similar appearance, with a scale factor of (1/N) 
being the only difference. The forward 1-D NMNT 
X(k) of an integer sequence x(n) with transform length 
N and its inverse is defined as Eq. 4-12 fellow:  
 

N 1

n 0 Mp

X(k) x(n) (nk) k 0,1,2,....N 1
−

=

= β = −∑  (4) 

 
N 1

k 0 Mp

1
x(n) X(k) (nk) n 0,1,2,....N 1

N

−

=

= β = −∑  (5)  

 
Where:  
 

1 2(nk) (nk) (nk)β = β + β  (6) 
 

1 1 2 nk Mp
(nk) Re(a ja )β = +  (7) 

 

2 1 2 nk Mp
(nk) Im(a ja )β = +  (8) 
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pMp 2 1= −  (9) 
 

q
1 Mp

a 2= ±  (10) 

 
q

2 Mp
a 3= ± −  (11) 

 
p 2q 2 −=  (12) 

 
 The above kernels β1(nk) and β2(nk) are calculated 
for a maximum transform length 2P+1 . For transform 
lengths less than that, their values can be calculated 
using the following Eq. 13 and 14: 
 

d nk
1 1 2 Mp
(nk) Re((a ja ) )β = +  (13) 

 
d nk

2 1 2 Mp
(nk) Im((a ja ) )β = +  (14)  

 
where, Re() and Im() stand for real and imaginary parts 
of the enclosed term respectively, denotes modulo Mp 
and d is an integer power of two. 
 
Analysis: It is worth starting by giving a simple 
example that reflects the sensitivity of the transform for 
any change in the input or output elements. The 
example, which is adapted from (Al-Gailani and 
Boussakta, 2010), illustrates the effect of modifying a 
single output (transformed) element to the input 
elements. The text and ASCII representation for both 
the input elements to the transform and the 
corresponding output elements are illustrated in Fig. 1. 
The recovered plaintext results after modifying one of 
the transformed elements (shadowed) is shown being 
completely different, confirming the high sensitivity of 
the transform regarding any changes in the input or 
output elements. In other words, the transform 
possesses good avalanche characteristics.  
 The calculations are achieved by applying (4) and 
(5) respectively. Where N = 8, Mp = 127 (maximum 
input value is 121), α1 = α2 = 119 and β(n) = 1 111 1 0 
126 16 126 0.  
 

 
 
Fig. 1: 1D NMNT output modification (Al-Gailani and 

Boussakta, 2010)  

 Two different techniques are used to scrutinize and 
verify the diffusion power of the transform. The first 
technique involves the calculation of the branch number 
(Daemen and Rijmen, 2002) of the transform; a tool 
that is used to give an indication to the diffusion power 
of a linear transformation.  
 The Branch Number  (BN)  is  calculated  based 
on (15) Eq. 15:  
 
Bn(F) = mina≠0 {W(a)+W(F(a))} (15)  
 
where, W(a) is the bundle weight (number of non-zero 
elements, also called number of active elements) and F 
is the linear transformation.  
 The Bn of a transform is upper bounded by Eq. 16 
(Daemen and Rijmen, 2002):  
 
Bn(F) ≤ N+1  (16)  
 
 The second technique, which has been exploited 
previously on evaluating the diffusion power of the 
Fermat Number Transform (FNT) (Al-Gailani et al., 
2011), is based on probabilities by calculating the 
diffusion power as a range of probabilities for different 
cases. These cases are determined according to the 
kernel matrix analysis listed in (Al-Gailani and 
Boussakta, 2010). The differences between these cases 
depend on the number of modified elements and their 
locations. The type of element modification depends on 
the modified values, these are; same value, different 
values with a total sum equal to the modulus for each 
modified pair/elements and different values with a total 
sum not equal to the modulus for each modified 
pair/elements. The range of probabilities for each case 
is calculated by counting the differences between the 
elements of the modified and unmodified versions, 
where diffusion power percentages represents the 
process results over-all by 100%.  
 The results are verified by recalculating the above 
cases by modifying the elements in three different tests. 
The first test is performed by transforming the input 
elements and producing the initially diffused elements. 
Next, the input is modified and transformed and the 
output is compared to the transformed output of the 
unmodified input. The second test is performed by 
modifying the transformed output elements and 
recalculating the input elements by applying the inverse 
transform and comparing the original input to the 
inversely transformed input. The final test involves 
modifying the mathematical equation according to the 
relevant cases (in the following explanation), examples 
are illustrated below; for modifying single element (17), 
single paired (18) and unpaired elements (19), all-odd 
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elements (20), all-even elements (21) and all elements 
respectively (22) Eq. 17-23:  
 

N 1

n 0 Mp

(X)k x(n) (nk) a (ik) k 0,1,2,...N 1
−

=

= β + β = −∑  (17) 

 
N 1

x
1 2

n 0 Mp

(X)k x(n) (nk) a (ik) a ((i N / 2 )k)
−

=

= β + β + β +∑   (18) 

 
N 1

1 1 2 2
n 0 Mp

(X)k x(n) (nk) a (i k) a (1 k)
−

=

= β + β + β∑  (19) 

 

1
N

N 1 2

2n 1
n 0 n 0

Mp

(X)k x(n) (nk) a (2nk)
−−

+
= =

= β + β∑ ∑  (20) 

 

1
N

N 1 2

2n 1
n 0 n 0

Mp

X(k) x(n) (nk) a ((2n 1)k)
−−

+
= =

= β + β +∑ ∑  (21) 

 
N 1 N 1

n
n 0 n 0 Mp

X(k) x(n) (nk) a (nk)
− −

= =
= β + β∑ ∑  (22) 

 
where, i is the location of the modified element (0 ≤ i ≤ 
N-1) and a is the modification value that is added to the 
initial value.  
 Considering all these cases is very important so 
that apart from determining the diffusion power, the 
cases that provide maximum or minimum diffusion 
percentages can be exploited or avoided in the design.  
 

 
 
Fig. 2: Pairs distribution (Al-Gailani and Boussakta, 

2010) 

 The elements  are   modified  at  the  following 
locations:  
 
• Initially, all of the single elements at even and odd 

locations are modified  
• Next, all of the even/odd numbers of paired 

elements are modified at their corresponding 
even/odd/mix locations. This is shown in Fig. 2 
using the formula (i, i+N/2x) where (1≤×≤log2N-1)  

• Following the modification of even/odd paired 
elements in the even/odd/mix locations, the 
remaining unpaired elements are modified which 
are situated in even/odd/mix locations  

• A combination that requires the modification of 
both the paired elements is performed at 
even/odd/mix locations (i, i+N/2x) using 
predetermined values and the remaining unpaired 
elements are replaced with random values 

• The elements that reside in all-even positions, 
followed by the elements that reside in all-odd 
locations are modified  

• Finally, all of the elements are modified for the last 
time, completing this particular process within the 
implementation  

 
RESULTS 

 
 The calculations of the branch number for 
transform lengths (N): 4 and 8 are shown in Table 1. To 
illustrate that, consider the case for input bundle weight 
equal 1, under column N = 4, the output weight is 4, in 
total giving 5, which represents (N+1), signifying that 
the transform has maximum diffusion power. The 
same or larger output can be gain for input weights 
equal 3 or 4. However for input weight equal 2, the 
output weight is minimum 2, in total 4, this mean that 
for this case the transform has a lower value than 
(N+1), providing less diffusion than the maximum. 
This is especially the case for modifying an even 
number of active elements and up to (N/2) from the 
total elements. The details of all cases including those 
cases that provide low diffusion are explained in detail 
in the second method represented below. 
 
Table 1: Minimum active bundles for transform lengths (N): 4 and 8  
Bundle weight  NMNT (N = 4)  NMNT (N = 8)  
1  5  7  
2  4  4  
3  6  7  
4  5           6  
5  -  8  
6  -  7  
7  -  9  
8  -  9  
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Fig. 3: Single element modifications at odd locations  
 

 
 
Fig. 4: Single element modifications at even locations  
 

 
 
Fig. 5: Lower bounds for modifying odd number of 

paired elements at even locations with same value  
 

 
 
Fig. 6: Lower bounds for modifying even number of 

paired elements at even locations with same value  
 
 It has been shown from the results on (Al-Gailani 
and Boussakta, 2010) that there has been sufficient 
analysis performed using the NMNT with different 

moduli and transform lengths. The results can be 
classified into two groups. First group summarized the 
cases that provide good diffusion power that is at 
minimum 50% and the second group lists the cases that 
exhibit low diffusion power that is at maximum 50%. 
All calculations are based on element level i.e., (P-bits).  
 
Cases that provide good diffusion power:  
Modifying a single element: Modifying a single 
element at odd locations (Fig. 3), gives diffusion 
between 75-100%, depending on the number of 
elements with zero value at that row in the kernel 
matrix corresponding to the location of the modified 
element. Modifying a single element at even locations 
(Fig. 4), gives diffusion between 75-100%, increasing 
with larger transform length.  
 
Modifying paired elements: Modifying any number of 
paired elements (i, i+N/2x) at any location with any 
value and ×>1, gives minimum diffusion 50%. The 
lower bound improving with larger x and modulus and 
improving for larger transform length for elements 
modifying at even locations. Figure 5 explains the case 
for modifying an odd number of paired elements at any 
location with the same value, while Fig. 6 clarifies the 
case for modifying an even number of paired elements 
with the same value.  
 
Modifying unpaired elements: Modifying even 
numbers of unpaired elements at any location with any 
value gives diffusion between 50-100%, increasing to 
68-100% for modifying odd numbers of unpaired 
elements. In both instances, the lower bounds improved 
in most cases with larger modulus and/or transform 
length. Figure 7 explains the case for modifying an odd 
number of unpaired elements at even locations with the 
same value, while Fig. 8 shows the case for modifying 
an even number of unpaired elements at even locations 
with different values, with a total sum equal to Mp.  
 
Modifying all elements: Modifying any number of 
paired elements with any value at any location and all 
other elements modified randomly (Fig. 9), gives in 
general diffusions over 75% increasing with larger 
moduli and transform lengths.  
 
Cases that produce low diffusion power:  
Modifying paired elements: Modifying a number of 
paired elements (i,i+N/2x) up to N/2-1 pairs for x = 1 
and leaving all other elements unchanged, at any 
location with same value for each pair (Fig. 5 and 6), or 
different values, with a total sum equal to Mp for each 
pair, gives in best cases a diffusion of 50%. The lower 
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bounds improve close to the upper bounds (50%) when 
modifying pairs at even locations with a larger modulus 
and/or transform length. The probability of this case 
arising is N×Mp-N×(Mp-1) for a single pair (N≥8) and 
become N×2N/2-2×Mp-N×(Mp-1)N/2-1 for N/2-1 pairs. 
The diffusion power improves for x > 1. 
 
Modifying all input elements: Modifying all input 
elements with the same value (Fig. 10), which is 
equivalent to adding a DC value, the diffusion 
percentage becomes (N-1)×100%. The probability for 
this case taking place is Mp-N × (Mp-1). 
 

 
 
Fig. 7: Lower bounds for modifying odd number of 

unpaired elements with same value  
 

 
 
Fig. 8: Lower bounds for modifying even number of 

unpaired elements with different values their 
sum equal Mp  

 

 
 
Fig. 9: Lower bounds for modifying any number of 

paired elements with any value and location and 
the remaining elements modified randomly  

Modifying all even/odd input elements: Modifying all 
even input elements with the same value or all odd 
input elements with the same value (Fig. 10) or 
different values, with a total sum equal to modulus for 
each pair, same values for all modified pairs at odd 
locations, the diffusion percentage is 2×N-1×100%. The 
probability for this case raising is: 
 
 2× Mp-N×(Mp-1)+Mp-N×(Mp-1)-N/2+2×(Mp-2)N/4 
 
 The probabilities of the last two cases occurring 
can be reduced by  increasing  the  modulus and/or the 
transform length.  
 Table 2 expands on (Al-Gailani and Boussakta, 
2010) and explains some of these results in an example 
for P = 7, Mp = 127 and N = 16. In the beginning, 
initial data is required that represents the unmodified 
version and all comparison is done with it. This data is 
displayed in the first two rows. In the first two 
examples (rows 3-6), a single element is modified at 
odd positions (shadowed), where their diffusion 
percentage outputs are different. The first example 
gives 100% diffusion, providing that all of the output 
elements are completely different (shadowed), while 
the second example gives 75% diffusion. The reason 
behind this is related to the number of zero elements 
in  that   row  within   the   kernel matrix 
corresponding to the position of the modified element. 
The next example (row 7-8), explains the case for 
modifying a single element at an even position. In every 
such case, all of the output elements are modified 
except two. This is because within the kernel matrix 
there are two zero elements in each even row. Examples 
on (rows 9-12), explain the case for modifying a single 
pair (i,i+N/2 )with the same value. The results show 
that the diffusion vary between 37.5 and 50%. Finally, 
(rows 13-14) explains the case for modifying three 
elements with the same value, the output is completely 
different, giving 100% diffusion. 
 

 
 
Fig. 10: All elements and all even/odd elements 

modification with same value  
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Table 2: 1D NMNT modification comparisons for P = 7, Mp = 127, N = 6 
Initial values I/P 81 43 121 17 44 119 111 69 75 3 26 38 51 29 107 33 
 O/P 78 72 98 122 50 69 122 66 11 61 9 30 103 48 15 88 
Modified input I/P 81 43 121 17 64 119 111 69 75 3 26 38 51 29 107 33 
 O/P 98 92 78 102 70 89 102 46 31 81 116 10 123 68 122 68 
 I/P 81 43 129 17 44 119 111 69 75 3 26 38 51 29 107 33 
 O/P 86 71 106 122 42 70 114 66 19 60 17 30 95 49 7 88 
 I/P 81 53 121 17 44 119 111 69 75 3 26 38 51 29 107 33 
 O/P 88 3 65 53 60 99 122 36 1 3 42 99 93 18 15 118 
 I/P 81 43 126 17 44 119 111 69 75 3 31 38 51 29 107 33 
 O/P 88 72 108 122 40 69 112 66 21 61 19 30 93 48 5 88 
 I/P 81 43 121 19 44 119 111 69 75 3 26 40 51 29 107 33 
 O/P 82 72 98 122 46 69 58 66 7 61 9 30 107 48 79 88 
 I/P 81 48 126 17 49 119 111 69 75 3 26 38 51 29 107 33 
 O/P 93 26 18 19 55 42 112 46 16 84 89 123 98 118 5 98 

 
DISCUSSION 

 
 The diffusion power of the NMNT has been 
considered in this study using two different techniques 
in order to evaluate the appropriateness of the transform 
for security applications.  
 The branch number of the transform which is 
discussed on the first technique indicates that the 
transform can provide maximum diffusion power for 
most cases, exception mostly for even input weight and 
up to the transform length (N)/2. However, the analysis 
from the second technique explains deeply this case 
which obviously arises with very low probability when 
modifying only pairs of elements (just for x = 1) with 
the same value or different values with their sum equal 
to the modulus. 
 The results of the second technique are classified 
into two groups; the diffusion power for the first group 
which represents the cases that provide good diffusions, 
in general over 50% and the percentages of the lower 
bounds are further improved with higher modulus 
and/or transform length. One of the factors that improve 
the diffusion percentages with higher transform lengths 
is when the percentages relating to the number of zero 
elements, explained in (23) is inversely proportional to 
the transform length as illustrated in Fig. 11:  
 

2log N 2
Zp 100%

N

 −= × 
 

 (23)  

 
 The second group represents the cases that provide 
low diffusion power, less than 50%. These cases can be 
avoided by ensuring that the number of modified 
elements is odd, or alternatively the probability for those 
cases arising can be reduced by increasing the modulus 
and/or the transform length. In general, increasing the 
modulus and/or transform length is beneficial as it either 
improves the diffusion power, or reduces the probability 
for those cases arising in the second group.  

 
 
Fig. 11: Percentages of the number of zero elements 

relative to the total (Al-Gailani and 
Boussakta, 2010)  

 
Of relevant importance is ensuring that the diffusion 
power improves with bigger block sizes or key lengths, 
which may be achieved by increasing the modulus and/or 
the transform length. This will facilitate the design by 
providing the possibility of changing the block size or 
key length to the required level of security without the 
need to alter the algorithm and at the same time fix the 
number of rounds for different sizes, which supports the 
compatibility of the algorithm on different platforms. 
 

CONCLUSION 
 
 In conclusion, although the results demonstrate that 
the transform in certain cases provides lower diffusion 
than the maximum due to the matrix symmetry that can 
be avoided in the design, it can be concluded that the 
transform has many features qualifying it to be used in 
the design of a secure cryptosystem. Advantages 
include parameterization; providing flexibility to 
change the key length and/or block size to meet the 
required level of security and sensitivity; the diffusion 
power has been proven that in general it is good. 
Having a long transform length, these operations are 
performed without the errors that normally arise 
through using floating-point operations. Finally, fast 
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algorithms such as radix-2 (Nibouche et al., 2009), 
radix-4 (Boussakta et al., 2003) and split radix 
(Alshibami et al., 2000) can be adapted to it, to speed 
up processing.  
 According to the above, the transform is 
recommended to be employed in the design of a secure 
cryptosystem as a main diffusion layer for both the 
traditional cryptosystem like the AES or for 
applications such as audio or image encryption that 
require special treatments due to their size. Such 
applications are usually based on the chaos function, for 
instance the one found in (Ling et al., 2007), which 
proposes a practical and flexible cryptosystem that can 
be easily adapted to the international multimedia 
standards, such as JPEG 2000 and MPEG4.  
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