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Abstract: Problem statement: Due to significant developments in the procesgioger and parallel
processing technologies, the existing encryptigordhms are increasingly susceptible to attacksh as
side-channel attacks, for example. Designing neswyption algorithms that work efficiently on diftamt
platforms and security levels to protect the tratiethdata from any possible attacks is one ofntimst
important issues in today’s information and netwsekurity. The aim is to find more secure, reliaid
flexible systems that can run as a ratified stahdaith reasonable computational complexity for a
sufficient service time. To expand the longevityttoé algorithm, it is important to be designed torkv
efficiently on a variety of block sizes and keyd#és according to the security demand. A sensdsigisn

is the suggested use of a parameter transfpproach: The present study evaluates the appropriateness
of the New Mersenne Number Transform for securpypliaations by analyzing and estimating its
avalanche and diffusion powdResults. The results confirm that the transform in geneeflects good
avalanche characteristics that are for most casess0% and can be up to 100%. The lower boundean
further improved by increasing the modulus andierttansform lengthConclusion: This New Mersenne
Number Transform is highly flexible and adaptaldlethis application. It can be involved in the desof a
secure cryptosystem for the following reasons; gimgna single input element makes drastic changtei
output elements and vice versa (sensitivity), mhesivariable block size and key length (paramettiz).
Has long transform length (power of two), is effree and its inverse is the same with a scale rfafto
(1/N) which simplifies implementation of both engtipn and decryption. Finally, it is appropriate feal
time implementations such as fast algorithms, wbahbe applied to it, to speed up processing.

Key words: Diffusion power, Number Theoretic Transform (NTTast algorithms, parameter
transform, Maximum Distance Separable (MDS), DigcFourier Transform (DFT)

INTRODUCTION text. This effect is called the avalanche effectl @n
system is considered to have good avalanche
Shannon (1949) introduced two main principles forcharacteristics if roughly half of the output das
designing secure cryptographic systems; confusiamh a affected for a single input change. Hence this ichjsm
diffusion. Substitution is one of the processes ofimportant to verify that the system is resilient to
confusion, in which the elements of the plaintese a statistical attacks (Feistel, 1973; Heys and Tajare
mapped into other elements in order to complicage t 1995). However, after differential (Biham and Shami
relationship between the plaintext and thel991) and linear (Matsui, 1994) cryptanalysis have
corresponding cipher text and its strength depemds been involved, designing the diffusion part of
the strength of the non-linear properties of thpliad  algorithms by relaying only on elements transpositi
substitution box (S-box). Diffusion is the procghat or permutation has no longer become secure and
rearranges the plaintext into the cipher text.algorithms become subject to attacks. Hence more
Accordingly, the measure of how influential the sophisticated techniques have been involved toaxer
diffusion process is; can be measured by how thand strengthen the diffusion part, such as theaifse
plaintext is redistributed across the cipher texttransforms. For instance, in the Twofish algorithm
Additionally a small change in the influencer ofeth (Schneier, 1999), a fixed transform, (4x4) Maximum
diffusion process (such as the key or the plaintegtf)  Distance Separable (MDS) matrix over Galois field G
should have a significant impact on the resultiper  (2°) is utilized. Where at each round an input vector
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four bytes in length is multiplied by the MDS ov8F  functions with a higher diffusion rate will likelsesult
(2%). A MDS matrix in hexadecimal form is given in (1) in an efficient algorithm with a lesser number of
(Schneier, 1999) Eq. 1: rounds, which improves system performance, reggrdin
speed and complexity.
01 EF 5B 5B

58 EF EF 01 MATERIALSAND METHODS
MDS = 1)
EF 5B 0l EA

New Mersenne Number Transform (NMNT):
EF 01 EF 5

NMNT is one of the Number Theoretic Transform
(NTT) family. NTTs use modular arithmetic operagon
In the current state of the art, the Advancedon a field or ring of integers, without the erramberent
Encryption Standard (AES) algorithm (Daemen ando normal floating-point operations, such as thiosad
Rijmen, 2002), which was announced by Nationalin the Discrete Fourier Transform (DFT) for example
Institute of Standards and Technology (NIST) as.U.SNTTs have wide applications in different areas
Federal Information Processing Standards Publieatio including; digital signal processing (Agarwal, 1380
197 (FIPS PUB 197) on November 26, 2001 FIPS19¥igital filtering (Agarwal and Burrus, 1974; Boukta
2001, a transform called mix columns is used forand Holt, 1994), image processing (Boussakta aritj Ho
diffusion purposes, where the columns of the staée  1999), decoding (Reed al., 1978) and cryptography
considered as a polynomial over GH(zand a mix (Yangetal., 2010; Yang and Boussakta, 2008).
columns operation is undertaken by multiplying the In the field of cryptography, NTTs are mainly used
columns modulo G¢1) with a fixed polynomial ¢(x). to improve the diffusion of the algorithm, in adolit to
For inverse mix columns, the fixed polynomial di&) other relevant applications in digital image infation
alternatively used. The c(x) and d(x) in hexadetimahiding (Yanqun and Qianping, 2009). The NMNT has
values are given in (2) and (3) respectively (Dagme peen previously involved in the design of a

and Rijmen, 2002) Eq. 2 and 3: cryptosystem by utilizing a cascade of such a
transform with different transform lengths to eresur

c (X) = ‘03’ x3+'01’ x2+01’ x+02’ 2) high diffusion rate throughout the processing (Yang
al., 2010). The NMNT is defined modulo of the

d (x) = ‘0B’ X3+0D’ x2+09’ x+0F’ A3) Mersenne numbers (Mp). A detailed description ef th

transform can be found in Boussakta and Holt (1992;

These transforms are powerful in diffusing data.1995)- The transform can be used in one or multi
However, their lengths are fixed for these deditate dimensional (Boussakta and Holt, 1993; Boussakta
algorithms. The disadvantage of this is that thera al., 2001). .Both the forward .and inverse transforms
need for an alternative algorithm, should the kegth ~ have a similar appearance, with a scale factoL)(
or block size becomes insufficient to suit the sisgu P€ing the only difference. The forward 1-D NMNT
requirements, due to future increases in processat(K) Of an integer sequence x(n) with transformgn
power and parallel processing technologies, asthas N and its inverse is defined as Eq. 4-12 fellow:
case with the previous standard Data Encryption
Standard (DES) algorithm FIPS_PUB_46-2 1977.y =<fo(n)s(nk)> k=012 N- 1 @)
Accordingly, a practical solution is the use of a n=0
parameter-based transform such that the key length
and/or the block size can be changed by changieg th e
transform size to adhere to the required level ofx(n)=<ﬁZX(k)B(nk)> n=012..N": ®)
security, i.e., a revision free algorithm, ensuring K VP
practical usage for the proposed lifespan. W

In this study, a parameter-based New Mersenne
Numper Transfo.rm (NMNT) ha; be_en ponsjdered forB(nk):Bl(nk)ﬂ}z(nk) (6)
security applications by evaluating its diffusioowger
and avalanche characteristics. ]

Consider that diffusion power of the algorithm in B.(nk)=(Re(a + ja lk>Mp ™
the design is very important, as the number of dsun
for any iterated block cipher cryptosystem is ipety
proportional to that value. Accordingly, buildingund
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Mp=2°-1 9) Two different techniques are used to scrutinizeé an
verify the diffusion power of the transform. Thesfi
a, :1<2*> (10) technique involves the calculation of the brancmber
Mp (Daemen and Rijmen, 2002) of the transform; a tool

that is used to give an indication to the diffuspower
a,= i<—3‘>Mp (11)  of alinear transformation.
The Branch Number (BN) is calculated based

q=2" (12) on (15) Eq. 15:

The above kernel,(nk) andp,(nk) are calculated BN(F) = Minko{W(@)+W(F(a))} (15)
for a maximum transform length”2 . For transform

lengths less than that, their values can be cakulla
using the following Eq. 13 and 14:

where, W(a) is the bundle weight (number of norezer
elements, also called number of active elementd)Fan
is the linear transformation.

_ ) « The Bn of a transform is upper bounded by Eq. 16
B.(nk)=(Re(@+ ia 3 1), (13) " (Daemen and Rijmen, 2002):

B(nk) = (Im((@, + ja,} J*), (14)  Bn(R)=N+1 (16)

The second technique, which has been exploited
Mpreviously on evaluating the diffusion power of the
Fermat Number Transform (FNT) (Al-Gailaet al.,
2011), is based on probabilities by calculating the
Analysis It is worth starting by giving a simple diffusion power as a range of probabilities forfetieént
: ! cases. These cases are determined according to the
example that r.eflects the sensitivity of the transf for kernel matrix analysis listed in (Al-Gailani and
:ngCT:nng\!/hi?h t?se ;%F;Uttegf f?g:ﬁm( A?-Igrar\]i?anr:f' a-;geBoussakta, 2010). The differences between thesescas
Pie, P depend on the number of modified elements and their

B_oussakta, 2010), illustrates the effect of mod@yg locations. The type of element modification depeoils
single output (transformed) element to the input

elements. The text and ASCII representation fohbot ;[/Z?ugo\(/j\/li]:ﬁda\;sigfssyug ej;u jri') ,[S'? én r?1 o\ijahl:lues' f(glnr:i;e
the input . elements to the trqnsform Qnd . themodified pair/elements and different values wittotal
corresponding output elements are illustrated @ Ei sum not equal to the modulus for each modified
The recovered plaintext results after modifying srie air/elements. The range of probabilities for eaake
the transformed elements (shadowed) is shown bein calculated 'by counting the differences between t
completely different, confirming the high sensityof elements of the modified and unmodified versions
the transform regarding any changes in the input OWhere diffusion power percentages represents th,e
output elements. In other words, the transform
possesses good avalanche characteristics.

The calculations are achieved by applying (4) an%{le
(5) respectively. Where N = 8, Mp = 127 (maximum
input value is 121)q; =ap= 119 and3(n) =111110

where, Re() and Im() stand for real and imaginamt$
of the enclosed term respectively, denotes modyto
and d is an integer power of two.

process results over-all by 100%.

The results are verified by recalculating the aov
es by modifying the elements in three diffetests.
The first test is performed by transforming theunp
elements and producing the initially diffused elatse

126 16 126 0. Next, the input is modified and transformed and the
— : i output is compared to the transformed output of the
Pabtext A & & 08 i 15 15 1 unmodified input. The second test is performed by
- C: 74 16 113 64 67 110 100 04 modifying the transformed output elements and
Ciphertest: g @ C n m *° recalculating the input elements by applying theeige
c - 74 16 113 64 6 110 100 o4 transform and comparing the original input to the
P 1 47 33 45 57 52 41 32 inversely transformed input. The final test invave
Plaintext: / ! - 9 4 ) 4

modifying the mathematical equation according te th
relevant cases (in the following explanation), egpbes
Fig. 1: 1D NMNT output modification (Al-Gailani and are illustrated below; for modifying single eleméht),

Boussakta, 2010) single paired (18) and unpaired elements (19)oddl-
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elements (20), all-even elements (21) and all etgsne
respectively (22) Eq. 17-23:

(X)k :<§x(n)3(nk)+ q3(ik)>Mp k=012..N -  (17)
(K =<:x(n)13(nk)+ aB(K)+ af ((+ N/2 )k)>M,, (18)
X0k = C::x(n)s(nk) +aBk+ap (L k)>Mp (19)
0k <S=:x<n>s(nk)+ > a2n+]ﬁ(2nk>> (20)
X(K) =<:X(n)B(nk)+Z a,,.B((2n+ 1)k)> (21)
X9 =( S x(0BCrk) +Z%B(nk)>mp (22)

where, i is the location of the modified elemeng(D<
N-1) and a is the modification value that is adtethe
initial value.

Considering all these cases is very important sQ,

that apart from determining the diffusion powere th
cases that provide maximum or minimum diffusion
percentages can be exploited or avoided in thgydesi

x=1

[
I |
1 2|3 4|5 6|7 8/910(11 12|13

| ]
]

345 6 7 8 910 11 12 13 14 15 16

U

14 15 16

The elements are
locations:

modified at the following

Initially, all of the single elements at even ardtio
locations are modified

Next, all of the even/odd numbers of paired
elements are modified at their corresponding
even/odd/mix locations. This is shown in Fig. 2
using the formula (i, i+N/9 where (kx<log,N-1)
Following the modification of even/odd paired
elements in the even/odd/mix locations, the
remaining unpaired elements are modified which
are situated in even/odd/mix locations

A combination that requires the modification of
both the paired elements is performed at
even/odd/mix locations (i, i+NfR using
predetermined values and the remaining unpaired
elements are replaced with random values

The elements that reside in all-even positions,
followed by the elements that reside in all-odd
locations are modified

Finally, all of the elements are modified for thstl
time, completing this particular process within the
implementation

RESULTS
The calculations of the branch number for
transform lengths (N): 4 and 8 are shown in Tabl€adl
illustrate that, consider the case for input bunvadight
qual 1, under column N = 4, the output weight,izn4
total giving 5, which represents (N+1), signifyitttat
the transform has maximum diffusion power. The
same or larger output can be gain for input weights
equal 3 or 4. However for input weight equal 2, the
output weight is minimum 2, in total 4, this medait
for this case the transform has a lower value than
(N+1), providing less diffusion than the maximum.
This is especially the case for modifying an even
number of active elements and up to (N/2) from the
total elements. The details of all cases includimzse
cases that provide low diffusion are explained etad
in the second method represented below.

Table 1: Minimum active bundles for transform ldrgy(N): 4 and 8

I TR

|

.I Gi 10 |11 12 13 14 15 16

Fig. 2: Pairs distribution (Al-Gailani and Boussakt
2010)

l |
4 5 S!i

Bundle weight NMNT (N = 4) NMNT (N = 8)
1 5 7
2 4 4
3 6 7
4 5 6
5 - 8
6 7
7 9
8 9
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Fig. 3: Single element modifications at odd locasio
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Fig. 4: Single element modifications at even |omagi
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Fig. 6: Lower bounds for modifying even number of
paired elements at even locations with same valu
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moduli and transform lengths. The results can be
classified into two groups. First group summariteel
cases that provide good diffusion power that is at
minimum 50% and the second group lists the casds th
exhibit low diffusion power that is at maximum 50%.
All calculations are based on element level iR-bits).

Casesthat provide good diffusion power:

Modifying a single element: Modifying a single
element at odd locations (Fig. 3), gives diffusion
between 75-100%, depending on the number of
elements with zero value at that row in the kernel
matrix corresponding to the location of the modifie
element. Modifying a single element at even locatio
(Fig. 4), gives diffusion between 75-100%, incregsi
with larger transform length.

Modifying paired elements. Modifying any number of
paired elements (i, i+Nf2 at any location with any
value and x>1, gives minimum diffusion 50%. The
lower bound improving with larger x and modulus and
improving for larger transform length for elements
modifying at even locations. Figure 5 explains thse
for modifying an odd number of paired elementsrgt a
location with the same value, while Fig. 6 clasfihe
case for modifying an even number of paired element
with the same value.

Modifying unpaired elements: Modifying even
numbers of unpaired elements at any location with a
value gives diffusion between 50-100%, increasimg t
68-100% for modifying odd numbers of unpaired
elements. In both instances, the lower bounds ivgato
in most cases with larger modulus and/or transform
length. Figure 7 explains the case for modifyingodd
élumber of unpaired elements at even locations thigh
Same value, while Fig. 8 shows the case for matifyi
an even number of unpaired elements at even lotatio
with different values, with a total sum equal to.Mp

Modifying all eements. Modifying any number of
paired elements with any value at any location alhd
other elements modified randomly (Fig. 9), gives in
general diffusions over 75% increasing with larger
moduli and transform lengths.

Casesthat produce low diffusion power:

Modifying paired elements. Modifying a number of
gaired elements (i,i+Nf2 up to N/2-1 pairs for x = 1
and leaving all other elements unchanged, at any

It has been shown from the results on (Al-Gailanilocation with same value for each pair (Fig. 5 &jydor
and Boussakta, 2010) that there has been sufficieftfferent values, with a total sum equal toOMp éarch
analysis performed using the NMNT with different P&r, gives in best cases a diffusion of 50%. Tdwelr
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bounds improve close to the upper bounds (50%) whel odifying all even/odd input e ements. Modifying all

modifying pairs at even locations with a larger miog
and/or transform length. The probability of thissea
arising is NxMp'x(Mp-1) for a single pair (X8) and
become Nx¥Z2xMp™x(Mp-1)V?1 for N/2-1 pairs.

The diffusion power improves for x > 1.

even input elements with the same value or all odd
input elements with the same value (Fig. 10) or
different values, with a total sum equal to moduius
each pair, same values for all modified pairs ai od
locations, the diffusion percentage is 2%00%. The
probability for this case raising is:

Modifying all input elements: Modifying all input
elements with the same value (Fig. 10), which is2x MgNx(Mp-1)+MpNx(Mp-1)N22x(Mp-2)V*
equivalent to adding a DC value, the diffusion

percentage becomes {%100%. The probability for

this case taking place is Mpx (Mp-1).

120
100
80
60

Diffusion (%)

40

Evenlocations
20 +=-=--- Odd locations

4 8 16 32 64
Transform length (N}

128 256 512 1024

The probabilities of the last two cases occurring
can be reduced by increasing the modulus aridéor
transform length.

Table 2 expands on (Al-Gailani and Boussakta,
2010) and explains some of these results in an peam
for P =7, Mp = 127 and N = 16. In the beginning,
initial data is required that represents the unffiexdli
version and all comparison is done with it. Thisadia
displayed in the first two rows. In the first two
examples (rows 3-6), a single element is modified a
odd positions (shadowed), where their diffusion
percentage outputs are different. The first example

. o e e -
Fig. 7: Lower bounds for modifying odd number of gives 100% diffusion, providing that all of the put

unpaired elements with same value

80
70 \/'-‘_"_'—-___—_
60
50]  mmmmmmemmmemmmeem e
40
30
20 Even locations
ol 0Odd locations

0

Diffusion (%)

4 8 16 32 64 128 256 512 1024
Transform length (N)

elements are completely different (shadowed), while
the second example gives 75% diffusion. The reason
behind this is related to the number of zero eldmen
in that row  within the kernel matrix
corresponding to the position of the modified elatme
The next example (row 7-8), explains the case for
modifying a single element at an even positiorevary
such case, all of the output elements are modified
except two. This is because within the kernel mratri
there are two zero elements in each even row. Ebemmp
on (rows 9-12), explain the case for modifying gt

pair (i,i+N/2 )with the same value. The results who
that the diffusion vary between 37.5 and 50%. Fnal

Fig. 8: Lower bounds for modifying even number of (rows 13-14) explains the case for modifying three
unpaired elements with different values theirglements with the same value, the output is corlglet

sum equal Mp
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984 \ ) —
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4 8 16 32 64 128 256 512 1024
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different, giving 100% diffusion.

60 4
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—

0 T
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—— All even or odd elements
------ All elements

Diffusion (%)

Fig. 9: Lower bounds for modifying any number of
paired elements with any value and location andFig. 10:
the remaining elements modified randomly
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Table 2: 1D NMNT modification comparisons for P AMp = 127, N =6

Initial values P 81 43 121 17 44 119 111 69 75 326 38 51 29 107 33
opP 78 72 98 122 50 69 122 66 11 61 9 30 103 48 188

Modified input  I/P 81 43 121 17 64 119 111 69 75 326 38 51 29 107 33
o/P 98 92 78 102 70 89 102 46 31 81 116 10 123 6822 68

1P 81 43 129 17 44 119 111 69 75 3 26 38 51 29 7 1033
oP 86 71 106 122 42 70 114 66 19 60 17 30 95 49 8
1P 81 53 121 17 44 119 111 69 75 3 26 38 51 29 7 1033
o/P 88 3 65 53 60 99 122 36 1 3 42 99 93 18 15 118

1P 81 43 126 17 44 119 111 69 75 3 31 38 51 29 7 1033
oP 88 72 108 122 40 69 112 66 21 61 19 30 93 48 88
1P 81 43 121 19 44 119 111 69 75 3 26 40 51 29 7 1033
opP 82 72 98 122 46 69 58 66 7 61 9 30 107 48 798 8
1P 81 48 126 17 49 119 111 69 75 3 26 38 51 29 7 1033
o/P 93 26 18 19 55 42 112 46 16 84 89 123 98 118 98

DISCUSSION 14

12

The diffusion power of the NMNT has been = 10

considered in this study using two different tecieis g 8

in order to evaluate the appropriateness of thestoam e

for security applications. 4

The branch number of the transform which is 2 I .
discussed on the first technique indicates that the 0 o
4 8 16 32 64 128 256 512 1024

transform can provide maximum diffusion power for
most cases, exception mostly for even input weggtat

up to the transform length (N)/2. However, the gsial
from the second technique explains deeply this cas
which obviously arises with very low probability e
modifying only pairs of elements (just for x = 1jthv
the same value or different values with their sujuat

to the modulus.

The results of the second technique are classifie
into two groups; the diffusion power for the figroup
which represents the cases that provide good dbifigs
in general over 50% and the percentages of therlow
bounds are further improved with higher modulus
and/or transform length. One of the factors thatrowe
the diffusion percentages with higher transforngtes
is when the percentages relating to the numbeerd z
elements, explained in (23) is inversely propoicio
the transform length as illustrated in Fig. 11:

Transform length (N)

léig. 11: Percentages of the number of zero elements
relative to the total (Al-Gailani and
Boussakta, 2010)

Of relevant importance is ensuring that the diffosi
gower improves with bigger block sizes or key léisgt
which may be achieved by increasing the modulugoand
the transform length. This will facilitate the dgsiby
roviding the possibility of changing the block esimr
ey length to the required level of security withole
need to alter the algorithm and at the same timehé
number of rounds for different sizes, which suppdine
compatibility of the algorithm on different platfos.

CONCLUSION

In conclusion, although the results demonstrede th
Zp:('ogzN‘ijmo% (23)  the transform in certain cases provides lower ditfo
N than the maximum due to the matrix symmetry that ca
be avoided in the design, it can be concluded tineat
The second group represents the cases that provigd@nsform has many features qualifying it to beduise
low diffusion power, less than 50%. These casesbean the design of a secure cryptosystem. Advantages
avoided by ensuring that the number of modifiedinclude parameterization; providing flexibility to
elements is odd, or alternatively the probabildythose change the key length and/or block size to meet the
cases arising can be reduced by increasing the lo®du required level of security and sensitivity; thefdgion
and/or the transform length. In general, increastm power has been proven that in general it is good.
modulus and/or transform length is beneficial astiter  Having a long transform length, these operatiores ar
improves the diffusion power, or reduces the prditgb performed without the errors that normally arise
for those cases arising in the second group. through using floating-point operations. Finallgst
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algorithms such as radix-2 (Nibouclee al., 2009), Biham, E. and A. Shamir, 1991. Differential

radix-4 (Boussaktaet al., 2003) and split radix cryptanalysis of DES-like cryptosystems. J.
(Alshibami et al., 2000) can be adapted to it, to speed  Cryptol., 4: 3-72. DOI: 10.1007/BF00630563
up processing. Boussakta, S. and A.G.J. Holt, 1992. New number

According to the above, the transform is theoretic transform. Elect. Lett.,, 28: 1683-1684.
recommended to be employed in the design of asecur DOI: 10.1049/el:19921070
cryptosystem as a main diffusion layer for both theBoussakta, S. and A.G.J. Holt, 1993. New two
traditional cryptosystem like the AES or for dimensional transform. Elect. Lett., 29: 949-950.
applications such as audio or image encryption that DOI: 10.1049/el:19930632
require special treatments due to their size. SucBoussakta, S. and A.G.J. Holt, 1994. Filtering

applications are usually based on the chaos fumchim employing a new transform. Proceedings of the
instance the one found in (Ling al., 2007), which Oceans Eng. Today's Technol. Tomorrow's
proposes a practical and flexible cryptosystem taait Preservation, Sep. 13-16, IEEE Xplore Press,
be easily adapted to the international multimedia  Brest, France, pp: 1/547-1/553. DOI:
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