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Abstract: Problem statement: Current Neuroimaging developments, in biological research and 
diagnostics, demand an edge-defined and noise-free MRI scans. Thus, this study presents a generalized 
parallel 2-D MRI filtering algorithm with their FPGA-based implementation in a single unified 
architecture. The parallel 2-D MRI filtering algorithms are Edge, Sobel X, Sobel Y, Sobel X-Y, Blur, 
Smooth, Sharpen, Gaussian and Beta (HYB). Then, the nine MRI image filtering algorithm, has 
empirically improved to generate enhanced MRI scans filtering results without significantly affecting the 
developed performance indices of high throughput and low power consumption at maximum operating 
frequency. Approach: The parallel 2-d MRI filtering algorithms are developed and FPGA implemented 
using Xilinx System Generator tool within the ISE 12.3 development suite. Two unified architectures are 
behaviorally developed, depending on the abstraction level of implementation. For performance indices 
comparison, two Virtex-6 FPGA boards, namely, xc6vlX240Tl-1lff1759 and xc6vlX130Tl-1lff1156 are 
behaviorally targeted. Results: The improved parallel 2-D filtering algorithms enhanced the filtered MRI 
scans to be edge-defined and noise free grayscale imaging.  The single architecture is efficiently 
prototyped to achieve: high filtering performance of (11230 frames/second) throughput for 64*64 MRI 
grayscale scan, minimum power consumption of 0.86 Watt with a junction temperature of 52°C and a 
maximum frequency of up to (230 MHz). Conclusion: The improved parallel MRI filtering algorithms 
which are developed as a single unified architecture provide visibility enhancement within the filtered 
MRI scan to aid the physician in detecting brain diseases, e.g., trauma or intracranial haemorrhage. The 
high filtering throughput is feasibly nominee the nine parallel MRI filtering algorithms for applications 
such as real-time MRI potential future applications. Future Work: a set of parallel 3-D fMRI filtering 
algorithms will be investigated to be developed and fast FPGA prototyped for future research project.  
 
Key words: 2-D MIR filtering algorithms, FPGA implementation, parallel algorithms, Xilinx system 

generator, Virtex-6 FPGA, Trauma, intracranial haemorrhage 
 

INTRODUCTION 
 
 FPGAs are increasingly used in modern parallel 
Filtering algorithm applications such as medical imaging 
(Leeser et al., 2005), Mapping DSP Algorithms 
(Maslennikow and Sergiyenko, 2006), image processing 
(Kiran, 2008), power consumption in portable image 
processing (Atabany, 2008), MPEG-4 motion estimation in 
mobile applications (Gao, 2003), satellite data processing 
(Nataraj et al., 2009), new Mersenne Number Transform 
(Nibouche et al., 2009), high speed wavelet-based image 
compression (Masoudnia et al., 2005) and even the global 
communication link (Mak et al., 2008). Most of the above 
FPGA-based solutions are typically programmed with 
hardware description languages (HDL) inherited from 
ASIC (Chang, 2005) and microprocessor-based DSP 
design methodologies (Aziz, 2004; Alshibami, 2001).  

 On the other hand, parallel multidimensional filtering 
algorithms (Boussakta, 1999; Wing-Kuen Ling, 2002), to 
be efficiently implemented, demand high computational 
performance per Watt at maximum sampling frequency 
(Hasan et al., 2010). Consequently, this study proposes 
system-level implementation of parallel reconfigurable 
architectures for nine different 2-D MRI digital filtering 
algorithms: Edge, Sobel X, Sobel Y, Sobel X-Y, Blur, 
Smooth, Sharpen, Gaussian and Beta (HYB). 
 The 2-D image filtering purpose of the above nine 
per-processing   algorithms is detecting sharp changes 
in image brightness by significantly reducing the amount 
of data to be processed, filtering out information that may 
be regarded as less relevant, while preserving the 
important structural properties of an image. Thus each of 
these nine algorithms is one of the fundamental steps in 
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image processing, image analysis, image pattern 
recognition and computer imaging techniques.   
 The nine different MRI filtering algorithms are 
efficiently developed, implemented and, then, improved 
in a unified architecture using Xilinx system generator 
tool (Xilinx, 2010) within the ISE 12.3 development 
suite to target two Virtex-6 FPGA (Virtex-6, 2010) 
boards, namely, xc6vlX240Tl-1lff1759 and 
xc6vlX130Tl-1lff1156.   
 The unified architecture is an open reconfigurable 
parallel circuit that can be used for, other than the above 
mentioned nine algorithms, any parallel 2-D filtering 
algorithms with convolutional filtering structure.  
 The study is organized in the following layout of 
sections: after the introduction, parallel 2-D image 
filtering algorithms for their functional parallel structure, 
the nine parallel 2-D MRI algorithms capture for the 
FPGA-based implementation, discussing results and, 
then, conclusions before the references.   
 
Parallel 2-D image fill tering algorithms: Parallel 2-D 
MRI filtering algorithms are a 5x5 convolution kernel 
mask based image processing algorithms. Generally, 
the parallel architecture of these algorithms is 
constructed of serial to parallel input stage, 2-D 
convolution filtering vector for processing and a parallel 
to serial reconstructed output stage, as shown in Fig. 1. 
 
1 Input 2-D Segmentation MRI Stage: The serial to 
parallel input segmentation stage can be achieved by 
two steps. First step is reshaping. Second step is 
segmentation and buffering samples.  
 First step; the 2-D MRI matrix x (n1, n2) of size (N 
×N) is behaviorally reshaped, within the input stage, 
from (row × column) matrix to be (time stamp × MRI 
samples) Matrix format. The reshaped MRI matrix has 
a time stamp in the first column and a vector containing 
the corresponding MRI samples stream in the 
subsequent column, x (t, p), as in (1) Eq. 1: 
 

1 2x(n ,n ) x(t,p)=  (1) 
 
Where; t = 0, 1 … n1 × n2 -1 and p = 1, 2 … n1 × n2 

Since the System Generator is a time based DSP 
development tool thus the time stamp variable, t in (1), 
is implicitly considered by the parallel MRI filtering 
algorithm. Hence (1) is simplified to Eq. 2: 
 

1 2 n1 2x(n ,n ) x ,n (p) x(p)= =  (2) 
 
 Second step; the 2-D MRI samples stream, in (2), 
are equally split to five samples sub-segments, as 
formulated in Eq.  3: 
  

j

p
x(p) [x ( )], j 1,2,..5

5
= =  (3) 

Parallel 2-D convolution filtering stage: The parallel 
2-D filtering algorithm is processing the MRI pixel 
streams using convolution filters vector as shown in Fig. 
1. Each convolution filter is a 5-tap MAC FIR filter. The 
filter architecture, as shown in Fig. 2, consists of an 
image sample stream buffer, filter coefficient memory, 
comparator, address control unit, MAC unit and 
capture register. 
 The image sample stream buffer and the filter 
coefficient memory store N MRI stream sub-segments 
and M coefficients respectively. The comparator 
generates the `reset’ pulse and `enable’ pulses for the 
accumulator and capture register respectively. The 
pulse is asserted when the address is zero and is delayed 
to account for pipeline stages. The address control unit 
provides the necessary address logic for the filter 
coefficient memory and the image sample stream buffer, 
in addition to the timing control for the comparator.  
 The MAC unit is pipelined to sum up an inner Fig. 
2. The Convolution Filter algorithm product of a set of 
M coefficients by N respective MRI samples sub-
sequence to form an individual result. Each MAC FIR 
is characterized by its 1-D kernel, β (m1) of size (M), to 
convolve MRI samples sub-sequences, xj (p/5), of length 
N. This 1-D convolution filter produces filtered MRI 
samples sub-segment, yj (p/5). Thus Eq. 4: 
 

1

N 1

n1 1 1 m1
m 0

y ( ) (n m )x ( )
5 5

−

=

ρ ρ= β −∑  (4) 

 
Where, n1= 0,1,..N+M-1 
 As shown in Fig. 1, five parallel MAC FIR filters, 
of (4), constitute a 5x5 filter which is characterized by 
its 2-D convolution kernel, β (m1, m2) of size (M × M). 
This 5x5 filter convolves five MRI samples sub-
sequences, xj (p/5), of length N × N to produce a 2-D 
matrix filtered MRI samples sub-segment, yj (p). Then 
(4) becomes Eq. 5 and 6: 
 

1 2

N 1 N 1

n1,n2 1 1 2 2 m1,m2
m 0 m 0

y (p) (n m ,n m )x ( )
5

− −

= =

ρ= β − −∑ ∑  (5) 

 
where, n1 =n2 = 0,1,..N+M-1. 
 
Output 2-D MRI reconstruction stage: The final 
output 2-D MRI reconstruction stage is a parallel to 
serial conversion by summing up, pipelining and 
reshaping the filtered MRI samples sub-segments 
stream into the filtered 2-D MRI scan Since xm1, m2 (p) 
and Y n1, n2 (p) are to be a 2-D reshaped matrix for the 
MRI input, x (n1, n2) and a 2-D filtered MRI output, y 
(n1, n2), as shown in Fig. 1, within the input stage and the 
output stage respectively. Thus, (5) can be re-expressed as:  
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Fig. 1: A generalize parallel 2-D MRI filtering algorithms 
 

 
 
Fig. 2: The Convolution Filter algorithm 
 

 
 
Fig. 3: Architecture 1: as one of the low-level abstracted implementation for the nine parallel 2-D MRI filtering 

algorithms 



Am. J. Engg. & Applied Sci., 4 (4): 566-575, 2011 
 

569 

 
 
Fig. 4: Architecture 2: as a high-level abstracted implementation for the parallel 2-D MRI filtering algorithms 
 

1 1

N 1 N 1

1 2 1 2 1 1 2 2
m 0 m 0

y(n ,n ) x(m ,m ) (n m ,n m )
− −

= =

= β − −∑ ∑  (6) 

 
Where, 0 ≤ n1,n2< N+M-1.  
 The next challenging goal is efficiently prototyping 
the nine parallel 2-D filtering algorithms into a single 
FPGA-base architecture. 
 
Parallel 2-D MRI algorithms capture: Xilinx System 
Generator is utilized to develop an efficient FPGA-
based architecture for the nine parallel 2-D MRI 
filtering algorithms with minimal idle operations. The 
clock signals and its corresponding enable logic do 
not appear in the architecture’s circuit.  These signals 
are internally generated when the FPGA 
implementation is behaviourally compiled within 
Xilinx/Simulink environment. 
 Consequently, these nine different parallel 2-D MRI 
image filtering algorithms can be behaviorally captured 
by more than one performance efficient architecture, 
depending on the abstraction level of implementation.  
Two of these circuits are shown in Fig. 3 and 4 as 
architecture 1 and architecture 2 respectively.  
 Both architectures consist of three stages; MRI 
input, processing and output. In the first stage, the 
magnetic resonance imaging (MRI) pixels are 
sequentially streamed into four virtex line buffers via a 
pipelined gateway block. Each line is delayed by 64 
samples and the fifth line is a copy of the MRI scan. 

 The second stage is a parallel five 5-tap MAC FIR 
filters pipeline-balanced structure, as in the circuit of 
Fig. 3. Alternatively, the 5x5 convolution operations 
can be performed via the 5x5 filter block, as in the 
circuit of Fig. 4. Hence, both processing stages are to 
filter any noisy 2-D image and as a special case; the 
64x64 grayscale MRI scan. Then the computed 5x5 
convolution operators are summed up the results by 
four adder blocks. The absolute value of the FIR filters 
is computed and the data is narrowed to 8 bits.  
 

RESULTS AND DISCUSSION 
 
 One of the challenging goals of this study is 
developing an efficient FPGA implementation that 
provides fast FPGA prototyping for high filtering 
performance of the nine parallel 2-D MRI filtering 
algorithms. A time analysis compilation tool is needed 
to evaluate the area/speed/power consumption 
performance indices. Thus the Xilinx Timing Analyzer 
is utilized to generate time statistics, total power analysis 
and histogram charts of FPGA implementation paths 
delay. This provides guides to clarify the bottleneck in 
the implementation and focus on the optimization of the 
slow paths outliers. 
 The results presented into three forms: performance 
index table as in Table 1, grayscale MRI filtered images 
with their corresponding kernels as in Table 2and Table 
3, Logic assets utilization as in Table 4 then Histogram 
Charts of path delay distribution as in Fig. 5-8. 
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Fig. 5: Chart depicts the total paths delay distribution of   

the MRI Edge filter captured behaviorally via 
(X240T) FPGA board 

 

 
 
Fig. 6: Histogram Chart depicts the total paths delay 

distribution of the MRI Edge filter captured 
behaviorally via (X130T) FPGA board 

 
The performance efficient implementation results can be 
behaviorally achieved by low power consumption at 
maximum frequency for the nine parallel 2-D MRI 
image filtering algorithms. Consequently, comparative 
results of two Virtex-6 FPGA boards, xc6vlX240Tl-
1lff1759 and xc6vlX130Tl-1lff1156 are compiled for 
the nine 2-D filters by two sets of 5x5 coefficient mask. 
The first set is the generic 5x5 kernels. And the second 
set is the improved 5x5 kernels to a new 5x5 
Enhancement Orthogonal Kernels. 
 
Power: The total power consumption for architecture 2 
has two elements: the static power and the dynamic 
power (Yakovlev, 2011). 

 
 
Fig. 7: Histogram Chart depicts the total path delay 

distribution of the improved Edge filter captured 
behaviorally via (X240T) FPGA 

 

 
 
Fig. 8: Histogram Chart depicts the path delays 

distribution of the improved Edge filter captured 
behaviorally via (X130T) FPGA 

 
Table 1: Performance indices 
2-D MRI Power Consumption Maximum  
Filtering (Watt)  Frequency (MHz)  
Algorithms X240T  X130T  X240T  X130T  
Edge  1.38  0.86  194  230  
SobelX  1.38  0.86  213  225  
SobelY  1.38  0.86  214  230  
SobelXY  1.38  0.86  213  225  
Blur  1.38  0.86  213  230  
Smooth  1.38  0.86  211  217  
Sharpen  1.38  0.86  230  230  
Gaussian  1.38  0.86  227  230  
Beta(HYB)  1.38  0.86  211  230  

 
 Table 1 shows the performance indices of power 
consumption (Watt) and the corresponding maximum 
operating frequency (MHz) for the developed nine 
parallel 2-D MRI filtering algorithms.  
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Table 2: The generic parallel MRI filtering algorithms 
  Corresponding filtered MRI using 
2-D MRI Generic ---------------------------------------------------------------------------- 
filtering algorithms 5×5 Kernel  X240T X130T  

Edge  

0 0 0 0 0

0 1 1 1 0

0 1 8 1 0

0 1 1 1 0

0 0 0 0 0

− − −
− −
− − −

 
 
 
 
 

   

SobelX  

0 0 0 0 0

0 1 0 1 0

0 2 0 2 0

0 1 0 1 0

0 0 0 0 0

−
−
−

 
 
 
 
 

   

SobelY  

0 0 0 0 0

0 1 2 1 0

0 0 0 0 0

0 1 2 1 0

0 0 0 0 0

− − −

 
 
 
 
 

    

SobelXY  

0 0 0 0 0

0 0 1 1 0

0 1 1 0 0

0 1 1 0 0

0 0 0 0 0

−
 
 
 
 
 

   

Blur; 
1

DF ( )
16

=  
1 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 1 1 1 1

 
 
 
 
 

   

Smooth; 
1

DF ( )
100

=  
1 1 1 1 1

1 5 5 5 1

1 5 44 1 1

1 5 5 5 1

1 1 1 1 1

 
 
 
 
 

   

Sharpen; 
1

DF
16

 =  − 
 

0 0 0 0 0

0 2 2 2 0

0 2 32 2 0

0 2 2 2 0

0 0 0 0 0

−

 
 
 
 
 

   

Gaussian 
1

DF ( )
52

=  
1 1 2 1 1

1 2 4 2 1

2 4 8 4 2

1 2 4 2 1

1 1 2 1 1

 
 
 
 
 

   

Identity 

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
 
 

    

 
The performance indices of Table 1 show that the 
X130T FPGA implementation outperforms X240T 
FPGA according to its minimum total power 
consumption (around 0.86 at junction temperature = 52 
C○) and maximum frequency (mostly around 230 MHZ). 
Table 1 is fairly remained unchanged after improving the 
nine 5×5 kernels. 
 
Filtering: The filtered 2-D MRI images of Table 2 and 
Table 3 are generated from the two 5x5 kernels sets, the 
generic and the improved, respectively, of the nine 
parallel algorithms implementation using Virtex-6 

X240T and X130T FPGAs. By inspection, the filtered 
MRI scans of Table 3 are image enhanced compared to 
those of Table 2 without affecting the developed 
performance indices of lower power consumption at 
maximum operating frequency. In both tables, the D.F 
is stand for Division Factor of the 5×5 kernel.  
 Furthermore, the genetic 5×5 mask-based convolution 
kernels, β (m1, m2),  for the nine filtering algorithms: Edge, 
Sobel X, Sobel Y, Sobel X-Y, Blur, Smooth, Sharpen, 
Gaussian and identity are all showing the filtering 
portability, whether, using X130T FPGA or X240T. 
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Table 3: The improved parallel filtering algorithms 
  Corresponding filtered MRI 
2-D MRI Developed  ----------------------------------------------------------------------- 
filtering algorithms 5×5 Kernel Using X240T  Using X130T  

Edge 
1

D.F ( )
8

=
−

 
0 0 1 0 0

0 0 1 0 0

1 1 16 1 1

0 0 1 0 0

0 0 1 0 0

−

 
 
 
 
  

   

SobelX 
1

D.F ( )
8

=
−

 
0 0 0 0 0

0 1 0 1 0

0 1 32 1 0

0 1 0 1 0

0 0 0 0 0

−
−
−

 
 
 
 
 

   

SobelY 
1

D.F ( )
8

=
−

 
0 0 0 0 0

0 1 1 1 10

0 0 32 0 0

0 1 1 1 0

0 0 0 0 0

− − − −
 
 
 
 
 

   

SobelXY 
1

D.F ( )
8

=
−

 
0 0 0 0 0

0 0 1 1 0

0 1 32 1 0

0 0 1 1 0

0 0 0 0 0

−
− −

 
 
 
 
 

   

Blur; 
1

DF ( )
16

=
−

 
1 4 14 1

1 0 0 0 1

4 4 4 4 4

1 0 0 0 1

14 1 4 1

− − −
− −

− −
− − −

 
 
 
 
 

   

Smooth; 
1

DF
100
 =  
 

 
1 1 1 1 1

1 5 120 5 1

1 120 480 120 1

1 5 120 5 1

1 1 1 1 1

− −

−

 
 
 
 
 

   

Sharpen; 
1

DF ( )
16

=  
0 0 0 0 0

0 1 1 1 0

0 1 64 1 0

0 1 1 1 0

0 0 0 0 0

− − −
− −
− − −

 
 
 
 
 

   

Gaussian 
1

DF ( )
52

=
−

 
1 1 2 1 1

1 2 20 2 1

2 20 80 20 2

1 2 20 2 1

1 1 2 1 1

−
− −
−

 
 
 
 
 

   

Beta (HYB)  

0.2 0.4 1 0.4 0.2

0.4 1 3.3 10.4

1 3.3 4.4 3.3 1

0.41 3.3 4.4 3.3 1

0.2 0.4 1 0.4 0.2

−
−

− −

 
 
 
 
 

   

 
Table 4: Typical device utilization summary 

Logic utilization  Used  Available  Utilization (%) 

FFs  578  301,440  1 

LUTs  412  150,720  1 

Slices  172  37,680  1  

IOBs  17  720  2  

TBUFs  1  32  3  

DSP48E1s  5  768  1  

 
The same observation is applicable for their 
corresponding improved parallel filtering algorithms. 

The ninth improved algorithm is renamed as “Beta 
(HYB)” which is the authors’ initials.   
 
Area: The FPGA-based architecture 2 of Fig. 4 is 
occupying the proper resources of logic devices as in 
Table 4. This instantiation is compared to the available 
Logic assets as a utilization percentage. The efficient 
implementation hierarchy of Clock trees, Logic, 
signals, I/O's and Hard IPs such as DSP blocks 
subsequently improves the performance indices of 
power consumption and operating frequency. The 
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device utilization of architecture 1 is occupying the 
same logic assets as that of architecture 2 of Fig. 3. 
 
Speed: The histogram time charts, in Fig. 5 and 6 
depict the slow paths distributions of the generic 2-D 
MRI Edge filter captured behaviorally via X240T and 
X130T FPGA board respectively. And, the histogram 
time charts, in Fig. 7 and 8 depict the slow paths 
distributions of the improved 2-D MRI Edge filter 
captured behaviorally via X240T and X130T FPGA 
board respectively. Each histogram chart is a useful 
metric to analyze the FPGA implementation. Where are 
the slowest paths concentrated? How many slow paths 
are in each bin? How efficient is the implementation to 
meet timing? Accordingly, the FPGA implementation 
can be adjusted. Each histogram’ slow paths are 
grouped into regions of roughly formed normal 
distribution groups. The numbers at the top of the bins 
show the number of paths in each bin. 
 Figure 5 shows 308 paths that are roughly forming 
five groups. These groups are probably from different 
portions of the system generator architecture, as in Fig. 
3, or from different timing clock region constraints. 
This shows that most of the slow paths are concentrated 
around (2.81 ns). The slowest path is about (6.15 ns). 
There are an outlier group of slow paths in the time 
range (6.13ns-6.30ns) with empty bins to the right of it. 
That is because the FPGA implementation frequency, 
from Table 1, is the slowest (194 MHz) for this 2-D 
MRI Edge filter. However, there are no red/ pink bins 
or portions that do not meet the timing constrains.  
 Figure 6 shows a shorter histogram chart of 308 
paths that forming totally different distributed 
histogram with roughly only three normally distributed 
paths groups between (2.2 ns) and (4.36 ns). That is 
because the FPGA implementation frequency, from 
Table 1, is the highest (230 MHz) for the same 2-D 
MRI Edge filter. 
 The slow paths are concentrated between (2.2ns) 
and (2.8ns). The slowest path is about (4.2ns). 
Moreover, the greater number of only one path per bin, 
distributed throughout the nanosecond domain 
demonstrate the highly outperformance efficient 
implementation of (230 MHz) maximum frequency. 
Consequently, there are no red/pink bins or portions 
that do not meet the timing constrains.  
 The histogram charts, in Fig. 7 and 8 are displaying 
the reflections of the new maximum sampling 
frequencies over the slow paths concentration for the 
improved Edge filter FPGA implementation of X240T 
and X130T respectively. 
 Figure 7 chart shows a shorted histogram compared 
to that of Fig. 8, because of the new maximum 
frequency (229 MHz). This chart depicts 308 paths 

grouped roughly into four bell curve regions. Most of 
the slow paths are concentrated around (2.4 ns). The 
slowest path is about (4 ns). Consequently, the outlier 
groups of the slowest paths are shifted to the time range 
of 3.88ns-4.20ns with empty bins to the right of it.  
There are no red/ pink bins or portions that do not meet 
the timing constrains.  
 Figure 8 histogram is distributed 308 slow paths to 
roughly form three bell shape distribution between (2 
ns) and (4.2 ns). The slowest path is about (4.09 ns). 
There are less one path bins compared to those of Fig. 
7. There are no red/pink bins or portions that do not 
meet the timing constrains.  
 
Throughput: One of the FPGA-based architecture’s 
efficient performance indices is the filtering frame rate, 
i.e. architecture throughput. Since the architecture is 
operating at (230 MHz) and each of the five 5-tap MAC 
FIR filters is clocked 5 times faster than the MRI 
streams input rate. Therefore, the architecture 
throughput (frames/second), as a filtering performance, 
is 230 MHz /5 = 46 million MRI samples/second. For 
the 64*64 greyscale MRI scan, the throughput is 46 
x10^6/ (64*64) = 11230 frames/second. If the filtered 
MRI is of 256x256 scan then the throughput would be 
701 frames /sec and for a 512x512 scan it would be 172 
frames/sec. Thus the architecture throughput is MRI 
scan size dependent. 
 
Performance Comparison: The nine parallel 2-D MRI 
filtering algorithms architecture 1 and 2 have efficiently 
implemented utilizing hard IPs (DSPs) and minimal 
resources of logic devices. This is to achieve the highly 
filtered performance of (11230 frames/second) 
throughput per minimum power consumption of (0.86 
Watt at 25 °C via X130T) and up to (1.138 Watt at 75 
°C via X240T) at a maximum operating frequency of up 
to (230 MHZ).  
 Moreo et al (2005) filtered 256x256 grayscale 
image using 3×3 convolution filter and 5x5 convolution 
filter to only implement the generic smooth filtering 
algorithm and the generic sharp filtering algorithm 
respectively, without  mentioning their power 
consumption. The device selected for the above 
mentioned existing work is Xilinx Virtex, XCV800 
HQ240, speed-6. Table 5 shows the comparative results 
for area, speed and power.  
 Moreo et al. (2005), the proposed algorithm was 
prototyped using only the logic devices resources 
without using any IP cores of DSPs. which produce 
higher logic utilization percentage and reduces the 
maximum operating frequency to (69 MHz).  
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Table 5: Comparative results of area, speed and power 
Logic utilization  Conv. 3×3 (%) Conv. 5×5x (%) Architecture 2(%) 
FFs  2 .0 4 .0 1 .0 
LUTs  2.0 4 .0 1 .0 
Slices  3 .0 6 .0 1 .0 
IOBs  9.0  9.0  2 .0 
DSP48E1s  NA NA 1 .0 
Maximum operating  
speed (MHz)  76  69  230  
Power Consumed  
(Watt)  NA  NA  0.86  

 
CONCLUSION 

 
 This study presented a generalized 2-D MRI 
filtering algorithm and, then prototyped them in a single 
FPGA-based architecture using Xilinx System 
Generator. Two architectures are prototyped, depending 
on the abstraction level of implementation. This fast 
FPGA prototyping provides high filtering throughput 
performance of (11230 frames/second) per minimum 
total power consumption down to (0.86 Watt) at a 
maximum sampling frequency of up to (230 MHz).   
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