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Abstract: Problem statement: Current Neuroimaging developments, in biologicakearch and
diagnostics, demand an edge-defined and noisévfRélescans. Thus, this study presents a generalized
parallel 2-D MRI filtering algorithm with their FP&based implementation in a single unified
architecture. The parallel 2-D MRI filtering algitmins are Edge, Sobel X, Sobel Y, Sobel X-Y, Blur,
Smooth, Sharpen, Gaussian and Beta (HYB). Then,nthe MRI image filtering algorithm, has
empirically improved to generate enhanced MRI sditasing results without significantly affectinte
developed performance indices of high throughpadt law power consumption at maximum operating
frequency Approach: The parallel 2-d MRI filtering algorithms are déyged and FPGA implemented
using Xilinx System Generator tool within the ISE3 development suite. Two unified architectures ar
behaviorally developed, depending on the abstmadtieel of implementation. For performance indices
comparison, two Virtex-6 FPGA boards, namely, x¥@40TI-11ff1759 and xc6vIX130TI-1Iff1156 are
behaviorally targetedResults. The improved parallel 2-D filtering algorithms emized the filtered MRI
scans to be edge-defined and noise free graysoaging. The single architecture is efficiently
prototyped to achieve: high filtering performandg 1230 frames/second) throughput for 64*64 MRI
grayscale scan, minimum power consumption of 0.86tWith a junction temperature of 52a@d a
maximum frequency of up to (230 MHZonclusion: The improved parallel MRI filtering algorithms
which are developed as a single unified architecprovide visibility enhancement within the filtdre
MRI scan to aid the physician in detecting braisedses, e.g., trauma or intracranial haemorrhdge. T
high filtering throughput is feasibly nhominee theenparallel MRI filtering algorithms for applicatis
such as real-time MRI potential future applicatioRature Work: a set of parallel 3-D fMRI filtering
algorithms will be investigated to be developed st FPGA prototyped for future research project.

Key words: 2-D MIR filtering algorithms, FPGA implementatioparallel algorithms, Xilinx system
generator, Virtex-6 FPGA, Trauma, intracranial haaimage

INTRODUCTION On the other hand, parallel multidimensional flitig
Igorithms (Boussakta, 1999; Wing-Kuen Ling, 200&),

e efficiently implemented, demand high computation
performance per Watt at maximum sampling frequency

(Maslennikow and Sergiyenko, 2006), image procgssin(H"Jlsanet a., .2010)' Cons_equently, this study Proposes
(Kiran, 2008), power consumption in portable imagesyste_,-m-level |mp|e.mentlat|on of parallel .re.conf!gﬂma
processing (Atabany, 2008), MPEG-4 motion estimitio archﬁectures for nine different 2-D MRI digitaltdiring
mobile applications (Gao, 2003), satellite datacessing ~2/90rithms: Edge, Sobel X, Sobel Y, Sobel X-Y, Blur
(Natarajet al., 2009), new Mersenne Number TransformSmooth, Sharpen, Gaussian and Beta (HYB). _
(Niboucheet al., 2009), high speed wavelet-based image  The 2-D image filtering purpose of the above nine
compression (Masoudné al., 2005) and even the global Per-processing algorithms is detecting sharp gésn
communication link (Malet al., 2008). Most of the above in image brightness by significantly reducing timeoant
FPGA-based solutions are typically programmed withof data to be processed, filtering out informatioat may
hardware description languages (HDL) inherited frombe regarded as less relevant, while preserving the
ASIC (Chang, 2005) and microprocessor-based DSlkmportant structural properties of an image. Thasheof
design methodologies (Aziz, 2004; Alshibami, 2001). these nine algorithms is one of the fundamentgissie
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image processing, image analysis, image patterRarallel 2-D convolution filtering stage: The parallel
recognition and computer imaging techniques. 2-D filtering algorithm is processing the MRI pixel
The nine different MRI filtering algorithms are streams using convolution filters vector as showhig.
efficiently developed, implemented and, then, inveb 1. Each convolution filter is a 5-tap MAC FIR filtélThe
in a unified architecture using Xilinx system geaier  filter architecture, as shown in Fig. 2, consistsan
tool (Xilinx, 2010) within the ISE 12.3 development image sample stream buffer, filter coefficient meymo
suite to target two Virtex-6 FPGA (Virtex-6, 2010) comparator, address control unit, MAC unit and
boards, namely, XC6VIX240TI-1Iff1759 and capture register.
XC6VIX130TI-1Iff1156. The image sample stream buffer and the filter
The unified architecture is an open reconfigurablecoefficient memory stor& MRI stream sub-segments
parallel circuit that can be used for, other tHemdbove and M coefficients respectively. The comparator
mentioned nine algorithms, any parallel 2-D fillgyi generates the ‘reset’ pulse and “enable’ pulseshéor
algorithms with convolutional filtering structure. accumulator and capture register respectively. The
The study is organized in the following layout of py|se is asserted when the address is zero amtbiged!
sections: after the introduction, parallel 2-D ireag to account for pipeline stages. The address coatiil
filtering algorithms for their functional parallstructure, provides the necessary address logic for the filter
the nine parallel 2-D MRI algorithms capture foeth cqefficient memory and the image sample streamebuff
FPGA-based_ implementation, discussing results and, 5qdition to the timing control for the comparato
then, conclusions before the references. The MAC unit is pipelined to sum up an inner Fig.

Parallel 2-D imagefill tering algorithms: Parallel 2-D 2. The Convolution Filter algorithm product of & sé
MRI filtering algorithms are a 5x5 convolution ketn M coefficients by N respective MRI samples sub-
mask based image processing algorithms. Generallgequence to form an individual result. Each MAC FIR
the parallel architecture of these algorithms isis characterized by its 1-D kerngl{my) of size (M), to
constructed of serial to parallel input stage, 2-Dconvolve MRI samples sub-sequencegps5), of length
convolution filtering vector for processing andarallel N This 1-D convolution filter produces filtered MRI
to serial reconstructed output stage, as showiginlF samples sub-segment,(g/5). Thus Eq. 4:

1 Inrl)luf 2-D Segmentation MRI Stage: Tge seﬂal tod ) -

arallel input segmentation stage can be achie Py _ ¥ p
tpwo steps[.) Firstg step is reshgping. Second gt‘z-p ig”l(s)_mzzloﬁ(n1 ml)xml(s) @)
segmentation and buffering samples.

First step; the 2-D MRI matrix x {nn,) of size (N Where, B= 0,1,..N+M-1

xN) is behaviorally reshaped, within the input stag As shown in Fig. 1, five parallel MAC FIR filters,
from (row x column) matrix to be (time stamp x MRI f (4 constitute a 5x5 filter which is characted by
samples) Matrix format. The reshaped MRI matrix hasts 2-D convolution kerne (mi, my) of size (M x M).
a time stamp in the first column and a vector coimg  This 5x5 filter convolves five MRI samples sub-
the corresponding MRI samples stream in thesequences,p(p/S), of length N x N to produce a 2-D

subsequent column, x (t, p), as in (1) Eq. 1: matrix filtered MRI samples sub-segment,(y). Then
(4) becomes Eq. 5 and 6:
x(ng,n, )= Xx(t,p) (1)
N-1 N-1
Where; t=0,1.../km-landp=1,2..qyx 1, Yurna(P)= 2 D B(n,—my,n,— mz)xml.ngJ ®)
Since the System Generator is a time based DSP m=0m,=0

development tool thus the time stamp variabie, (1),
is implicitly considered by the parallel MRI filieg  where, a_n;=0,1,..N+M-1.
algorithm. Hence (1) is simplified to Eq. 2:
Output 2-D MRI reconstruction stage: The final
x(N;,n;)= X, N, (P)= x(p) (2) output 2-D MRI reconstruction stage is a paraltel t
] serial conversion by summing up, pipelining and
Second step; the 2-D MRI samples stream, in (2)eshaping the filtered MRI samples sub-segments
are equally split to five samples sub-segments, astream into the filtered 2-D MRI scan Sincg,%» (p)

formulated in Eq. 3: and Y n, n, (p) are to be a 2-D reshaped matrix for the
MRI input, x (n, ) anc a 2-D filtered MRI output, y
x(p) =[x, (E)],j =1,2,.5 3) (ny, np), as shown in Fig. 1, within the input stage &l t
5 output stage respectively. Thus, (5) can be reesgpd as:
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Fig. 4: Architecture 2: as a high-level abstradtedlementation for the parallel 2-D MRI filterindgarithms

N1 N1 The second stage is a parallel five 5-tap MAC FIR
y(n,,n,)= ZOZOX(%sz(fl- m.n= m (6) filters pipeline-balanced structure, as in the uitrof
m=0m=

Fig. 3. Alternatively, the 5x5 convolution operatso
can be performed via the 5x5 filter block, as ie th
Where, 0< ny,n;< N+M-1. ~ circuit of Fig. 4. Hence, both processing stages tar

The next challenging goal is efficiently prototypi  fjter any noisy 2-D image and as a special calse; t
the nine parallel 2-D filtering algorithms into mgle  gayga grayscale MRI scan. Then the computed 5x5
FPGA-base architecture. convolution operators are summed up the results by
four adder blocks. The absolute value of the FlRerg

Parallel 2-D MRI algorithms capture: Xilinx System s computed and the data is narrowed to 8 bits.
Generator is utilized to develop an efficient FPGA-

based architecture for the nine parallel 2-D MRI RESULTSAND DISCUSSION
filtering algorithms with minimal idle operationghe
clock signals and its corresponding enable logic do  One of the challenging goals of this study is
not appear in the architecture’s circuit. Thegmals developing an efficient FPGA implementation that
are internally generated when the FPGAprovides fast FPGA prototyping for high filtering
implementation is behaviourally compiled within performance of the nine parallel 2-D MRI filtering
Xilinx/Simulink environment. algorithms. A time analysis compilation tool is ded
Consequently, these nine different parallel 2-DIMR to  evaluate the area/speed/power consumption
image filtering algorithms can be behaviorally eeptl  performance indices. Thus the Xilinx Timing Analyze
by more than one performance efficient architectureis utilized to generate time statistics, total poamalysis
depending on the abstraction level of implementatio and histogram charts of FPGA implementation paths
Two of these circuits are shown in Fig.and4 as  delay. This provides guides to clarify the bottighnén

architecture 1 and architecture 2 respectively. the implementation and focus on the optimizationhef
Both architectures consist of three stages; MRklow paths outliers.
input, processing and output. In the first stade t The results presented into three forms: performanc

magnetic resonance imaging (MRI) pixels areindex table as in Table 1, grayscale MRI filterathges
sequentially streamed into four virtex line buffefa a  with their corresponding kernels as in Table 2aal@
pipelined gateway block. Each line is delayed by 643, Logic assets utilization as in Table 4 then ¢tishm
samples and the fifth line is a copy of the MRIrsca Charts of path delay distribution as in Fig. 5-8.
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Fig. 7: Histogram Chart depicts the total path yela
distribution of the improved Edge filter captured
behaviorally via (X240T) FPGA
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Fig. 8: Histogram Chart depicts the path delays
distribution of the improved Edge filter captured
behaviorally via (X130T) FPGA

Table 1: Performance indices

The performance efficient implementation results oa

behaworally achieved by low power consumption atggge

maximum frequency for the nine parallel 2-D MRI
image filtering algorithms. Consequently, compamati
results of two Virtex-6 FPGA boards, xc6viX240TI-
1Iff1759 and xc6vIX130TI-1Iff1156 are compiled for
the nine 2-D filters by two sets of 5x5 coefficienaisk.
The first set is the generic 5x5 kernels. And theosd

set is the improved 5x5 kernels to a new 5x5Beta(HYB)

2-D MRI Power Consumption Maximum
Filtering (Watt) Frequency (MHz)
Algorithms X240T X130T X240T X130T
1.38 0.86 194 230
SobelX 1.38 0.86 213 225
SobelY 1.38 0.86 214 230
SobelXY 1.38 0.86 213 225
ur 1.38 0.86 213 230
Smooth 1.38 0.86 211 217
Sharpen 1.38 0.86 230 230
Gaussian 1.38 0.86 227 230
1.38 0.86 211 230

Enhancement Orthogonal Kernels.

Table 1 shows the performance indices of power

Power: The total power consumption for architecture 2consumption (Watt) and the corresponding maximum
has two elements: the static power and the dynamioperating frequency (MHz) for the developed nine

power (Yakovlev, 2011).
570

parallel 2-D MRI filtering algorithms.



Am. J. Engg. & Applied i, 4 (4): 566-575, 2011

Table 2: The generic parallel MRI filtering algbmits

Corresponding filtered MRI using

2-D MRI Generic
filtering algorithms %5 Kernel X130T
[00 000
0-1-1-10
Edge 0-18-10
0-1-1-10
oo o oo
[0 0 000 5;;;,
0-1010 w
SobelX 02020
0-1010
lo 0o 000
[0 0 0 00 ""7"‘1_
01 2 10 W
SobelY 00 0 00
0-1-2-10
oo 000
[0000 0
001-10
SobelXY 01100
01100
looo oo
10001
Blur; DF:(i) 10001 =
16 10001
11111
[111 11 /“i}\ %
155 51 Lol
Smooth;DF:(i) 1544 11 — .
100 15 5 51
11111
[00 0 00 % | 2
02 2 20 : ; !
Sharpen;DF:(i) 02-3220 S b
-16 02 2 20
loo 0 00
[1121 1] & &
: 1 12421 =3 et
GaussianDF = () 24842
52 12421
11211
™
00000 “A 2
Identity 00100 == -
00000
o o0 o o

The performance indices of Table 1 show that thex240T and X130T FPGAs. By inspection, the filtered
X130T FPGA implementation outperforms X240T MRI scans of Table 3 are image enhanced compared to
FPGA according to its minimum total power those of Table 2 without affecting the developed
consumption (around 0.86 at junction temperatufs2= performance indices of lower power consumption at
C°) and maximum frequency (mostly around 230 MHZ).maximum operating frequency. In both tables, thE D.
Table 1 is fairly remained unchanged after imprgwime  is stand for Division Factor of the 5x5 kernel.

nine 55 kernels. Furthermore, the genetic 5x5 mask-based convalutio
kernels (my, my), for the nine filtering algorithms: Edge,

Filtering: The filtered 2-D MRI images of Table 2 and
Table 3 are generated from the two 5x5 kernels #ets Sobel _X, Sobel Y Spbel XY, Blur, SmOOth’ Sharp_en,
Gaussian and identity are all showing the filtering

generic and the improved, respectively, of the nine '€ X
parallel algorithms implementation using Virtex-6 Portability, whether, using X130T FPGA or X240T.
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Table 3: The improved parallel filtering algorithms

Corresponding filtered MRI

2-D MRI Developed
filtering algorithms %5 Kernel Using X240T Using X130T
00 1 00
1 00 1 00
Edge D.F=(—) 11-16 11
-8 00 1 00
00 1 00
00 0 0O
1 010 -10
SobelX D.F= (=) 0132-10
-8 010 -10
_0 00 00O
00 0 O
1 0 -1-1-1-10
SobelY D.F=(—) 00 3 0
_8 01 1 1 o0
[0 0 00 O
00 0 00O
1 00 1 10
SobelXY D.F= (=) 0-132 10
_8 00 -1-10
00 0 00

1 -1

Blur; DF=(—) 4
_16 -1
-1

Il oson

P o&asol

FNICRF NS
IS

CCRO0oCEOai
COEBERBAAaAa

11 1 11
1 1 -5 120 -5 1
SmOOth;DF:[fj 1 120 480 120
100 1-5 120 5 1
71 1 1 11
_O 0 0 0O
1 0-1-1-10
Sharpen;DF= (=) 0 -164-10
16 0-1-1-10
70 0 0 0O
_1 1 2 1 1
i 1 12 -2 2 1
GaussianDF = (—=) 2 20 -80 -20 2
-52 12 20 2 1
11 2 1 1
_0.2 0.4 1 04 02
0.4 1 - 3.3 10.4
Beta (HYB) 1 33 -44 33 1
041 -33 -44 33 1
_0‘2 0.4 1 04 02
Table 4: Typical device utilization summary The ninth improved algorithm is renamed as “Beta
Logic utilization Used Available  Utilization (%) (HYB)” which is the authors’ initials.
FFs 578 301,440 1
LUTs 412 150,720 1 Area: The FPGA-based architecture 2 of Fig. 4 is
Slices 172 37,680 1 occupying the proper resources of logic devicesnas
IOBs 17 720 2 Table 4. This instantiation is compared to the labdé
TBUFs 1 32 3 Logic assets as a utilization percentage. The ieffic
DSP48E1s 5 768 1 implementation hierarchy of Clock trees, Logic,

signals, 1/O's and Hard IPs such as DSP blocks

The same observation is applicable for theirsubsequently improves the performance indices of

corresponding improved parallel filtering algorithm power consumption and operating frequency. The
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device utilization of architecture 1 is occupyinget grouped roughly into four bell curve regions. Most
same logic assets as that of architecture 2 ofFig. the slow paths are concentrated around (2.4 ns. Th
slowest path is about (4 ns). Consequently, théeout
Speed: The histogram time charts, in Fig. 5 and 6groups of the slowest paths are shifted to the tange
depict the slow paths distributions of the gen@&iD  of 3.88ns-4.20ns with empty bins to the right of it
MRI Edge filter captured behaviorally via X240T and There are no red/ pink bins or portions that domett
X130T FPGA board respectively. And, the histogramthe timing constrains.
time charts, in Fig. 7 and 8 depict the slow paths  Figure 8 histogram is distributed 308 slow paths t
distributions of the improved 2-D MRI Edge filter youghly form three bell shape distribution betwd@n
captured behaviorally via X240T and X130T FPGAnS) and (4.2 ns). The slowest path is about (499 n

board respectively. Each histogram chart is a lhsefu].h ; .
; . ; ere are less one path bins compared to thosegof F
metric to analyze the FPGA implementation. Wheee ar- There are no redF;pink bins or F|)30rtions that%o n

the slowest paths concentrated? How many slow paths he timi .
are in each bin? How efficient is the implementatio ~ M€t the timing constrains.

meet timing? Accordingly, the FPGA implementation . ,
can be adjusted. Each histogram’ slow paths ardhroughput: One of the FPGA-based architecture’s

grouped into regions of roughly formed normal €fficient performance indices is the filtering framate,
distribution groups. The numbers at the top of hhres i.e. architecture throughput. Since the architectis
show the number of paths in each bin. operating at (230 MHz) and each of the five 5-tafs@/
Figure 5 shows 308 paths that are roughly formindg-IR filters is clocked 5 times faster than the MRI
five groups. These groups are probably from difiere streams input rate. Therefore, the architecture
portions of the system generator architecturenagg.  throughput (frames/second), as a filtering perforcea
3, or from different timing clock region constraint is 230 MHz /5 = 46 million MRI samples/second. For
This shows that most of the slow paths are conatsdr the 64*64 greyscale MRI scan, the throughput is 46
around (2.81 ns). The slowest path is about (6)5 n X10"6/ (64*64) =11230 frames/second. If the filtered
There are an outlier group of slow paths in theetim MRI is of 256x256 scan then the throughput would be
range (6.13ns-6.30ns) with empty bins to the rafhit. 701 frames /sec and for a 512x512 scan it woultidze
That is because the FPGA implementation frequencyframes/sec. Thus the architecture throughput is MRI
from Table 1, is the slowest (194 MHz) for this 2-D Scan size dependent.
MRI Edge filter. However, there are no red/ pinki
or portions that do not meet the timing constrains. Performance Comparison: The nine parallel 2-D MRI
Figure 6 shows a shorter histogram chart of 308iltering algorithms architecture 1 and 2 haveaintly
paths that forming totally different distributed implemented utilizing hard IPs (DSPs) and minimal
histogram with roughly only three normally distribd  resources of logic devices. This is to achievehilaly
paths groups between (2.2 ns) and (4.36 ns). Ehat filtered performance of (11230 frames/second)
because the FPGA implementation frequency, fromhroughput per minimum power consumption of (0.86
Table 1, is the highest (230 MHz) for the same 2-Dwatt at 25 °C via X130T) and up to (1.138 Watt &t 7
MRI Edge filter. °C via X240T) at a maximum operating frequency pf u
The slow paths are concentrated between (2.2ngy, (230 MHZ).

ﬁ‘/lnd (2.8n2. Thet slowe?)t p"’f‘th Iis abouih (_4'2?35)' Moreo et al (2005) filtered 256x256 grayscale
oreover, the greater number ot only one path [rer image using 83 convolution filter and 5x5 convolution

distributed throughout the nanosecond domail}.lt i v impl t th . th filteai
demonstrate the highly outperformance efficient™tie 10 only implement the generic smooth filregi

implementation of (230 MHz) maximum frequency. algorithm and the generic sharp filtering algorithm

Consequently, there are no red/pink bins or postionrespectively, ~without — mentioning their power
that do not meet the timing constrains. consumption. The device selected for the above

The histogram charts, in Fig. 7 and 8 are displgyi mentioned existing work is Xilinx Virtex, XCV800
the reflections of the new maximum samplingHQ240, speed-6. Table 5 shows the comparativetsesul
frequencies over the slow paths concentration fier t for area, speed and power.
improved Edge filter FPGA implementation of X240T Moreo et al. (2005), the proposed algorithm was
and X130T respectively. prototyped using only the logic devices resources

Figure 7 chart shows a shorted histogram comparedithout using any IP cores of DSPs. which produce
to that of Fig. 8, because of the new maximumhigher logic utilization percentage and reduces the
frequency (229 MHz). This chart depicts 308 pathsmaximum operating frequency to (69 MHz).
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Table 5: Comparative results of area, speed angpow Hasan, S., A. Yakovlev and S. Boussakta, 2010.
Logic utilization Conv. 83 (%) Conv. &5x (%) Architecture 2(%) Performance efficient FPGA implementation of
FFs 2.0 4.0 1.0

parallel 2-D MRI image filtering algorithms using

LUTs 2.0 4.0 1.0
Slices 3.0 6.0 1.0 Xilinx system generator. Proceedings of the 7th
I10Bs 9.0 9.0 2.0 ; . . .
DSP48E1s NA NA 1.0 International Symposium on Communication
gﬂpﬁggwg;eraﬂng 6 o 230 Systems Networks and Digital Signal Processing,
Power Consumed Jul. 21-23, IEEE Xplore Press, Newcastle Upon
(Watt) NA NA 0.86 Tyne, pp: 765-769.
Kiran, M., K.M. War, L.M. Kuan, L.K. Meng and L.W.
CONCLUSION Kin, 2008. Implementing image processing

algorithms using ‘Hardware in the loop’ approach

_ This study presented a generalized 2-D MRI o Xjlinx FPGA. Proceedings of the International
filtering algorithm and, then prototyped them isiagle Conference on Electronic DesigBec. 1-3, IEEE
FPGA-based architecture using Xilinx ~System Xplore Press, Penang, pp: 1-6. DOI:

Generator. Two architectures are prototyped, depgnd 10.1109/ICED.2008.4786653

on the abstraction level of implementation. Thistfa
. : . L Mak, T., C. D'Alessandro, P. Sedcole, P.Y.K. Cheung
FPGA prototyping provides high filtering throughput and A. Yakovlevet al.. 2008. Implementation of

performance of (11230 frames/second) per minimum inelined int i . EPGA

total power consumption down to (0.86 Watt) at a wave-pipeline interconnects - 1n S

maximum sampling frequency of up to (230 MHz). Proceedings of the 2nd IEEE Intern. Symposium
on NOCS, April 7-10, IEEE Xplore Press,
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