
American J. of Engineering and Applied Sciences 5 (1): 15-24, 2012
ISSN 1941-7020
© 2014 H. Abdelkrim et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license

Corresponding Author: Hedi Abdelkrim, LSA Laboratory, Department of Electrical Engineering,
 National Institute of Applied Sciences and Technology, B.P. 676, 1080 Tunis Cedex, Tunisia

15

Dynamic Partial Reconfiguration

Contribution on System on Programmable
Chip Architecture for Motor Drive Implementation

Hedi Abdelkrim, Slim Ben Othman,

Ahmed Karim Ben Salem and Slim Ben Saoud
LSA Laboratory, Department of Electrical Engineering,
National Institute of Applied Sciences and Technology,

B.P. 676, 1080 Tunis Cedex, Tunisia

Abstract: Problem statement: Nowadays, Reconfigurable System on Chip (RSoC) shows great
potential in many high performance applications that benefit from Hardware customization.
Approach: In this study, we present a design approach of FPGA based Controller for
electromechanical system. In this way, we present solutions obtained by Hardware/Software Code sign
methodology targeted for the implementation of a motor control drive system using Multiprocessor
SoC (MPSoC) architecture. In order to enhance flexibility and performance of the considered system,
we design different modules of HW current controller of electronic motor. A Dynamic Partial
Reconfiguration (DPR) mechanism allowing switching on the fly between those modules is described.
Results: Test and validation are done to validate the approach adopted. Experimental results confirmed the
efficiency of the approach and allow us to determine more recommendations that should be considered
while designing a RSoC control drive system. Conclusion/Recommendations: DPR enable flexible control
system hardware design. This concept allows switching between different low order controls.

Key words: Motor drive, dynamic partial reonfiguration, MPSoC, FPGA, RSoC

INTRODUCTION

 Nowadays, due to technology advances and also
with the increasingly requirements from applications
supported by contemporary embedded systems, they
became more and more complex, which have a direct
impact on the design of such systems.
 Besides low cost and tight time to market, other
constraints, like for instance the limited amount of
memory available, low power consumption requirement
(Paiz and Porrmann, 2007) make the design of such a
system a challenge.
 Current embedded systems integrate more and
more functionalities and require, therefore, higher
computation performance. With technological advances
most of system components can be incorporated into a
single chip leading us to a so called System-on-Chip
(SoC) (Jerrraya, 2004).
 System on Programmable Chip (SoPC) such those
based Field Programmable Gate Arrays (FPGA)
solutions are replacing traditional digital technologies
such as general purpose processors, DSP or ASIC,
thanks to their better cost/performance ratio or due to

shorter time-to-market.
 When implementing digital controllers using SoPC,
there are many advantages, offered by their parallelism
especially regarding the required computation time.
Implementing a controller on FPGA can lead to a faster
response in motion drive applications. However, the
performance and efficiency of such FPGA technology
strongly depends on the design methodology of the
controller (Salem et al., 2008).
 Hardware (HW) solutions suffer from the lack of
flexibility, but their reliability and performance make
them more interesting. The reconfigurability,
particularly the dynamic partial reconfiguration has
made hardware solutions more flexible. In fact, it has
given the FPGA the capability to modify its internal
structure on the fly, while it is turning on.
 Designers were often forced to begin architecture
design and system implementation before the
specification of a product is fully completed. In such an
environment, late changes in the design cycles are
mandatory. Reconfigurable HW promises to best solve
these problems and challenges.

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

16

 In fact, to overcome the constraints due the static
system realization where the reconfiguration of the
FPGA does not change during system running, leading to
high resources cost, dynamic and partial HW
reconfiguration can be used, allowing loading only the
suitable controller for the current situation of the system.
 This study deals with the design of a Runtime
Reconfigurable DC-Motor Controller. A
Multiprocessor System on Chip (MPSoC) architecture
is used to validate the design. In fact, this platform
includes a processor executing the model of the motor
and a second one for adapting the controller’s HW/SW
wrapping.
 The next section gives an overview of the
reconfigurability concept with some design
recommendations and different reconfigurability
strategies. Then we present the partitioning model for
motor control application process and give a generic
multiprocessor architecture supporting a mixed
HW/SW code sign of controller devices. After, the
design flow of the Reconfigurable Module (RM) and its
implementation steps are given. After that, the obtained
results are presented and a future work discussion is
done. Finally, conclusions with perspectives are given.
 It is important to precise that the DC motor
application case is used only to validate the approach
proposed.

Reconfigurability general overview:
Background and related works: The introduction of
FPGA, made the digital systems design flow in
continuous changing (Brown and Rose, 1996; Hauck,
1998). In fact, the Dynamic Partial Reconfiguration
(DPR) has allowed the appearance of a new paradigm:
HW as flexible as programming (Abdelkrim and Saoud
2008). This DPR computing consists of an execution of
various algorithms on the same HW structure device,
by several reconfigurations of the HW chip array in a
limited time period and with a defined partitioning and
scheduling mechanism. DPR offers important benefits
for the designs implementation. Several architectures
have been designed and have validated the DPR
computing concept for the real time processing
(Wirthlin and Hutchings, 1995; Vuillemin et al., 1996;
Kastrup et al., 1999; Goldstein et al., 2000; Kessal et al.,
2000; Donlin et al., 2005). However, optimal
partitioning of an algorithm is not defined yet.
Exploiting the Run-Time Reconfiguration (RTR)
mechanism is a domain in which many works has left.
The works in the domain of temporal partitioning and
logic synthesis exploiting the dynamic reconfiguration
generally focus on the application development
approach (Zhang and Ng, 2000). Thus, firstly we
observe that the efficiency obtained is not always

optimum with respect to the available spatiotemporal
resources. Secondly, the choice of the number of
partitions is never specified. Thirdly, this can be
improved by a judicious temporal partitioning
(Tanougast and Weber, 2001).
 The reconfigurable architectures can easily be used
in power electronic domain particularly in fault
diagnosis and their compensation. In fact, the
reconfiguration of the converter topology and the
control algorithm has great real time constraints.
Besides, the FPGAs flexibility is very interesting when
we have to commutate quickly from an algorithm to
another (Imecs et al., 2000; Sklyarov, 2000).
 Figure 1 gives a Multiprocessor design example of
an RSoC for a motor control drive. Different versions
of a reconfigurable HW module controller are designed
and stored in a memory. This memory can be internal
(DDR, BRAM) or external (Compact Flash CF,
EEPROM).
 Some FPGAs allow performing DPR, where a
reduced bit stream reconfigures only a given subset of
internal components (Mermoud et al., 2005). Xilinx has
proposed two PR flows: module based and difference
based Xilinx, 2004. For the first case, the designer has
to edit low-level modifications manually; a PR bit
streams related to these modifications is generated as
described in Xilinx, 2004. For the second case: the
Module Based flow, the whole design is partitioned on
different modules. Each module is treated separately in
different phases. For earlier ISE versions
communications between modules was censured by
hard Bus Macros. Actually, with new FPGA chips and
ISE versions, Bus Macros are no longer used.

Reconfiguration design recommendations: When
designing a RSoC some recommendations needs to be
respected. In fact, the Partial Reconfiguration (PR)
system design involves an FPGA area partitioning:
static and dynamic region. As mentioned before the
design of the different modules is done independently
and as a final step merging the different design
(Hagemeyer et al., 2007).

HDL design rules:
Top level design module: All the lower level modules
instantiated in the top level module must be treated as
black boxes. The top-level must contain only
instantiations of: Clock primitive (DCMs and BUFGs),
Input Output signals, base design, PR modules, bus
macros and signal declarations.
 The Bus Macro ensures all the crossing signals
(communication one) between PR modules.

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

17

Fig. 1: Example of a RSoC

Fig. 2: Generic partitioning model of motor drive

Lower level modules (or base design modules): These
modules cannot contain any clock or reset-related
primitives (for example, BUFG, DCM…), Xilinx 2006.
While Xilinx Embedded Development Kit (EDK)
places the DCM primitives in a lower level modules,
the designers has to take care of this.

PR modules: In order to be linked correctly to the Top
level instantiations, all PR Modules for a given PR
region must have the same module and file names, all
these developed modules should also have the same
pins placement and names.

Reconfiguration strategies: There are several ways to
reconfigure a device, which will determine its
complexity and its autonomy.
 The first possibility is to reconfigure a device

externally through JTAG cable, based on an external
decision and data source.
 The second one is to let the device itself taking the
decision when to improve the performance by
modifying partially a portion of the target device. This
operation is done through the Internal Configuration
Port Access (ICAP). Self-reconfiguration can be
applied by simply giving a partial bit stream to the
ICAP interface. Blodget et al. (2003) demonstrates the
benefits of dynamic self-reconfiguration through ICAP.
 The third and not the last possibility is a hybrid
solution could be considered, it consists of a
combination of the above.

Drive control structures:
Digital controllers devices: A motor drive system is
composed of (1) the process to control including the
converter circuit, the electric motor and load
components and the different used sensors and (2) the
digital control unit which is composed of the digital
controller based on a specific algorithm and the
necessary interfaces for sensors outputs acquiring and
control signals generation (Othman et al., 2010a).
 The control unit is modeled according to the
applied CMS (Converter/Motor/Sensors) process and to
its target input. Generally, this unit is shaped by several
overlapping control loops. For example, the position
control unit for DC machines can be composed by three
functional control blocks: the current loop inside the
speed loop inside the position loop.
 In this work, we seek solutions, which enable us to
implement on the same SoC the Converter Motor
Sensor (CMS) emulator and different control unit. The
use of MPSoC architecture allows the emulator to work
on RT conditions at optimal processor execution time
without affecting control unit interrupts working at
higher time. Figure 2 presents a generic approach of
partitioning model for motor drive design.
 In order to validate our approach, we consider the
case study of DC process speed controller. We assume
that work on simple process templates allows us to
validate our approach. However, it can be easily
generalized to any other process control.

Motor control specifications: The control application
design was built using Xilinx EDK Base System
Builder toolchain. Both the reconfigurable
interconnections associated to Configurable Logic
Blocks (CLBs) (HW) and the programmable embedded
processor cores (SW) were used in varying
combinations so that application can be rapidly tested
for performance, by selectively partitioning the design

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

18

into portions suitable for the HW or for SW resources
on the FPGA.
 The process (in Fig. 3) is based on two nested
closed loops. The inner loop is in charge of the current
control while the external loop manages the motor
speed. To achieve powerful processing capabilities in
the control unit, we have considered a specific HW
accelerator approach for the controller processor by
implementing the current controller in a HW part and
controlling it by a SW part. The CMS emulator is used
in order to simplify the validation of the concept.
 In addition, motor emulation (Saoud and Hapiot,
2000) is an interesting approach to complete the
validation of new digital control unit and to perform the
diagnosis tasks. The objective of this approach is to
design an electronic system, which can reproduce the
physical system functioning in RT and with high
precision (Salem et al., 2010). This system, called
emulator, will be used for the new control device
validation with the opportunity of extensive testing,
before it is switched for use with the physical process in
real conditions.
 The proposed architecture allows integrating a full
control system in a single chip, avoiding external
components and additionally reducing cost and
complexity. Additional application-specific components
such as Pulse Width Modulation (PWM), encoder can
be added as custom HW IP without major adapting.

MPSoc architecture: The architectural model is
designed for FPGA MPSoC architecture in the Xilinx
ML310 board Xilinx 2005. The architecture consists of
two soft MicroBlaze (MB) processors and a set of
modules interconnected with buses: a first processor for
the control unit and a second one for the emulator unit.
MB processor use Local Memory Bus (LMB) as the
local memory interface. Slow peripherals such as timer,
UART and interrupt controller are available with the
On-chip Peripheral Bus (OPB) main system bus
interface. The shared dual port memory is supported
to passing information between processing
subsystems. It is the easy and efficient way to make a
communication channel between processors. Bus
interface logic is needed to bridge the gap between
the I/O ports on the peripheral and the processor
connection. In MB systems, there are three
commonly available HW/SW interfaces: direct
connection busses (FSL), processor local busses
(LMB) and general-purpose system busses (OPB).

Fig. 3: General diagram of motor control drive

Fig. 4: MPSoC architectural model

 The FSL bus is the most used one in order to
connect HW accelerators (Salem and Othman, 2010). A
HW FSL interface is developed in order to link MB1 to
the RMs (controller) through bus macro.
 Figure 4 defines our multiprocessor system
topology. Each processor connects two independent
data memory blocks to its Instruction LMB (ILMB) and
Data LMB (DLMB) bus. However, memory controller
peripheral is used to interface Block RAM (BRAM)
memory to its bus. Each port of the shared BRAM is
connected to the respective LMB bus of two different
processors and therefore constitutes a communication
channel. Processors can then, access dual port memory
via a normal memory access.
 On-chip Peripheral Bus (OPB) is used to connect
larger external memory for the Microblaze. But it
presents less performance than implementations
using Local Memory Bus (LMB) interface. LMB is
designed to allow fast memory access. Thus,
Microblaze can be configured to cache instructions
or data only over the OPB interface to enhance
system performance (Gambier, 2008).

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

19

Fig. 5: Communication between modules through Bus

Macro

Table 1: HW PI Controller Implementation Results (Virtex2 Pro

XC2VP30)
Number of External IOBs 50 (8%)
Number of SLICEs 1193 (8%)
Minimum period (ns) 7.386

For the designed architectures, the OPB is used to
connect slow peripherals that are the following:

• RS232 serial channel, connected to an UART

peripheral, used for communication between an
external user interface and the platform

• Interrupt controller peripheral, used to manage
multiple interrupts

• Timer peripheral, used for emulator scheduling.
• A second timer, used for controllers’ synchronization

There are 2 types of the considered DC-motor
controller P and PI. Each controller has two inputs
(reference current Iref and measured current Im) and
one output (calculated pulse width alpha). While we’re
implementing the HW controller as RM, we’ll ensure
that its communication with any other module is done
through bus macro as depicted on Fig. 5.

Managing HW controller:
HW controller FSL interface: The Current HW
controller is implemented as a FSL master/ slave
peripheral module. When data is written to the FSL, the
FSL-S-exist is asserted to indicate that valid data indeed
exists within the FSL. Peripheral reads data input,
asserts the FSL-S-read signal and updates content of the
corresponding register. After reading the Im and Iref
data from the master component, the current HW
controller launches the computing process. When alpha
value is ready, peripheral writes out the content of

alpha-reg into the FSL-M-data while asserting the FSL-
M-write signal.

HW controller coprocessor design: To achieve
powerful processing capabilities in the control unit, the
fast loop controller algorithms will be implemented in
the FPGA fabric in HW, working in a parallel fashion.
For that reason, we have considered a specific HW
accelerator approach for the control unit by
implementing the current controller in a HW part and
controlling it by a SW part. The FSL based solutions
were supported because they are the best access
alternative to HW accelerated cores on MB. The FSL
connections are necessary to integrate the current
control unit on MB. In this design, two FSL
connections were implemented to provide bi-directional
communication to write Iref and Im to the FSL
peripheral and to read alpha from this last.

HW controller data path: Because the HW current
controller is designed for integer form, the I/O
Iref_num, Im_num and alpha_num are the numerical
conversion of corresponding variables and are
accessible from 16 bits registers by using an adapted
scaling factor 2n.
 The HW controller is designed using a FSMD
architecture model (Gajski, 2000) that combines a
control unit with a datapath (Othman et al., 2010b). The
designed FSMD architecture for this PI Controller is
optimized for surface while keeping a minimal latency
(Table 1).

System design steps:
Design-flow for reconfigurable controllers: The Hw
controller were realized individually using VHDL, then
they were tested and verified using Xilinx ISE tools by
means of HW-in-the-loop simulations (Schulz et al.,
2007). The static and the dynamic parts of the system
have to be implemented separately (Fig. 4). In a first
step, an initial bit stream including the static system
components is generated. The partial bit streams that
are needed to configure the target FPGA during run-
time have to be generated separately.
 In practice, the first step is to synthesize a
"skeleton" of the top-level design by leaving all
components as black boxes. This is done by opening up
the ISE project that was created during the export
process and removing all of the underlying sources
from the project. Next, synthesize the top-level file and
copy the synthesis output (the top.ngc file) to imp/top-
initial. Then, we can run the modular flow. As Xilinx
recommends in his application note Xilinx, 2004, the
modular flow is broken into 3 different phases. As

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

20

given in (Abdelkrim and Saoud, 2008), we give below a
brief description.

Initial budgeting: In this first phase, we make the floor
planning of the modules areas and the IOB's. Then, the
bus macros must also be LOCed manually. So at the
end we obtain a UCF file which will be used for the
top-level and all the modules during the active module
phase. The physical location of the hard macro channels
(used to route signals between modules) is indicated on
the UCF file, as an example:

INST "macro_1" LOC = "SLICE_X34Y40";

Active module implementation: We have at this point
a synthesized, floorplanned and constrained design. So
now it is possible to implement each static or
dynamically RM. Each module is treated separately, in
a different directory, but in conformance with the
global UCF file and the top-level netlist. In this file, the
RMs are distinguished from the static one by inserting
the lines below in the UCF file.

INST "reconfig_module" AREA_GROUP =
"AG_reconfig_module";
 AREA_GROUP "AG_reconfig_module" MODE =
RECONFIG;

 The design is implemented as usual with the Xilinx
tools, using NGDBUILD, MAP, PAR and finally
BITGEN.
 The output is a placed and routed design (in a NCD
file) and a partial bitstream (BIT file). For an easier
management of each module design, we can publish
them using the tool PIMCREATE.
 First, we treat the static modules. Then, we use
some of the files obtained with the static phase to
pursue the implementation of the RMs. In fact, as it is
shown in Fig. 6, two particular files are used as inputs
for “ngdbuild” instruction: static.used and the UCF file.
These files represent respectively the routed nets for the
first and the physical constraints and pins assignation
for the second.
 When finishing the ngdbuild, mapping, place and
route steps, the final phase is launched so that we obtain
one BIT file for each module.

Final assembly: The final assembly phase is the
process of combining each of the individual modules
back into a complete FPGA design. The placement and
routing achieved during the active implementation
phase for each module will be preserved, thereby,
maintaining the performance of each module. So we
can perform a unique assembled design and then

changing the partially RMs with their bit stream. We
implement the assembled design using the same flow as
in the active module phase.
 For every controller and for all possible controller
positions an implementation has to be generated, from
which the controller configuration is extracted,
resulting in a partial configuration (Schulz et al.,
2007).

Software consideration: The system considered is
partitioned on two Micro Blaze (MB) processors, the
emulator on MB1 and the controller on MB0.
Particularly, the controllers developed are driven by
SW part by using low level SW drive of FSL.
 The FSL ports on MB are accessed via simple get
and put assembly instructions (available in blocking
and non-blocking varieties). C macro routines were
used for solving the FSL HW controller drivers
(Othman et al., 2010a). This last one is consistent with
the sequence in which data are read in and written out
the HW peripheral. Both operands (Im_num and
Iref_num) are written to the FSL FPU with non-
blocking calls, followed by a blocking read that stalls
MB until the HW controller returns a result. Since MB
is an in-order execution machine, this penalty cannot be
overcome.
 As given in Fig. 6, the software (SW) code is
merged in the final step. In fact, the local memory of
each processor will be loaded with .elf file which
contain the executable SW.

Switching schemes: In this work, we try to implement
different types of HW current controller and so it is
possible, by switching on the fly from one controller to
another and by analysing performances criteria, to
improve the system performance and responses. When
supervisor detects that a new controller structure is
needed, he lunches reconfiguration procedure. There
are different schemes of reconfiguring a FPGA. In fact,
it can be done through fixed schedule scheme or event-
driven one. In the fixed schedule scheme, parts of a
design or independent designs are loaded on the FPGA
sequentially (Schulz et al., 2007). The time and order in
which the sub-modules are loaded is known during the
design phase. In the event-driven scheme the
reconfiguration time and order are unknown during the
design phase. The realization of a RTR architecture
becomes more complex depending on the kind of
reconfiguration (full or partial) and the reconfiguration
scheme (fixed schedule or event-driven).

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

21

Fig. 6: Conception flow of a partially reconfigurable SoC

The run-time partial reconfiguration in event-driven
mode is the most complex, because special architectural
concepts and design-flows are needed to realize its
implementation (Hagemeyer et al., 2007). In our case, a
fixed schedule is used.

RESULTS

 In order to validate the developed structures, we
tested them under different conditions. Table 2 presents
some features related to the implementation of the two
considered controllers. These implementation results
are based on a Xilinx FPGA Virext2pro XC2VP30.
 The control structures use a clock frequency of
100MHz. Figure 7 illustrates a comparison between the
structures when having steps at the reference value of
the speed wref. The curve represents the controlled
speed driven by P-Controller at start-up then driven by
PI- Controller at stationary state.
 In fact, at t1 = 0.75s a reconfiguration order is
given and as it shown that for 0s<t< t1 the output is
done by P-Controller and from t≥ t1 till the end only PI-
Controlled is implemented.

Table 1: Features of realized structures
Structure Static Part P controller PI controller
Slices 6741 (49%) 755 (≈5%) 857 (≈6%)
Reconfiguration - 701 701
Time (µs)

Fig. 7: Speed wave form with Partial bitstream

implmentation

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

22

Fig. 8: Comparison of the control schemes with and

without internal state initialization

Fig. 9: Current wave form Partial bitstream

implementation at 0.75 with internal state
initialization

The Fig. 8 shows a comparison between the system
response with and without initialisation for RM. We
obtain here a more satisfying result.
 The Fig. 9 shows the controlled current for the
system considered with a partial bitstream
implementation at t1 = 0.75s.

DISCUSSION

 Using the DPR for implementing two types of DC
motor controllers was successful and gave us different
results described earlier.
 The Fig. 7 illustrates the switching instant between
HW P-controller and HW PI-controller. As shown on
this figure, the new configuration is implemeted at
t=0.75s. While, the P-controller used produces low
noise but also a steady state response, the PI-controller

gives better steady state response, but requires as it is
given in Table 1 more resources for its implementation.
 The controlled speed output shows a disturbance at
the time of implementing the new partial bitstream.
This disturbance could be avoided by initialising the
internal state of the controller (eg. by saving it on
BRAM).
 At reconfiguration time we obtain a disturbance on
system response. In order to reduce it and according to
(Schulz et al., 2007), we proposed to maintain the
different comupting variables (error, I, iref) while
switching between configuration. Thus, in Fig. 8 and 9,
we notice the less disturbance obtained by initialising
the different computing variables (error, I, iref) of the
controller implemented.

Future trends: Several extensions and applications of
the system are in progress. The first of these is to
produce a variant of the original system in which a
PowerPc, hard microprocessor, will replace Microblaze
softprocessor. The new system will be used to control
the reconfiguration operation through ICAP bus
meaning some switching conditions.
 The second is to use AC motor and to develop its
own controllers such as Field Oriented Control (FOC)
and Direct Torque Control (DTC).
 The third foregoing work may be oriented towards
implementing control systems on reconfigurable circuit
systems which are particularly involved by the MPSoC
architectural solutions (Othman and Salem, 2008) and
enhanced by Real-Time Operating System (RTOS)
(Salem et al., 2008).

CONCLUSION

 FPGA technology has become an attractive
alternative to implement digital control systems,
because it offers an interesting trade-off between
performance, design effort and cost for various
embedded applications fields.
 HW solutions offer reliability and better speed
performance than SW ones. But they suffer from the
lack of flexibility. Thanks to the reconfigurability and
particularly the DPR such HW solutions become more
flexible. This methodology has given the FPGA the
capability to modify its internal structure on the fly,
while it is turned on.
 In this same context, a design flow of a current
controller for DC motor is given. A MPSoC
architecture is used to implement on the same chip the
motor emulator and the controller. A partial
reconfigurable region was defined for the controller.

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

23

So, different types of controller (P and PI) can be used
and implemented on the fly when the supervisor
decides it, depending on the desired performance.
 A predictive computation of the controller state has
permitted a commutation with reduced bumping phase
during the new partial bitstream implementation. The
experimental results have been satisfying and have
confirmed the adopted methods and approaches.

REFERENCES

Abdelkrim, H. and S.B. Saoud, 2008. Reconfigurable

system On Chip (RSOC) concepts and
applications. Proceedings of the International
Conference on Embedded Systems and Critical
Applications, (ISESCA’ 08), Gammarth, Tunisia.

Blodget, B., S. McMillan and P. Lysaght, 2003. A
lightweight approach for embedded reconfiguration
of FPGAs. Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition,
(DATECE’ 03), IEEE Xplore Press, pp: 399-400.
DOI: 10.1109/DATE.2003.1253642

Brown, S. and J. Rose, 1996. FPGA and CPLD
architectures: A tutorial. IEEE Design Test
Comput., 13: 42-57. DOI: 10.1109/54.500200

Donlin, A., J. Becker and M. Hubner, 2005. I models
and tools for the dynamic reconfiguration of
FPGAs. Proceedings of the IEEE International
SOC Conference, Sept. 19-23, IEEE Xplore Press,
Herndon, VA., pp: 313-316. DOI:
10.1109/SOCC.2005.1554518

Gajski, D.D., 2000. SpecC: Specification Language and
Methodology. 1st Edn., Springer, ISBN-10:
0792378229, pp: 313.

Gambier, A., 2008. Digital PID controller design based
on parametric optimization. Proceedings of the
IEEE International Conference, Control
Application, Sept. 3-5, IEEE Xplore Press, San
Antonio, pp: 792-797. DOI:
10.1109/CCA.2008.4629671

Goldstein, S.C., H. Schmit, M. Budiu, S. Cadambi and
M. Moe et al., 2000. Pipe Rench: A reconfigurable
architecture and compiler. IEEE Comput., 33: 70-
77.

Hagemeyer, J., B. Kettelhoit, M. Koester and M.
Porrmann, 2007. Design of homogeneous
communication infrastructures for partially
reconfigurable FPGAS. Proceedings of the 2007
International Conference on Engineering of
Reconfigurable Systems and Algorithms, Jun. 25-
28, Las Vegas, USA.

Hauck, S., 1998. The roles of FPGAs in
reprogrammable systems. Proc. IEEE, 86: 615-638.
DOI: 10.1109/5.663540

Imecs, M., P. Bikfalvi, S. Nedevschi and J. Vasarhelyi,
2000. Implementation of a configurable controller
for an AC drive control: A case study. Proceedings
of the IEEE Symposium on Field-Programmable
Custom Computing Machines, (FPCCM’ 00),
IEEE Xplore Press, Napa Valley, CA, USA., pp:
323-324. DOI: 10.1109/FPGA.2000.903437

Jerrraya, A.A., 2004. Long term trends for embedded
system design. Proceedings of the Euromicro
Symposium on Digital System Design, Aug. 31-
Sept. 03, IEEE Xplore Press, pp: 20-26. DOI:
10.1109/DSD.2004.1333254

Kastrup, B., A. Bink and J. Hoogerbrugge, 1999.
ConCISe: A compiler-driven CPLD-based
instruction set accelerator. Proceedings of the 7th
annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Apr. 21-23, IEEE
Xplore Press, Napa Valley, CA, USA., pp: 92-101.
DOI: 10.1109/FPGA.1999.803671

Kessal, L., D. Demigny, N. Boudouani and R.
Bourguiba, 2000. Reconfigurable hardware for real
time image processing. Proceedings of the
International Conference on Image Processing,
Sept. 10-13, IEEE Xplore Press, Vancouver, BC,
Canada, pp: 110-113. DOI:
10.1109/ICIP.2000.899307

Mermoud, G., A. Upegui, P. Carlos-andres and E.
Sanchez, 2005. A dynamically-reconfigurable
FPGA platform for evolving fuzzy systems.
Comput. Intell. Bioinspired Syst., 3512: 296-359.
DOI: 10.1007/11494669_70

Othman, S.B. and A.K.B. Salem, 2008. MPSoC design
of RT control applications based on FPGA
SoftCore processors. Proceedings of the 15th IEEE
International Conference on Electronics, Circuits
and Systems, Aug. 31-Sept. 3, IEEE Xplore Press,
St. Julien’s, pp” 404-449. DOI:
10.1109/ICECS.2008.4674876

Othman, S.B., A.K.B. Salem and S.B. Saoud, 2010b.
Hw acceleration for FPGA-based drive controllers.
Proceedings of the IEEE International Symposium
on Industrial Electronics (ISIE), Jul. 4-7, IEEE
Xplore Press, Bari, pp: 196-201. DOI:
10.1109/ISIE.2010.5637591

Othman, S.B., A.K.B. Salem, H. Abdelkrim and S.B.
Saoud, 2010a. RT control systems based on FPGA
solutions: Softcore processors associated to HW
accelerator. Int. J. Discrete Event Control Syst., 1:
171-182.

Am. J. Engg. & Applied Sci., 5 (1): 15-24, 2012

24

Paiz, C. and M. Porrmann, 2007. The utilization of
reconfigurable hardware to implement digital
controllers: A review. Proceedings of the IEEE
International Symposium on Industrial Electronics,
Jun. 4-7, IEEE Xplore Press, Vigo, Spain, pp:
2380-2385. DOI: 10.1109/ISIE.2007.4374979

Salem, A.K.B. and S.B. Othman, 2010. Field
programmable gate array -based system-on-chip
for real-time power process control. Am. J.
Applied Sci., 7: 127-139.

Salem, A.K.B., S.B. Othman and S.B. Saoud, 2008.
Hard and soft-core implementation of embedded
control application using RTOS. Proceedings of the
IEEE International Symposium on Industrial
Electronics, Jun. 30-Jul. 2, IEEE Xplore Press,
Cambridge, pp: 1896-1901. DOI:
10.1109/ISIE.2008.4677261

Saoud, S.B. and J.C. Hapiot, 2000. Parallel
architectures applied real time emulation [of power
apparatus]. Proceedings of the IEEE International
Conference on Industrial Electronics, Control and
Instrumentation, (IECON’ 00), IEEE Xplore Press,
Nagoya, Japan, pp: 1719-1724. DOI:
10.1109/IECON.2000.972535

Schulz, B., C. Paiz, J. Hagemeyer, S. Mathapati and
M. Porrmann et al., 2007. Run-time
reconfiguration of FPGA-based drive controllers.
Proceedings of the European Conference on Power
Electronics and Applications, Sept. 2-5, IEEE
Xplore Press, Aalborg, pp: 1-10. DOI:
10.1109/EPE.2007.4417686

Sklyarov, V., 2000. Synthesis of control circuits with
dynamically modifiable behavior on the basis of
statically reconfigurable FPGAs. Proceedings of
the 13th Symposium on Integrated Circuits and
Systems Design, (ICSD’ 00), IEEE Xplore Press,
Manaus, Brazil, pp: 353-358. DOI:
10.1109/SBCCI.2000.876054

Tanougast, C. and S. Weber, 2001. Methodologie de
partitionnement applicable aux systemes sur puce à
base de FPGA, pour l’implantation en
reconfiguration dynamique d’algorithmes flot de
donnees. PHD. Nancy, France, Henri Poincare
University.

Vuillemin, J.E., P. Bertin, D. Roncin, M. Shand and H.
Touati et al., 1996. Programmable active
memories: Reconfigurable systems come of age.
IEEE Trans. Very Large Scale Integ. Syst., 4: 56-
69. DOI: 10.1109/92.486081

Wirthlin, M.J. and B.L. Hutchings, 1995. A dynamic
instruction set computer. Proceedings of the IEEE
Symposium on FPGAs for Custom Computing
Machines, Apr. 19-21, IEEE Xplore Press, Napa
Valley, CA, USA., pp: 99-107. DOI:
10.1109/FPGA.1995.477415

Zhang, X. and K.W. Ng, 2000. A review of high-level
synthesis for dynamically reconfigurable FPGAs.
Microprocessors and Microsystems 24: 199-211.
DOI: 10.1016/S0141-9331(00)00074-0

