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Abstract: Problem statement: Nowadays, Reconfigurable System on Chip (RSoC) shows great 
potential in many high performance applications that benefit from Hardware customization. 
Approach: In this study, we present a design approach of FPGA based Controller for 
electromechanical system. In this way, we present solutions obtained by Hardware/Software Code sign 
methodology targeted for the implementation of a motor control drive system using Multiprocessor 
SoC (MPSoC) architecture. In order to enhance flexibility and performance of the considered system, 
we design different modules of HW current controller of electronic motor. A Dynamic Partial 
Reconfiguration (DPR) mechanism allowing switching on the fly between those modules is described. 
Results: Test and validation are done to validate the approach adopted. Experimental results confirmed the 
efficiency of the approach and allow us to determine more recommendations that should be considered 
while designing a RSoC control drive system. Conclusion/Recommendations: DPR enable flexible control 
system hardware design. This concept allows switching between different low order controls. 
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INTRODUCTION 

 
 Nowadays, due to technology advances and also 
with the increasingly requirements from applications 
supported by contemporary embedded systems, they 
became more and more complex, which have a direct 
impact on the design of such systems.  
 Besides low cost and tight time to market, other 
constraints, like for instance the limited amount of 
memory available, low power consumption requirement 
(Paiz and Porrmann, 2007) make the design of such a 
system a challenge. 
 Current embedded systems integrate more and 
more functionalities and require, therefore, higher 
computation performance. With technological advances 
most of system components can be incorporated into a 
single chip leading us to a so called System-on-Chip 
(SoC) (Jerrraya, 2004). 
 System on Programmable Chip (SoPC) such those 
based Field Programmable Gate Arrays (FPGA) 
solutions are replacing traditional digital technologies 
such as general purpose processors, DSP or ASIC, 
thanks to their better cost/performance ratio or due to 

shorter time-to-market. 
 When implementing digital controllers using SoPC, 
there are many advantages, offered by their parallelism 
especially regarding the required computation time. 
Implementing a controller on FPGA can lead to a faster 
response in motion drive applications. However, the 
performance and efficiency of such FPGA technology 
strongly depends on the design methodology of the 
controller (Salem et al., 2008). 
 Hardware (HW) solutions suffer from the lack of 
flexibility, but their reliability and performance make 
them more interesting. The reconfigurability, 
particularly the dynamic partial reconfiguration has 
made hardware solutions more flexible. In fact, it has 
given the FPGA the capability to modify its internal 
structure on the fly, while it is turning on. 
 Designers were often forced to begin architecture 
design and system implementation before the 
specification of a product is fully completed. In such an 
environment, late changes in the design cycles are 
mandatory. Reconfigurable HW promises to best solve 
these problems and challenges.  
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 In fact, to overcome the constraints due the static 
system realization where the reconfiguration of the 
FPGA does not change during system running, leading to 
high resources cost, dynamic and partial HW 
reconfiguration can be used, allowing loading only the 
suitable controller for the current situation of the system. 
 This study deals with the design of a Runtime 
Reconfigurable DC-Motor Controller. A 
Multiprocessor System on Chip (MPSoC) architecture 
is used to validate the design. In fact, this platform 
includes a processor executing the model of the motor 
and a second one for adapting the controller’s HW/SW 
wrapping.  
 The next section gives an overview of the 
reconfigurability concept with some design 
recommendations and different reconfigurability 
strategies. Then we present the partitioning model for 
motor control application process and give a generic 
multiprocessor architecture supporting a mixed 
HW/SW code sign of controller devices. After, the 
design flow of the Reconfigurable Module (RM) and its 
implementation steps are given. After that, the obtained 
results are presented and a future work discussion is 
done. Finally, conclusions with perspectives are given. 
 It is important to precise that the DC motor 
application case is used only to validate the approach 
proposed. 
 
Reconfigurability general overview: 
Background and related works: The introduction of 
FPGA, made the digital systems design flow in 
continuous changing (Brown and Rose, 1996; Hauck, 
1998). In fact, the Dynamic Partial Reconfiguration 
(DPR) has allowed the appearance of a new paradigm: 
HW as flexible as programming (Abdelkrim and Saoud 
2008). This DPR computing consists of an execution of 
various algorithms on the same HW structure device, 
by several reconfigurations of the HW chip array in a 
limited time period and with a defined partitioning and 
scheduling mechanism. DPR offers important benefits 
for the designs implementation. Several architectures 
have been designed and have validated the DPR 
computing concept for the real time processing 
(Wirthlin and Hutchings, 1995; Vuillemin et al., 1996; 
Kastrup et al., 1999; Goldstein et al., 2000; Kessal et al., 
2000; Donlin et al., 2005). However, optimal 
partitioning of an algorithm is not defined yet. 
Exploiting the Run-Time Reconfiguration (RTR) 
mechanism is a domain in which many works has left. 
The works in the domain of temporal partitioning and 
logic synthesis exploiting the dynamic reconfiguration 
generally focus on the application development 
approach (Zhang and  Ng, 2000). Thus, firstly we 
observe that the efficiency obtained is not always 

optimum with respect to the available spatiotemporal 
resources. Secondly, the choice of the number of 
partitions is never specified. Thirdly, this can be 
improved by a judicious temporal partitioning 
(Tanougast and Weber, 2001). 
 The reconfigurable architectures can easily be used 
in power electronic domain particularly in fault 
diagnosis and their compensation. In fact, the 
reconfiguration of the converter topology and the 
control algorithm has great real time constraints. 
Besides, the FPGAs flexibility is very interesting when 
we have to commutate quickly from an algorithm to 
another (Imecs et al., 2000; Sklyarov, 2000).  
 Figure 1 gives a Multiprocessor design example of 
an RSoC for a motor control drive. Different versions 
of a reconfigurable HW module controller are designed 
and stored in a memory. This memory can be internal 
(DDR, BRAM) or external (Compact Flash CF, 
EEPROM).  
 Some FPGAs allow performing DPR, where a 
reduced bit stream reconfigures only a given subset of 
internal components (Mermoud et al., 2005). Xilinx has 
proposed two PR flows: module based and difference 
based Xilinx, 2004. For the first case, the designer has 
to edit low-level modifications manually; a PR bit 
streams related to these modifications is generated as 
described in Xilinx, 2004. For the second case: the 
Module Based flow, the whole design is partitioned on 
different modules. Each module is treated separately in 
different phases. For earlier ISE versions 
communications between modules was censured by 
hard Bus Macros. Actually, with new FPGA chips and 
ISE versions, Bus Macros are no longer used. 
 
Reconfiguration design recommendations: When 
designing a RSoC some recommendations needs to be 
respected. In fact, the Partial Reconfiguration (PR) 
system design involves an FPGA area partitioning: 
static and dynamic region. As mentioned before the 
design of the different modules is done independently 
and as a final step merging the different design 
(Hagemeyer et al., 2007). 
 
HDL design rules:  
Top level design module: All the lower level modules 
instantiated in the top level module must be treated as 
black boxes. The top-level must contain only 
instantiations of: Clock primitive (DCMs and BUFGs), 
Input Output signals, base design, PR modules, bus 
macros and signal declarations. 
 The Bus Macro ensures all the crossing signals 
(communication one) between PR modules. 
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Fig. 1: Example of  a RSoC 
 

 
 
Fig. 2: Generic partitioning model of motor drive 
 
Lower level modules (or base design modules): These 
modules cannot contain any clock or reset-related 
primitives (for example, BUFG, DCM…), Xilinx 2006. 
While Xilinx Embedded Development Kit (EDK) 
places the DCM primitives in a lower level modules, 
the designers has to take care of this.  
 
PR modules: In order to be linked correctly to the Top 
level instantiations, all PR Modules for a given PR 
region must have the same module and file names, all 
these developed modules should also have the same 
pins placement and names. 
 
Reconfiguration strategies: There are several ways to 
reconfigure a device, which will determine its 
complexity and its autonomy.  
 The first possibility is to reconfigure a device 

externally through JTAG cable, based on an external 
decision and data source.  
 The second one is to let the device itself taking the 
decision when to improve the performance by 
modifying partially a portion of the target device. This 
operation is done through the Internal Configuration 
Port Access (ICAP). Self-reconfiguration can be 
applied by simply giving a partial bit stream to the 
ICAP interface. Blodget et al. (2003) demonstrates the 
benefits of dynamic self-reconfiguration through ICAP. 
 The third and not the last possibility is a hybrid 
solution could be considered, it consists of a 
combination of the above. 
 
Drive control structures: 
Digital controllers devices: A motor drive system is 
composed of (1) the process to control including the 
converter circuit, the electric motor and load 
components and the different used sensors and (2) the 
digital control unit which is composed of the digital 
controller based on a specific algorithm and the 
necessary interfaces for sensors outputs acquiring and 
control signals generation (Othman et al., 2010a).  
 The control unit is modeled according to the 
applied CMS (Converter/Motor/Sensors) process and to 
its target input. Generally, this unit is shaped by several 
overlapping control loops. For example, the position 
control unit for DC machines can be composed by three 
functional control blocks: the current loop inside the 
speed loop inside the position loop.  
 In this work, we seek solutions, which enable us to 
implement on the same SoC the Converter Motor 
Sensor (CMS) emulator and different control unit. The 
use of MPSoC architecture allows the emulator to work 
on RT conditions at optimal processor execution time 
without affecting control unit interrupts working at 
higher time. Figure 2 presents a generic approach of 
partitioning model for motor drive design. 
 In order to validate our approach, we consider the 
case study of DC process speed controller. We assume 
that work on simple process templates allows us to 
validate our approach. However, it can be easily 
generalized to any other process control. 
 
Motor control specifications: The control application 
design was built using Xilinx EDK Base System 
Builder toolchain. Both the reconfigurable 
interconnections associated to Configurable Logic 
Blocks (CLBs) (HW) and the programmable embedded 
processor cores (SW) were used in varying 
combinations so that application can be rapidly tested 
for performance, by selectively partitioning the design 
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into portions suitable for the HW or for SW resources 
on the FPGA. 
 The process (in Fig. 3) is based on two nested 
closed loops. The inner loop is in charge of the current 
control while the external loop manages the motor 
speed. To achieve powerful processing capabilities in 
the control unit, we have considered a specific HW 
accelerator approach for the controller processor by 
implementing the current controller in a HW part and 
controlling it by a SW part. The CMS emulator is used 
in order to simplify the validation of the concept. 
 In addition, motor emulation (Saoud and Hapiot, 
2000) is an interesting approach to complete the 
validation of new digital control unit and to perform the 
diagnosis tasks. The objective of this approach is to 
design an electronic system, which can reproduce the 
physical system functioning in RT and with high 
precision (Salem et al., 2010). This system, called 
emulator, will be used for the new control device 
validation with the opportunity of extensive testing, 
before it is switched for use with the physical process in 
real conditions.  
 The proposed architecture allows integrating a full 
control system in a single chip, avoiding external 
components and additionally reducing cost and 
complexity. Additional application-specific components 
such as Pulse Width Modulation (PWM), encoder can 
be added as custom HW IP without major adapting. 
 
MPSoc architecture: The architectural model is 
designed for FPGA MPSoC architecture in the Xilinx 
ML310 board Xilinx 2005. The architecture consists of 
two soft MicroBlaze (MB) processors and a set of 
modules interconnected with buses: a first processor for 
the control unit and a second one for the emulator unit. 
MB processor use Local Memory Bus (LMB) as the 
local memory interface. Slow peripherals such as timer, 
UART and interrupt controller are available with the 
On-chip Peripheral Bus (OPB) main system bus 
interface. The shared dual port memory is supported 
to passing information between processing 
subsystems. It is the easy and efficient way to make a 
communication channel between processors. Bus 
interface logic is needed to bridge the gap between 
the I/O ports on the peripheral and the processor 
connection. In MB systems, there are three 
commonly available HW/SW interfaces: direct 
connection busses (FSL), processor local busses 
(LMB) and general-purpose system busses (OPB). 

 
 
Fig. 3: General diagram of motor control drive 
 

 
 
Fig. 4: MPSoC architectural model 
 
 The FSL bus is the most used one in order to 
connect HW accelerators (Salem and Othman, 2010). A 
HW FSL interface is developed in order to link MB1 to 
the RMs (controller) through bus macro. 
 Figure 4 defines our multiprocessor system 
topology. Each processor connects two independent 
data memory blocks to its Instruction LMB (ILMB) and 
Data LMB (DLMB) bus. However, memory controller 
peripheral is used to interface Block RAM (BRAM) 
memory to its bus. Each port of the shared BRAM is 
connected to the respective LMB bus of two different 
processors and therefore constitutes a communication 
channel. Processors can then, access dual port memory 
via a normal memory access.  
 On-chip Peripheral Bus (OPB) is used to connect 
larger external memory for the Microblaze. But it 
presents less performance than implementations 
using Local Memory Bus (LMB) interface. LMB is 
designed to allow fast memory access. Thus, 
Microblaze can be configured to cache instructions 
or data only over the OPB interface to enhance 
system performance (Gambier, 2008).  
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Fig. 5:  Communication between modules through Bus 

Macro 
 
Table 1: HW PI Controller Implementation Results (Virtex2 Pro 

XC2VP30) 
Number of External IOBs 50 (8%) 
Number of SLICEs 1193 (8%) 
Minimum period (ns) 7.386 

 
For the designed architectures, the OPB is used to 
connect slow peripherals that are the following: 
 
• RS232 serial channel, connected to an UART 

peripheral, used for communication between an 
external user interface and the platform 

• Interrupt controller peripheral, used to manage 
multiple interrupts 

• Timer peripheral, used for emulator scheduling. 
• A second timer, used for controllers’ synchronization 
 
There are 2 types of the considered DC-motor 
controller P and PI. Each controller has two inputs 
(reference current Iref and measured current Im) and 
one output (calculated pulse width alpha). While we’re 
implementing the HW controller as RM, we’ll ensure 
that its communication with any other module is done 
through bus macro as depicted on Fig. 5. 
 
Managing HW controller:  
HW controller FSL interface: The Current HW 
controller is implemented as a FSL master/ slave 
peripheral module. When data is written to the FSL, the 
FSL-S-exist is asserted to indicate that valid data indeed 
exists within the FSL. Peripheral reads data input, 
asserts the FSL-S-read signal and updates content of the 
corresponding register. After reading the Im and Iref 
data from the master component, the current HW 
controller launches the computing process. When alpha 
value is ready, peripheral writes out the content of 

alpha-reg into the FSL-M-data while asserting the FSL-
M-write signal. 
 
HW controller coprocessor design: To achieve 
powerful processing capabilities in the control unit, the 
fast loop controller algorithms will be implemented in 
the FPGA fabric in HW, working in a parallel fashion. 
For that reason, we have considered a specific HW 
accelerator approach for the control unit by 
implementing the current controller in a HW part and 
controlling it by a SW part. The FSL based solutions 
were supported because they are the best access 
alternative to HW accelerated cores on MB. The FSL 
connections are necessary to integrate the current 
control unit on MB. In this design, two FSL 
connections were implemented to provide bi-directional 
communication to write Iref and Im to the FSL 
peripheral and to read alpha from this last. 
 
HW controller data path: Because the HW current 
controller is designed for integer form, the I/O 
Iref_num, Im_num and alpha_num are the numerical 
conversion of corresponding variables and are 
accessible from 16 bits registers by using an adapted 
scaling factor 2n.  
 The HW controller is designed using a FSMD 
architecture model (Gajski, 2000) that combines a 
control unit with a datapath (Othman et al., 2010b). The 
designed FSMD architecture for this PI Controller is 
optimized for surface while keeping a minimal latency 
(Table 1). 
 
System design steps: 
Design-flow for reconfigurable controllers: The Hw 
controller were realized individually using VHDL, then 
they were tested and verified using Xilinx ISE tools by 
means of HW-in-the-loop simulations (Schulz et al., 
2007). The static and the dynamic parts of the system 
have to be implemented separately (Fig. 4). In a first 
step, an initial bit stream including the static system 
components is generated. The partial bit streams that 
are needed to configure the target FPGA during run-
time have to be generated separately.  
 In practice, the first step is to synthesize a 
"skeleton" of the top-level design by leaving all 
components as black boxes. This is done by opening up 
the ISE project that was created during the export 
process and removing all of the underlying sources 
from the project. Next, synthesize the top-level file and 
copy the synthesis output (the top.ngc file) to imp/top-
initial. Then, we can run the modular flow. As Xilinx 
recommends in his application note Xilinx, 2004, the 
modular flow is broken into 3 different phases. As 
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given in (Abdelkrim and Saoud, 2008), we give below a 
brief description. 
 
Initial budgeting: In this first phase, we make the floor 
planning of the modules areas and the IOB's. Then, the 
bus macros must also be LOCed manually.  So at the 
end we obtain a UCF file which will be used for the 
top-level and all the modules during the active module 
phase. The physical location of the hard macro channels 
(used to route signals between modules) is indicated on 
the UCF file, as an example: 
 
INST "macro_1" LOC = "SLICE_X34Y40"; 
 
Active module implementation: We have at this point 
a synthesized, floorplanned and constrained design. So 
now it is possible to implement each static or 
dynamically RM. Each module is treated separately, in 
a different directory, but in conformance with the 
global UCF file and the top-level netlist. In this file, the 
RMs are distinguished from the static one by inserting 
the lines below in the UCF file. 
 
INST "reconfig_module" AREA_GROUP = 
"AG_reconfig_module"; 
 AREA_GROUP "AG_reconfig_module" MODE = 
RECONFIG; 
 
 The design is implemented as usual with the Xilinx 
tools, using NGDBUILD, MAP, PAR and finally 
BITGEN. 
 The output is a placed and routed design (in a NCD 
file) and a partial bitstream (BIT file). For an easier 
management of each module design, we can publish 
them using the tool PIMCREATE.  
 First, we treat the static modules. Then, we use 
some of the files obtained with the static phase to 
pursue the implementation of the RMs. In fact, as it is 
shown in Fig. 6, two particular files are used as inputs 
for “ngdbuild” instruction: static.used and the UCF file. 
These files represent respectively the routed nets for the 
first and the physical constraints and pins assignation 
for the second. 
 When finishing the ngdbuild, mapping, place and 
route steps, the final phase is launched so that we obtain 
one BIT file for each module. 
 
Final assembly: The final assembly phase is the 
process of combining each of the individual modules 
back into a complete FPGA design. The placement and 
routing achieved during the active implementation 
phase for each module will be preserved, thereby, 
maintaining the performance of each module. So we 
can perform a unique assembled design and then 

changing the partially RMs with their bit stream. We 
implement the assembled design using the same flow as 
in the active module phase. 
 For every controller and for all possible controller 
positions an implementation has to be generated, from 
which the controller configuration is extracted, 
resulting in a partial configuration (Schulz et al., 
2007).  
 
Software consideration: The system considered is 
partitioned on two Micro Blaze (MB) processors, the 
emulator on MB1 and the controller on MB0. 
Particularly, the controllers developed are driven by 
SW part by using low level SW drive of FSL. 
 The FSL ports on MB are accessed via simple get 
and put assembly instructions (available in blocking 
and non-blocking varieties). C macro routines were 
used for solving the FSL HW controller drivers 
(Othman et al., 2010a). This last one is consistent with 
the sequence in which data are read in and written out 
the HW peripheral. Both operands (Im_num and 
Iref_num) are written to the FSL FPU with non-
blocking calls, followed by a blocking read that stalls 
MB until the HW controller returns a result. Since MB 
is an in-order execution machine, this penalty cannot be 
overcome.  
 As given in Fig. 6, the software (SW) code is 
merged in the final step. In fact, the local memory of 
each processor will be loaded with .elf file which 
contain the executable SW.  

 
Switching schemes: In this work, we try to implement 
different types of HW current controller and so it is 
possible, by switching on the fly from one controller to 
another and by analysing performances criteria, to 
improve the system performance and responses. When 
supervisor detects that a new controller structure is 
needed, he lunches reconfiguration procedure. There 
are different schemes of reconfiguring a FPGA. In fact, 
it can be done through fixed schedule scheme or event-
driven one. In the fixed schedule scheme, parts of a 
design or independent designs are loaded on the FPGA 
sequentially (Schulz et al., 2007). The time and order in 
which the sub-modules are loaded is known during the 
design phase. In the event-driven scheme the 
reconfiguration time and order are unknown during the 
design phase. The realization of a RTR architecture 
becomes more complex depending on the kind of 
reconfiguration (full or partial) and the reconfiguration 
scheme (fixed schedule or event-driven).  
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Fig. 6:  Conception flow of a partially reconfigurable SoC 
 
The run-time partial reconfiguration in event-driven 
mode is the most complex, because special architectural 
concepts and design-flows are needed to realize its 
implementation (Hagemeyer et al., 2007). In our case, a 
fixed schedule is used. 
 

RESULTS 
 
 In order to validate the developed structures, we 
tested them under different conditions. Table 2 presents 
some features related to the implementation of the two 
considered controllers. These implementation results 
are based on a Xilinx FPGA Virext2pro XC2VP30. 
 The control structures use a clock frequency of 
100MHz. Figure 7 illustrates a comparison between the 
structures when having steps at the reference value of 
the speed wref. The curve represents the controlled 
speed driven by P-Controller at start-up then driven by 
PI- Controller at stationary state. 
 In fact, at t1 = 0.75s a reconfiguration order is 
given and as it shown that for 0s<t< t1 the output is 
done by P-Controller and from t≥ t1 till the end only PI-
Controlled is implemented. 

Table 1: Features of realized structures 
Structure Static Part P controller PI controller 
Slices 6741 (49%) 755 (≈5%) 857 (≈6%) 
Reconfiguration - 701 701 
Time (µs) 

 

 
 
Fig. 7: Speed wave form with Partial bitstream 

implmentation 
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Fig. 8:  Comparison of the control schemes with and 

without internal state initialization 
 

 
 
Fig. 9:  Current wave form Partial bitstream 

implementation at 0.75 with internal state 
initialization 

 
The Fig. 8 shows a comparison between the system 
response with and without initialisation for RM. We 
obtain here a more satisfying result. 
 The Fig. 9 shows the controlled current for the 
system considered with a partial bitstream 
implementation at t1 = 0.75s. 
 

DISCUSSION 
 
 Using the DPR for implementing two types of DC 
motor controllers was successful and gave us different 
results described earlier.  
 The Fig. 7 illustrates the switching instant between 
HW P-controller and HW PI-controller. As shown on 
this figure, the new configuration is implemeted at 
t=0.75s. While, the P-controller used produces low 
noise but also a steady state response, the PI-controller 

gives better steady state response, but requires as it is 
given in Table 1 more resources for its implementation.  
 The controlled speed output shows a disturbance at 
the time of implementing the new partial bitstream. 
This disturbance could be avoided by initialising the 
internal state of the controller (eg. by saving it on 
BRAM). 
 At reconfiguration time we obtain a disturbance on 
system response. In order to reduce it and according to 
(Schulz et al., 2007), we proposed to maintain the 
different comupting variables (error, I, iref) while 
switching between configuration. Thus, in Fig. 8 and 9, 
we notice the less disturbance obtained by initialising 
the different computing variables (error, I, iref) of the 
controller implemented. 
 
Future trends: Several extensions and applications of 
the system are in progress. The first of these is to 
produce a variant of the original system in which a 
PowerPc, hard microprocessor, will replace Microblaze 
softprocessor. The new system will be used to control 
the reconfiguration operation through ICAP bus 
meaning some switching conditions.  
 The second is to use AC motor and to develop its 
own controllers such as Field Oriented Control (FOC) 
and Direct Torque Control (DTC).  
 The third foregoing work may be oriented towards 
implementing control systems on reconfigurable circuit 
systems which are particularly involved by the MPSoC 
architectural solutions (Othman and Salem, 2008) and 
enhanced by Real-Time Operating System (RTOS) 
(Salem et al., 2008). 
 

CONCLUSION 
 
 FPGA technology has become an attractive 
alternative to implement digital control systems, 
because it offers an interesting trade-off between 
performance, design effort and cost for various 
embedded applications fields. 
 HW solutions offer reliability and better speed 
performance than SW ones. But they suffer from the 
lack of flexibility. Thanks to the reconfigurability and 
particularly the DPR such HW solutions become more 
flexible. This methodology has given the FPGA the 
capability to modify its internal structure on the fly, 
while it is turned on. 
 In this same context, a design flow of a current 
controller for DC motor is given. A MPSoC 
architecture is used to implement on the same chip the 
motor emulator and the controller. A partial 
reconfigurable region was defined for the controller. 
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So, different types of controller (P and PI) can be used 
and implemented on the fly when the supervisor 
decides it, depending on the desired performance.  
 A predictive computation of the controller state has 
permitted a commutation with reduced bumping phase 
during the new partial bitstream implementation. The 
experimental results have been satisfying and have 
confirmed the adopted methods and approaches. 
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