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ABSTRACT

Groundwater level data is an important indicatortleé availability and distribution of groundwater
resources of the region. However, it is difficatunderstand the continuous and discrete fluctoatid the
groundwater level which is controlled by varioustéas. This study demonstrated the use of Foueges
integrated with the least square estimation metbqutedict the groundwater level especially in thse of
seasonal-sensitive groundwater fluctuations. It wlaserved that the designed method was able toImode
the groundwater-table data, collected at the H&jane Park station in Greensboro, North Carolirith &

fair degree of accuracy with a testing mean sgeax@ of 0.0735.
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1. INTRODUCTION identifying direction and gradients of groundwater
flow. Figure 1 illustrates a groundwater monitoring
Groundwater is the principal source of drinkingevat  well with electric sounding devices which are
for about 50% of the population in the Unites State frequently used to measured depth of groundwater in
(Solley et al., 1998). The availability of groundwater gpservation wells.
varies and fluctuates widely due to short-term k- The variation of groundwater fluctuation depends on

tkerm dchtang(;s_ Ihn chmg(;e, V‘."tpdrav‘f[‘f"l and land uiue I various factors including specific geographic, geal
€y data whnich provides information on grounawater ,,, meteorological condition. Groundwater level
distribution and availability is water-level measonent fluctuation is continuous in nature but chandegdeatl
from observation wells. It also provides critical : . . gequently

to discrete on the interruption of human activity.

information regarding hydrologic stresses acting on , be simulated by di d
aquifers and how these affect groundwater dynamicsCONtinUOUs sequence can be simulated Dy discretg da

such as recharge, storage and discharge. Systemathowever, the accuracy will depend on the time Vratiof
and long-term measurements of water-level arethese data. The shorter time interval, the morerate
essential for the evaluation of groundwater cooditi actual series can be simulated. Precipitation and
for sustainable development of the resources (desig evaporation have a periodic impact on groundwateel|
implement and monitor effectiveness of groundwater fluctuation whereas manual extractions (for iriigatand
management and protection) and for the developmenbthers) are rather uncertain. Some natural facioch as
of groundwater models for scenario and policy crustal movement and tide and human factors provide
analyses as well as forecast trends. some random changes.

Regular monitoring of groundwater levels in There have been several modeling development and
multiple observation wells in a region will provide application to simulate the changes in groundweégth
opportunity for comparative analysis of data for under both continuous and discrete conditions.
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Carolina was chosen to test the technique. Suadessf
application of the technique will provide a robtestl for
groundwater modeling where groundwater level
fluctuation is heavily influenced on a seasonaldas

2. MODEL DEVELOPMENT
Traditionally, seasonal components are modeled as a
truncated Fourier series. The change in groundwater
level can be expressed as:

Water Table = Base + Growth Rate*w + Seaspnal

. L . . And, the seasonal components can be written as:
Fig. 1. Groundwater level monitoring Station (Site: Hagan P

Stone Park, Greensboro, North Carolina) "

seasongl=>" A()cos w *i*W+ &) sif w *i*w)

Groundwater flow modeling is an integral component =

of the watershed modeling where groundwater is

simulated separately for quantifying water balance where, w= pi/365. It is assumed that there are 365 days
and pollutant transport (Jhet al., 2010; Jha 2011; in a year and base and growth rates are lineatifursc
Jhaet al., 2013, Jha and Gassman, 2013b; Amatya andf the week variable (w).

Jha, 2011; Amatyaet al., 2011; 2013; Seccht al., The direct application of solving the normal
2011; Rabotyagowt al., 2010). However, watershed equations for least square problems become cuminerso
models simulate groundwater component as a process3S the number of unknown constants in a problewgro
based mechanism and used in mass balance approach &enerally we can express this kind of problem as:

a temporal scale. On the other hand, groundwatgliss

modeled empirically using data-fitting techniques. Y =WoXo + WXy -+ W X
Daliakopouloset al. (2005) compared different types of
artificial neural networks including feed-forwareural For discrete events, T, above equation can be

network, Elman or recurrent neural network and Rladi rewritten as:
basis function neural network to predict the growrder

level. The first method was found to achieve thst fi¢ Y =X*W

for groundwater level fluctuations which are infheed

mainly by precipitation and surface discharge. Taksp And so the Fourier series matrix X is:
demonstrated that the neural network techniques are

useful prediction tools for groundwater modeling. 1 1 sinw cos - sin®  cos3
Similarly, Yanget al (2009) compargd integrated time- 2 4 sin20 cosd ...  sin® cos6
series method with back-propagation neural network. x=|: . . . .
Both methods were found to predict well with the :

exception of underestimating and/or overestimating : :
extreme values. The possible reason provided was th n n® sion cos n - sin@ n coss |
poor model calibration where model was not welinied

due to the lack of samples of extreme situations. Above expression of the truncated Fourier series

This study attempted to apply an integrated time-integrated with the least squares modeling techaiqu
series method with an emphasis to the “seasonatan be approximated by the Optimized Linear
fluctuations” component of the time series. Therfeou  Associative Memory (OLAM) technique (Haykin,
series (similar to the integrated time-series méthwas 1999). The weights of the OLAM guarantee perfect
integrated with the least square estimation mettiod retrieval of stored memories given that the colurohs
model the groundwater level fluctuations. A well- both the x and y fields are linearly independenbgaic
observation study site located in Greensboro, Northassumption in this model). Both the X and Y fielte
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separated into training set and test set. The fiatwa development and permitting process in the county an

OLAM weights are calculated as: area developers for considering groundwater ressurc
for the new development.
W:(XT*X)_l*X*Y The city of Greensboro in Guilford County instellle
a total of eight stations across the county fors thi
3. MODEL TESTING monitoring network. Each site has groundwater level

data collected on a daily basis since May of 200&e,

Guilford County of the state of North Carolina in We analyzed the time-series data for historicaidrand
USA is experiencing heavy industrial developmerd an selected the monitoring station at Hagan Stone Baek
population growth, which resulted in an ever-insieg to its noticeable fluctuations in the seasonal
demand for water. In the rural areas of the county,characteristicsFigure 2 shows the historical data on a
groundwater remains the water supply resource fordaily basis from May 2003 to Feb 2011.
domestic use (NC-DPH, 2007). Because the amount of It can be observed that the water table has a
groundwater in the bedrock aquifers available ia th significant relationship with the seasonal affestio
county for potable water is largely unknown, the With a decreasing trend over the years. There is a
availability of groundwater as a present and future consistent annual peak every May and an annual
resource has been a concern for the water supiplies valley every November. The curve also shows an
the suburban communities. Therefore, it is necgssar ~approximate sine wave shape. In southeastern fart o
establish a long-term monitoring network to monitor the United States, the summer precipitation peagés a
and determine whether the increasing newdue to the rainfall season and the winter vallegs a
developments in the county will impact the availiapi  due to the dry season. The strong seasonal patesn
of groundwater resources. The data obtained fraen th found suitable for the application of the truncated
long-term groundwater monitoring would benefit Fourier series in conjunction with the least square
county government for the policy making for new estimation method.
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Fig. 2. Historical groundwater level monitored at Hagaon®tPark, Greensboro, North Carolina
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4. RESULTSAND DISCUSSION The calculated weight matrix was used to test the
model by simply applying the equation Y = X*W. The
The raw dataset was divided into two parts. Thetest part is selected as the next 100 data follgviire
first part was the training part containing 1,300 data used in the training. The testing input matrix
samples from May 2003. Using the aforementioned consists of 100 rows and 15 columns. The testteaut
model, we generated an input vector (X) consisthg plotted and shown ifig. 5. Here, the mean square error
1300 rows and 15 columns, with column 1 was found to be 0.073Eigure 6 shows the error curve.
representing the bias, column 2 the growth variable It was observed that the mean square error of the
column 3 the super growth variable and columns 4-15testing section was smaller than that of the trani
6 successive harmonics of the Fourier serieable section. The possible reason may be the larger aunfb
1). The output vector Y will consist of the 1300 lgai data samples for the training section. From the
water table data. The training result is showrFig. satisfactory results of the model application dgrthe
3. Statistical analysis yielded a mean square esfor training and testing sections, it can be concluthed the
0.4382.Figure 4 shows the error curve which seem to Fourier series and least squares estimation method
be equally distributed in both sides. performed very well in this specific application.
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Fig. 3. Actual Vs. modeled data in the training section
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Fig. 4. Error curve of training performance
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Fig. 5. Performance of the model during the testing period
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Fig. 6. Error curve during the testing performance

It can be concluded that the Fourier series integra

wl -18.175 w9 -0.24129  with the least squares estimation method is anlexte
w2 -0.004460 w10 -0.035270  modeling tool. Its ability to model multivariate
w3 7.90E-07 wll 0.028418 - .

wa 0.327930 wi2 0072356 Problems without making complex dependency
w5 -1.696200 wl3 -0.372070 assumptions among input variables is quite usdful.
w6 -0.527600 wil4 0.241810 i i

w7 1883600 Wi 0275990 attempts to draw links ber_een ser of input das a
W8 -0.103960 observed outputs and so it is considered a verystob

tool for time-series analysis. However, there aneesal
issues that cannot be addressed by it alone. Sdme o

5. CONCLUSION these include: (1) Effects of special weather and
The Fourier series was integrated with the leastabnormal groundwater flow movement cannot be
square estimation method to model the groundwateroperly reflected; (2) Number of harmonics canbet
level fluctuations. It was observed that the OLANMsy  Wwell decided without help of statistical methodpa(3)
able to model the ground water table data, cotbete  Performance can be significantly downgraded if the
the Hagan Stone Park station in Greensboro, Northsamples are not well collected.
Carolina, with a fair degree of accuracy with atitep Further consideration and enhancement of the model
mean square error of 0.0735. may be obtained by using the statistics to anatyee
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residual between the model and actual data. This wi Jha, M.K., 2011. Evaluating hydrologic responseanf

provide opportunity to identify potential periodic agricultural watershed for watershed analysis.
occurrence effects on the water table. Water, 3: 604-617. DOI: 10.3390/w3020604
Jha, M.K., P.W. Gassman and Y. Panagopoulos, 2013.
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