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Abstract: The purpose of this study is to present a new method for 
estimating the fatigue life of the screw blade in the screw sand washing 
machine. To ensure the accuracy of numerical simulation, the loading 
area and the value of load are determined by means of the theoretical 
analysis. To ascertain the location of the stress peak and stress range, the 
static analysis of the screw blade is executed via the finite element 
method. To reduce the research cost and ensure the feasibility of the 
research method, Markov chain Monte Carlo (MCMC) is employed to 
simulate the random load with the Gauss distribution on the screw blade. 
In addition, the Nondominated Sorting Genetic Algorithm (NSGA-II) is 
utilized to find out an optimum variation coefficient of the stress, aiming 
at guaranteeing the precision of the random load. The rainflow cycle 
extrapolation is adopted to generate the fatigue load spectrum closer to 
the real condition, taking account of the possibility of the extreme loads 
caused by overload occurrence. Subsequently, the rainflow matrix after 
extrapolation, the estimated P-S-N curve, Goodman stress correction 
method and Miner’s rules are made use of assessing the service life of the 
screw blade. In particular, the effects of the surface roughness, residual 
stresses and fatigue notch factors on the fatigue life are taken into 
consideration. Ultimately, the non-linear surface fitting technique is used 
to obtain the equation concerning the fatigue life of the screw blade 
versus residual stresses and fatigue notch factors. The numerical results 
show that the stress peak is in the root of the screw blade and the service 
life of the screw blade declines exponentially with growing residual 
stresses and fatigue notch factors. 
 
Keywords: Fatigue Life, Markov Chain Monte Carlo, NSGA-II, Rainflow 
Cycle Extrapolation, Non-Linear Surface Fitting 

 

Introduction 

With the increasingly rapid development of the 
architectural industry throughout the world, the demands 
for the sand used as the concrete fine aggregate are 
extremely huge (Zhang et al., 2010; Shi et al., 2012). 
Recently, river sand is a main source of sand for 
building, whereas river sand resources are surprisingly 
dwindling due to resource and environment constraints. 
Worldwide, since numerous coastal cities have a vast 
number of sea sand resources, the development and 

utilization of sea sand resources will therefore resolve 
the contradiction between the limited river sand 
resources and the urban growth. In comparison with 
river sand, the chloride salt and shell in sea sand are 
two major factors restricting the application of sea 
sand. Researches have shown that the chloride salt in 
sea sand will have negative effects on the hydration 
process of the portland cement and will corrode the 
steel bar in concrete and the shell in sea sand will 
adversely affect the durability of concrete 
(Vedalakshmi et al., 2008). As a result of misusing sea 
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sand, a series of severe engineering accidents have 
unfortunately occurred in several countries, such as 
Japan, Britain, China, Turkey, etc. Nowadays, various 
sand washing technologies have been adopted to clean 
sea sand, to acquire qualified sea sand that can be used in 
the construction industry. 

Currently, mechanical sand washing methods are 
wide-spread all over the world, because the working 
efficiency of mechanical sand washing methods are the 
highest, compared with the remaining sand washing 
technologies: The natural cleaning method with fresh 
water and natural placement method (Fu et al., 2015). 
More importantly, sand washing machines are the 
crucial components of mechanical sand washing 
systems (Fu et al., 2015). Presently, there are three 
main categories of sand washing machines in diverse 
mechanical sand washing systems, namely, the screw 
sand washing machine, rotating wheel sand washing 
machine and vibration sand washing machine (Fu et al., 
2015; Yang et al., 2016). Virtually, the sand washing 
capacity of the screw sand washing machine far 
outperforms that of the other two types of sand 
washing machines (rotating wheel sand washing 
machine and vibration sand washing machine), so this 
study takes the screw sand washing machine as the 
research object (Yang et al., 2016; Fu et al., 2016). In 
most mechanical sand washing systems, the 
subsystem of eliminating the chloride salt in sea sand 
is shown in Fig. 1, including screw sand washing 
machines and the equipment for generating ozone 
water (Fu et al., 2015). When sand washing machines 
run smoothly, the ozone water is conveyed into the 
running screw sand washing machines to get rid of the 

chloride salt in sea sand via the pipes (Fu et al., 
2015). This means that the chemical approach is taken 
advantages of desalting the sea sand without 
consuming the extra energy of screw sand washing 
machines. 

Practically, the screw blade is an actuator of 
washing sea sand in screw sand washing machines, 
with the result that it will suffer from the sophisticated 
alternating load, causing the fatigue damage of the 
screw blade. The service life is an essential index used 
for evaluating the performance of screw sand washing 
machines. On the condition that the screw sand 
washing machine is out of service in a series 
mechanical sand washing system, the whole sand 
washing system would stop working. Under the 
circumstance that the screw sand washing machine is 
unable to run in a parallel and series mechanical sand 
washing system, the output of desalted sea sand would 
be adversely affected to a large extent. Consequently, the 
investigation regarding the fatigue life prediction of the 
screw blade would accelerate the sustainable progress of 
the sand washing technology to some extent. 

Approach for Fatigue Life Prediction 

A general approach for predicting the fatigue life of 
the screw blade is fairly required, which could 
dramatically cut the research and development 
expenditure on the screw sand washing machine. The 
flow diagram of the method mentioned in this study for 
estimating the fatigue life of the screw blade is 
illustrated in Fig. 2. 

 

 
 

Fig. 1. Subsystem of removing the chloride salt 
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Fig. 2. Flow diagram of predicting the fatigue life of the screw blade 
 

The chief steps of this approach are summarized as 
follows: 
 
Step 1. Execute the finite element analysis to determine 

the stress range in the weakest location of the 
screw blade. 

Step 2. Take advantages of the Markov chain Monte 
Carlo to generate the random loading on the 
screw blade. 

Step 3. Harness the rainflow cycle counting and 
extrapolation to produce the random load input 
used for assessing the fatigue life. 

Step 4. Carry out the prediction of the service life 
allowing for the effects of the surface roughness, 
residual stress and fatigue notch factor. 

Step 5. Utilize the non-linear surface fitting technique to 
achieve the formula regarding the fatigue life of 
the screw blade. 

 

Determination of Loading Area and 

Magnitude of Load 

Determination of Loading Area 

As the working principle of the screw sand washing 
machine closely resembles that of the screw conveyor, 
the determination of the loading area and the magnitude 
of the load on the screw blade will refer to the screw 
conveyor (Fu et al., 2016). Apparently, the main 
differences between the screw sand washing and screw 
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conveyor are practical working surroundings and 
detailed dimension parameters. 

When the filling coefficient of the screw sand 
washing machine is a constant, the cross section of the sea 
sand in the feed through is similar to arch (Wang et al., 
2012b; Pezo et al., 2015). Because of the effect of 
dynamic friction, there is an angle β between the line 
OW and the vertical line, as shown in Fig. 3 (Wang et al., 
2012b; Pezo et al., 2015). In Fig. 3, the point W is the 
center of gravity of sea sand, the point O is the axis of 
the screw axis and the angle θ is the central angle of the 
cross section of sea sand. In actual engineering, let the 
angle β be the dynamic friction angle. Based on angles β 
and θ, the loading area of the screw blade can be 
determined, as shown in Fig. 3. 

The cross-sectional area of sea sand is (Wang et al., 
2012b): 
 

g yA Aγ=  (1) 

 
But:  

 

( )21
sin

8gA D θ θ= −  (2) 

 
2

4y

D
A π=  (3) 

 
Equation 1 then reduces to: 

 
sin 2θ θ γπ− =  (4) 

 
Where: 
Ag = The cross-sectional area of sea sand (m2)  
Ay = The cross-sectional area of the screw blade (m2)  
γ = The filling coefficient  
D = The diameter of the screw structure (m)  
θ = The central angle of the cross section of sea sand 

(rad)  
 
Calculation of Load  

When the screw sand washing machine washes sea 
sand, the force condition of the screw blade is intensely 
complicated (Müller, 2009). To illustrate the force 
condition of the screw blade clearly, let the center of 
gravity of sea sand W be the acting point of force   
(Wang et al., 2012b). The simplified force condition 
of the screw blade is shown in Fig. 4. In Fig. 4, F is 
the resultant force in newtons, Fn is the normal force 
of the screw blade in newtons and Ff is the friction 
between sea sand and the screw blade in newtons. 
Also, the resultant force F can be broken into the axial 
force Fa and radial force Fr. 

 
 
Fig. 3. Loading area of screw blade 
 

 
 
Fig. 4. Simplified force condition of screw blade 
 

For applying load in the finite element analysis 
conveniently, assume that the load per unit area in the 
loading area of the screw blade is equal. In 
consequence, the pressure load of the screw blade can 
be expressed by: 
 

n
average

g

F
P

A
=  (5) 
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where, Paverage is the pressure load of the screw blade 
(Pa). 

The normal force of the screw blade is: 
 

cos
n

F F β=  (6) 

 
But: 

 

( )sin
rF

F
ω β

=
+

 (7) 

 

arctan
S

D
ω

π
=  (8) 

 
1tanβ µ−=  (9) 

 
Where: 
β = The dynamic friction angle (°) 
ω = The screw angle of the screw blade (°) 
S = The pitch (m) 
µ = The friction coefficient between the screw blade 

and sea sand 
 

The radial force can be expressed by Fr: 

 

1
r

T
F

OW
=  (10) 

 
But: 
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θ
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−
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Where: 
T1 = The torque of a circle of the screw blade (Nm)  
OW = The length of the line OW (m) 
P = The driving power of the screw sand washing 

machine (kW) 
ns = The speed of the screw axis (rad min−1) 
L = The transportation distance (m) 
 

The driving power of the screw sand washing 
machine is used to overcome various resistances in the 
process of washing sea sand. In general, the driving 
power of the screw sand washing machine can be 
expressed by (Fu et al., 2016): 
 

sin

367 20 367
rQL DL QL

P
µ ε

= + +  (13) 

Where: 
Q = The production capacity (ton hr−1)  
µr = The running resistance factor 
ε = The installation angle (°)  
 

The production capacity of the screw sand washing 
machine is given by (Fu et al., 2016): 
 

247
s i

Q D Sn Cγρ=  (14) 

 
Where: 
ρ = The material accumulation density (ton m−3)  
Ci = The inclination factor  
 

As distinct kinds of screw sand washing machines 
have different technical parameters, this study takes a 
typical screw sand washing machine as the research 
object, whose technical parameters are as follows: 
 

3

1

7.5 , 0.82 , 0.71 , 15 ,

1.6 , 0.2, 0.88,

10 min , 1.9, 0.2

i

s r

L m D m S m

ton m C

n r

ε

ρ γ

µ µ

−

−

= = = = °

= = =

= = =

 

 
In addition, the diameter of the screw axis d is 0.25 m 

and the thickness of the screw blade δ is 0.005 m.  

Static Analysis of Screw Blade 

Establishment of Finite Element Model  

To reduce the simulation time, the simulation 
model is simplified as a circle of the screw blade. 
Actually, the high-quality finite element model plays 
a vital role in the finite element analysis because the 
high-quality finite element model, in the process of 
simulation, can reduce errors to minimum (Tsai and 
Wang, 2015; Zhou et al., 2016; Wu et al., 2016). 
Accordingly, to guarantee the accuracy of the 
numerical calculation, let the element size be 3 mm. 
The finite element model of the screw blade is shown 
in Fig. 5. According to the statistic data in ANSYS 
Workbench, it can be seen that the number of nodes is 
6824679 and the number of elements is 4738561. 

By calculating Equation 4 and 9, angles θ and β 
are determined, the values of which are 121° and 
11.3°, respectively. Depending on angles θ and β, the 
loading area is determined. By calculating Equation 5, 
the pressure load of the screw blade is determined, the 
value of which is 18428 Pa. Furthermore, the material 
parameters of the screw blade are as follows: The 
density is 7.85 ton m−3, the young’s modulus is 2×1011 
Pa, the poisson’s ratio is 0.3, the yield strength is 240 
MPa and the ultimate tensile strength is 440 MPa. 
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Results of Finite Element Analysis  

ANSYS Workbench is used to execute the 
numerical simulation of the screw blade. The pressure 
load is applied on the loading area and the fixed 
supports are applied at both ends of the screw axis. 
Through the finite element analysis, the stresses of the 
screw blade are obtained, as shown in Fig. 6. From 
Fig. 6, it can be seen that the maximum equivalent 
stress is in the root of the screw blade. The results 
show that the maximum equivalent stress is 127.23 
MPa, which is less than the yield strength of the screw 
blade (240 MPa). Therefore, the root of the screw 
blade is the position easy to generate fatigue failures. 
As a consequence, the root of the screw blade is taken 
as the research object to estimate the fatigue life. In 
particular, the equivalent stress in the root of the 
screw blade is in the range of 27.267 to 127.23 MPa. 
 

 
 
Fig. 5. Finite element model of screw blade 

 

 
 
Fig. 6. Distribution of stresses of screw blade 

As the screw blade performs the periodically 
rotational motion, the stress distribution in the root of 
the screw blade, which is shown in the Fig. 6, can 
exactly mirror the change process of the stress of a 
point in the root of the screw blade within a rotation 
period. To put it another way, the stress obtained by 
the static analysis is able to describe the dynamic 
change process of a specific point on the screw blade, 
due to the periodicity of the screw blade. 

Generation of Fatigue Load Spectrum 

Simulation Method of Fatigue Load 

The stress spectrum is the precondition of the fatigue 
life prediction and also, the practice shows that the 
fatigue load, in most cases, has some randomness. 
Owing to the randomness of load, the stress spectrums 
obtained by different tests still has significant 
differences, even for the same components. Therefore, 
the stress spectrum used for calculating the fatigue life 
should be the statistical results of the measured data 
obtained by multiple tests. In fact, the generation of the 
fatigue load spectrum requires large sample numbers of 
statistically meaningful data sets. However, on account 
of the restriction of time and resource, it is unable to 
conduct a great quantity of experimental investigations 
to generate a huge number of data sets under many 
circumstances. As a result, it is desirable to have a 
technique to simulate the fatigue load required by the 
fatigue life prediction. Because of this, this study takes 
advantages of statistical theory to simulate the fatigue 
load of the screw blade. 

Monte Carlo methods, especially those based on 
Markov chains, have now matured to be part of the 
standard set of techniques used by statisticians 
(Robert and Casella, 2004). Markov Chain Monte Carlo 
(MCMC) is a method involving the use of random 
numbers to achieve data series with given probability 
distributions on the basis of Markov chain (Wang et al., 
2012a). The basis of MCMC is a Markov chain that 
generates a random walk through the search space and 
successively visits solutions with stable frequencies 
stemming from a stationary distribution (Vrugt, 2016). 
Compared with MCMC, standard Monte Carlo 
simulation methods are computationally inefficient for 
anything but very low dimensional problems (Vrugt, 
2016). That is, for the large-scale problems with a large 
number of random variables and sampling sets, it is 
extremely tough for standard Monte Carlo simulation 
methods to obtain reliable results. More importantly, 
because of involving a couple of powerful simulation 
techniques, MCMC has the ability to generate the 
random loadings with any given probability distribution 
(Zio, 2012). Depending on the analysis above, MCMC is 
utilized to simulate the random load on the screw blade.  
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Particularly, the Gauss distribution (normal 
distribution) is the most common and widely used 
probability distribution, which can be used to describe 
many natural phenomenon and different physical 
properties (Xie, 2013). In consequence, assume that the 
stress in the root of the screw blade follows the Gauss 
distribution; that is, the fatigue load on the screw blade is 
a random Gauss-process. In addition, the degree of 
variation of the loads on the screw blade can be 
evaluated by the variation coefficient. Therefore, the 
probability density function of the random load on the 
screw blade is given by: 
 

( )

2

1

21

2

Sr

Sr

r

x

r

S

f S e

µ

σ

σ π

 −
 −  
 
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But: 

 

max min

2r

r r

S

S S
µ

+
=  (16) 

 

r r rS S S
Cσ µ=  (17) 

 
Where: 
Sr = The stress in the root of the screw blade (MPa) 

rS
µ  = The mean value of the stress Sr (MPa) 

rS
σ  = The standard deviation of the stress Sr 

Srmax = The maximum value of the stress (MPa) Sr 
Srmin = The minimum value of the stress Sr (MPa) 

rS
C  = The variation coefficient of the stress 

 
The advantages of using the high sampling frequency 

are that the high sampling frequency can not only obtain 
the peak of the analog signal more accurately but also 
provide the better time-domain resolution (Lee et al., 
2005). On the other hand, the disadvantage of using the 
high sampling frequency is that a great number of 
sampling data will prolong the time of the subsequent 
processing (Lee et al., 2005). Through comprehensive 
consideration, this study lets the sampling frequency be 
1 kHz (Narayanan et al., 2016). Furthermore, according 
to the speed of the screw axis (10 r min−1), the rotation 
period of the screw blade can be readily acquired, which 
is 6 sec (the reciprocal of the speed of the screw axis). 

Determination of Variation Coefficient with NSGA-

II  

The selection of the variation coefficient of the stress 
is overwhelmingly paramount because it will affect the 
accuracy of generating the fatigue load spectrum. To get 
an accurate fatigue load, the intelligent optimization 

algorithm is used to find out the optimal variation 
coefficient. Given that the minimum and maximum 
value are the main features describing the random load 
on the premise of determining the random load 
distribution, the difference between the minimum value 
of the fatigue load simulated by MCMC and the 
minimum value of the stress in the root of the screw 
blade and the difference between the maximum value of 
the simulated fatigue load and the maximum value of the 
stress in the root of the screw blade should be minimum.  

Genetic algorithm is a pretty powerful method for the 
optimization of the non-linear and complex problems that 
works depending on the natural selection process in 
biological systems (Gholami and Azizi, 2014). 
Particularly, the Non-Dominated Sorting Genetic 
Algorithm (NSGA-II), an extended form of GA, has 
become one of the most efficient algorithms for the multi-
objective optimization in recent years (Chen et al., 2015). 
Compared with traditional algorithms, NSGA-II could 
avoid the dependence on selecting proper weight values, 
which is still a challenging problem (Gholami and Azizi, 
2014; Mi et al., 2016). As NSGA-II presents an extremely 
outstanding performance in the aspect of solving multi-
objective optimization problems, this research harnesses 
NSGA-II to achieve a most appropriate variation 
coefficient of the stress (Murugan et al., 2009). 

The multi-objective problem to be optimized can be 
expressed as: 
 

( )1 min min:
r

r rS
Minimize f f C S= −  (18) 

 

( )2 max max:
r

r rS
Minimize f f C S= −  (19) 

 
Subjected to: 

 
0 0.5

rS
C≤ ≤  (20) 

 
Where: 
frmin(⋅) = A function used for finding out the minimum 

value from the fatigue load 
frmax(⋅) = A function used for finding out the maximum 

value from the fatigue load 
 

The optimization problem for calculating the optimal 
variation coefficient of the stress has two objective 
functions and just a variable. Considering the complexity 
of this multi-objective optimization problem, let the Pareto 
front population fraction, population size, the number of 
generations, stall generation limit and function tolerance 
be 0.3, 100, 200, 200, 1×10−100, respectively. By analyzing 
calculation results, it is found that the optimal variation 
coefficient obtained with NSGA-II is 0.182. Through 
using MATLAB, the statistical histogram of the random 
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fatigue load with Gauss distribution, which is generated 
by using MCMC, is achieved, as shown in Fig. 7. 
According to Fig. 7, it is manifest that the amplitude of the 
random load is approximately in the range between 27 and 
127 MPa, which highly agrees with the range of the 
equivalent stress in the root of the screw blade obtained by 
the static analysis, showing that the selection of the 
variation coefficient is reasonable. 

Autocorrelation Analysis of Random Load 

Sample autocorrelation coefficients are widely 
harnessed to examine the randomness of random 
loadings (Kan and Wang, 2010). Generally, given 
observations of a time series x1,…, xn, the sample 
autocorrelation coefficient at lag can be expressed by 
(Kan and Wang, 2010): 

( )( )

( )
1

2

1

n k

i i k

i

n

i

i

x x x x

x x

ρ

−

+
=

=

− −
=

−

∑

∑
 (21) 

 

where, 
1

1 n

ii
x x

n =
= ∑ is the sample mean and 1 ≤ k ≤ n-1.  

The data of the random load simulated by MCMC are 
input into MATLAB for executing the autocorrelation 
analysis, achieving the sample autocorrelation 
coefficients of the random loadings generated by 
MCMC, as shown in Fig. 8. 

As indicated in Fig. 8, the sample autocorrelation 
coefficients of the random load are close to 0, showing 
that the variability of the random loadings stimulated by 
MCMC is completely stochastic. 

 

 
 

Fig. 7. Statistical histogram of random fatigue load simulated by MCMC 
 

 
 

Fig. 8. Step plot of sample autocorrelation coefficients 
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Fig. 9. Rainflow cycle counting histogram after extrapolation 
 
Rainflow Cycle Counting and Extrapolation  

Rainflow cycle counting is utilized as a signal 
processing approach for fatigue analysis (Baek et al., 
2008). In practice, rainflow cycle counting is a method 
of taking a variable amplitude stress history and from it 
identifying a number of cycles with different range and 
mean values, which are identified as potentially 
damaging events (Baek et al., 2008; Johannesson and 
Thomas, 2001). The rainflow cycle counting of the 
fatigue load on the screw blade is executed using the 
Rainflow module in nCode GlyphWorks, an extremely 
specialist fatigue analysis software. 

In many cases, fatigue analysis ignores the 
possibility of the extreme loads caused by overload 
occurrence in a longer time period, which is an 
incorrect postulate actually (Lee et al., 2005). 
Although extreme loads rarely occur in practical 
engineering, extreme loads can result in substantial 
damage of components and have great effects on the 
final determination of fatigue damage. In 
consequence, the extreme loads caused by overload 
occurrence should be taken into consideration. As the 
aim of the rainflow cycle extrapolation method is to 
predict the rainflow histogram for a much longer time 
period based on a short-term load measurement, the 
rainflow cycle extrapolation method is therefore 
employed to generate the fatigue load spectrum closer 
to the real condition (Johannesson, 2006). 

According to the recorded field data, the time of 
transferring sea sand from the flume to discharge 
opening is around 63 sec. Accordingly, let the 
extrapolation factor be 10.5; namely, the rainflow cycle 
counting histogram after extrapolation represents the 
fatigue load spectrum of 63 sec. Additionally, 

Nonparametric Extrapolation method (NPE) is utilized 
for extrapolation purpose, which uses a nonparametric 
statistical method to obtain the statistical probability 
distribution (Wang et al., 2016). The rainflow cycle 
counting histogram after extrapolation is shown in Fig. 
9. Presented in Fig. 9 is the distribution of the stress 
range and mean stress of the random load in the root of 
the screw blade. From Fig. 9, it can be seen that the data 
in the large range region are very sparse. Actually, the 
rainflow cycle counting histogram after extrapolation is 
the fatigue load input used for predicting the fatigue life 
of the screw blade.  

Fatigue Life Calculation of Screw Blade  

Estimation of P-S-N Curve  

The S-N curve is the foundation of predicting the 
fatigue life of the screw blade. Generally, the standard 
S-N curve consists of 3 linear segments on a log-log 
plot, as shown in Fig. 10. In Fig. 10, is the ultimate 
tensile strength, b is the slope of the S-N curve in the 
high-cycle fatigue region, Nc1 is the transition life and 
Nfc is the numerical fatigue cutoff life, normally set at 
1×1030 cycles (Lee et al., 2005). For steels, the 
transition life Nc1 is normally 106 cycles. Additionally, 
S1 is the value of the stress at 1000 cycles, S2 is the 
value of the stress at the transition life Nc1 and Se,R is 
the fatigue limit. 

S1 and S2 can be expressed by the following equations 
(Lee et al., 2005): 
 

1 0.9S UTS= ×  (22) 

 

2 0.357S UTS= ×  (23) 
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Fig. 10. S-N curve 
 

The central section of S-N curve can be expressed by 
(Lee et al., 2005): 
 

( )1

b

fS SRI N∆ =  (24) 

 
But: 
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log log10

S S
b
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−
=

−
 (25) 

 

( )
2

1

1

2
b

S
SRI

Nc

×
=  (26) 

 
Where: 
∆S = The stress range (MPa)  
SRI1 = The stress range intercept  
Nf = The number of cycles to failure  

 
Virtually, a number of factors have the ability to 

affect the fatigue behavior of a component, such as the 
surface finish and size, the category of loading and the 
presence of stress concentrations (Harris and Jur, 2009). 
Accordingly, to estimate the fatigue life precisely, these 
factors should be taken into consideration. Moreover, 
allowing for the statistical scatter of fatigue data, the 
fatigue strength should be modified according to a 
specified reliability level (Lee et al., 2005). Currently, 
the fatigue limit Se,R can be forecasted through modifying 
S2 with the four factors: The load factor, the surface 
finish factor, the size factor and the reliability level 
factor (Harris and Jur, 2009). 

As a consequence, the fatigue limit can be expressed 
by (Lee et al., 2005; Harris and Jur, 2009): 
 

, 2e R L S D RS S C C C C=  (27) 

 
Where: 
CL = The load factor 
CS = The surface finish factor 
CD = The size factor 
CR = The reliability level factor 
 

Undoubtedly, as a result of the scatter inherent in 
fatigue data under various stress levels, it must be 
admitted that for a given material, there is not just one S-

N curve (Baek et al., 2008; Zheng and Wei, 2005). 
Generally, P-S-N curves, expressions of fatigue life 
curves with given survivability, are utilized to describe 
the randomness of fatigue property under different stress 
levels (Baek et al., 2008; Zheng and Wei, 2005). For the 
metal materials, researches have shown that the given 
survivability is frequently 50%, with the outcomes 
agreeing well with the test results (Baek et al., 2008; 
Zheng and Wei, 2005; Cheng et al., 2014). Accordingly, 
this study lets the given certainty of survival be 50%. 

In fatigue analysis, Goodman and Gerber mean stress 
correction methods are the most widespread correction 
methods (Harris and Jur, 2009; Cunha et al., 2009; 
Schijve, 2014). As the matter of fact, the Goodman mean 
stress correction method is conservative to the tensile 
stress state, whereas the Gerber mean stress correction 
method is conservative to the compressive stress state 
(Harris and Jur, 2009; Cunha et al., 2009; Schijve, 
2014). Consequently, the Goodman mean stress 
correction method is used in this study. 
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Fatigue Damage Analysis of Screw Blade  

Miner linear accumulative damage theory (Miner’s 
rules) is used to calculate the fatigue life of the screw 
blade. Failure is expected to occur if (Baek et al., 2008): 
 

1 2 3

1 2 3 1
i

i

if f f f

n n n n
D

N N N N
= + + + = ≥∑⋯  (28) 

 
Where: 
ni = The number of applied cycles 

if
N  = The number of cycles to failure at a specified 

stress amplitude σi 
 

The fatigue life is defined as (Zhou et al., 2016; 
Baek et al., 2008): 
 

1

/
i

i f
i

Life
n N

=
∑

 (29) 

 
The Stress Life module in nCode GlyphWorks is 

used to estimate the fatigue life. It is shown by results 
that the fatigue life of the screw blade is nearly 
2.043×1010 cycles, which is equal to 5.4418×104 years 
when the working time of the screw sand washing 
machine is 18 h per day. Indeed, this result does not 
correspond with the engineering practice. This is 
because that the manufacturing level of the screw 
blade is not taken into consideration in the prediction 

of the fatigue life. On one hand, residual stresses can 
be introduced into components by various machinery-
building technologies, such as casting, cutting, 
welding, heat treatment and so forth (Schijve, 2014). 
On top of this, the notch can be introduced into 
components by various processing technologies 
(Cunha et al., 2009; Schijve, 2014). In particular, the 
major forms of the notch caused by the processing 
technology are the material and manufacturing 
defects, such as inclusion, welding defect, casting 
defects, small scratches and grooves caused by cutting 
tool action, etc. The fatigue notch factor, which is the 
ratio of the fatigue strength of the smooth specimen to 
that of the notch specimen, is used to quantitatively 
describe the notch effect. One final point, the effect of 
the surface roughness on the fatigue life reflects the 
sensitivity of the fatigue life for irregularities of the 
surface topography (Schijve, 2014). Normally, the 
surface roughness of the screw blade is 12.5 µm. 

When the surface roughness of the screw blade is 
12.5 µm, the fatigue life of the screw blade versus 
residual stresses and fatigue notch factors is shown in 
Fig. 11. According to Fig. 11, with the rise in residual 
stresses and fatigue notch factors, the fatigue life of the 
screw blade plummets. Evidently, the fatigue life of the 
screw blade is not a constant, which is a value varying 
with the manufacturing level of the screw blade. In 
addition, the line graph of the fatigue life versus 
various residual stresses and the curve diagram of the 
fatigue life versus various fatigue notch factors are 
shown in Fig. 12 and 13, respectively. 

 

 
 

Fig. 11. Fatigue life versus residual stresses and fatigue notch factors 
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Fig. 12. Fatigue life versus various residual stresses 
 

 
 

Fig. 13. Fatigue life versus various fatigue notch factors 
 

As can be seen from Fig. 11 to 13, the fatigue life of the 
screw blade versus residual stresses and fatigue notch 
factors shows an exponentially downward tendency. To 
acquire the equation concerning the fatigue life of the screw 
blade, the non-linear exponential function in Origin 9.1 is 
utilized to implement the non-linear surface fitting. 

The formula of the non-linear exponential function is: 
 

0 exp
x y

z z B
C D

 = + − − 
 

 (30) 

 
Where: 
z = The fatigue life of the screw blade 
x = The fatigue notch factor 
y = The residual stress (MPa) 

z0, B, C, D = The constants 
 

The statistical result displays that Adj. R-square 
(adjusted coefficient of determination) is 0.99935. 
Similarly, the non-linear fitting surface shown in Fig. 14 
demonstrates that the fitting surface is in excellent 
consistence with the input data. As a result, the fitting 
result is reliable. 

In addition, the obtained equation regarding the 
fatigue life of the screw blade versus residual stresses 
and fatigue notch factors is: 
 

7 151.28478 10 3.1859 10

exp
0.07635 30.99913

z

x y

= × + ×

 
× − − 

 

 (31) 
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Fig. 14. Non-linear fitting surface 
 

However, it must be admitted that Equation 31 is 
tough for ordinary engineers to understand. To resolve 
this problem, the Equation 31 is rewritten as: 
 

7 151.28478 10 3.1859 10

63
exp

0.07635 30.99913

60 60 18 365life

x y

z

 × + ×
 ×   × − −    =

× × ×
 (32) 

 
where, zlife is the fatigue life of the screw blade (yr).  

Conclusion 

Depending on the fatigue failure studies, the 
conclusions can be drawn as follows: 
 
• The root of the screw blade is the most vulnerable 

part of the screw structure 
• When the variation coefficient of the stress is 0.182, 

the random load simulated by MCMC is the closest 
to the real random load on the screw blade 

• When the surface roughness is 12.5 µm, the fatigue 
life of the screw blade versus residual stresses and 
fatigue notch factors can be expressed as follows: 

 
7 151.28478 10 3.1859 10

63
exp

0.07635 30.99913

60 60 18 365life

x y

z

 × + ×
 ×   × − −    =

× × ×
 

 
• The computation flow process of estimating the 

fatigue life proposed in this study can provide a 
number of valuable references for the safe-life 
design, damage tolerance design and durability 
design of a wide range of machinery products, 
especially for rotary machineries 

This work chiefly focuses on the effect of the stress 
and the manufacturing level (i.e., the surface roughness, 
residual stress and fatigue notch factor) on the fatigue 
life of the screw blade. However, environmental factors 
can also affect the fatigue life of the screw blade 
adversely. It is a fact that the screw sand washing 
machine runs in salt water environment and salt water 
can trigger a reduction in fatigue life for corrosion 
fatigue. As corrosion fatigue is a far more sophisticated 
phenomenon, the study on the corrosion fatigue of the 
screw blade will be discussed in our future works. 
Again, the studies related to the fatigue crack growth life 
of the screw blade would be reported in the future.  
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