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Abstract: Geometric nonlinear FE-analysis of thin-walled shell structures, 

using a co-rotational formulation and the Cell Smoothed Discrete Shear Gap 

triangular shell element (CS-DSG3) is presented in this study. The CS-DSG3 

element formulation uses the Mindlin-Reissner kinematic hypothesis to 

include transverse shear effects. In order to avoid locking effects Discrete 

Shear Gap (DSG) method is applied. In addition, cell based smoothing 

technique is adopted in order to improve accuracy and stability of the 

element. For the purpose of comparison, the Discrete Kirchhoff-Constant 

strain-Triangle (DKT-CST) is also implemented and studied in the linear 

static analysis. In the framework of the co-rotational FE-analysis rotations 

and displacements are adopted as finite, while strains are infinitesimal. Large 

rotation theory has been utilized to take into account the non-vectorial 

characteristic of rotations. Several static linear and nonlinear benchmark 

examples are presented and compared with commercial FE software Abaqus 

and analytical results. The presented approach, using CS-DSG3 element in 

co-rotational nonlinear analysis, illustrates very good results compared to 

reference solution and Abaqus results. The numerical effort can be reduced 

compared to Lagrange formulation with a similar accuracy for the studied 

cases. The formulation (including CS-DSG3 shell element) has been 

implemented into a test program. 

 

Keywords: Finite Element, Shell, Co-Rotational, Triangular Shell Element, 

CS-DSG Element, DKT-CST, Shear Locking 

 

Introduction 

Thin-walled structures are widely used in engineering 

practice. This is the consequence of the optimization 

strategy to reduce the structural dead-load whereby the 

structural carrying capacity is kept at a very high level. 

The application of thin-walled structures becomes 

increasingly diverse ranging from tiny machine parts 

over aircrafts and ships (Rama, 2014) to bridges, 

buildings, storage vessels, etc. The continuous 

development of new complex structural designs 

(Samaei et al., 2011) demands reliable and efficient 

numerical tools for modeling and simulation of the 

elastic behavior of thin-walled structures. 

The Finite Element Method (FEM) has established 

itself as the method of choice for problems in the field 

of structural analysis. Over the past 60 years, the FEM 

has experienced its evolution whereby its application in 

the field of structural analysis has been the major 

driving component of the development. Within the 

framework of the FEM, various shell elements represent 

the principle workhorse in modeling of thin-walled 

structures. The main requirements for shell elements are 

high efficiency, reliability and applicability over a wide 

range of thickness and curvature. Additionally, thin-

walled structures are characterized by high 

susceptibility to geometrically nonlinear behavior, 

caused by large transverse deflections and therewith 

local rotations and the developed FEM formulations are 

also supposed to cover this aspect. 

The requirement for high efficiency points to low-

order elements. In its nature, this requirement is contrary 

to the requirements for high accuracy and reliability, so 

the short overview of available elements should focus 

only to high quality elements that offer a good 

compromise and therewith a conciliation of the 

requirements. The low-order shell elements that 

particularly stand out among numerous candidates are 

the “Discrete Kirchhoff Theory-Constant Strain 

Triangular element” (DKT-CST) and the Cell Smoothed 

Discrete Shear Gap triangular shell element (CS-DSG3) 

(Nguyen-Thoi et al., 2013). The DKT-CST shell element 
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represents a superposition of the CST membrane element 

and the DKT plate element. The DKT approach, based 

on a single polynomial expression for the transverse 

deflection w, was first proposed by Dhatt (1969). The 

DKT plate has been extensively tested for its 

convergence properties and is still widely considered to 

be one of the best triangular elements for thin plates. The 

assumptions made in the DKT approach do not include 

transverse shear effects and therefore hold only for rather 

thin plates. In case of thicker plates, the appropriate first-

order approach would be the Reissner-Mindlin (RM) 

theory, in which the nodal deflection and rotations are 

independent from each other. If a rather thin structure is 

modeled by means of RM-based elements, the results are 

supposed to converge to those yielded by the Kirchhof-

based approach. However, the MR-based elements often 

exhibit shear locking when slenderness ratio 

(thickness/with) is low. The CS-DSG3 is one of the latest 

Reissner-Mindlin triangular shell elements. It represents a 

further development of the DSG3 element originally 

developed by Bletzinger et al. (2000). The DSG3 

eliminates parasitic locking effects by using the Discrete 

Shear Gap (DSG) method (Bletzinger et al., 2000). 
Regarding the coverage of geometrical nonlinearities, 

the high efficiency request imposes the need to 

reconsider various formulations for description of 

nonlinear kinematics. Typical approach in commercially 

available software packages are the total and updated 

Lagrangian formulations, which offer rather high 

accuracy and reliability. Certain developments are 

essentially based on the updated Lagrangian formulation 

but use local reference frame attached to the structure for 

computation of the Cauchy stresses (Marinković et al., 

2008). However, in a co-rotational approach (Rankin and 
Brogan, 1986; Izzuddin, 2005) the provision of such a 

coordinate system that is attached to the structure and 

performs the same rigid-body motion as the structure 

itself is essential. It provides means to separate the rigid-

body motion from purely deformational motion. The co-

rotational approach appears to be quite a promising 

solution to achieve high efficiency in cases involving 

large local rotations. The origins of the co-rotational 

description could be traced back to Wempner (1969; 

Belytschko and Hseih, 1973; Argyris et al., 1979). 

Recent developments and surveys of co-rotational shell 

elements are given in (Izzuddin, 2005) and (Wempner, 

1969). Some of the advantages the CR-formulations may 

offer compared to the Lagrangian formulation (Izzuddin, 

2005; Crisfield and Moita, 1996; Li and Vu-Quoc, 2007; 

Li et al., 2008; 2013) are: 

 

• A better convergence for large displacements and 

rotations, but small strain problems 

• The separation of geometrical and material 

nonlinearities, so that all formalisms for material 

nonlinearities used in combination with 

geometrically linear computations are readily 

applicable in CR-formulations as well 

• The numerical effort is less compared to Lagrangian 

formulations 

 

The CR formulation applied in this study is 

employing the element-base reference frame. This 

means that each single element is provided with an 

attached co-rotational frame and the resolution of 

accounting for rigid-body motion is element-wise 

(Marinković et al., 2012).  

Element Formulations 

The position vector X of each material point in the 

shell domain is given by the sum of the position vector 

of mid-surface old

0
X  and the transverse direction vector 

normal to the mid-surface old

h
X  (Kim and Kim, 2002): 

 

= old old

0 h
X X Xξ+  (1) 

 

where, the natural coordinate ξ [-1,1] indicates the 

position in the thickness direction. The displacement 

field U is obtained by the difference of deformed (new) 
new

0,h
X  and un-deformed (old) old

0,h
X  configuration (Fig. 1). 

The magnitude of the normal direction vector Xh is t/2, 

with the shell thickness t: 

 

( ) ( )0 0

new old new old

h hU X X X Xξ= − + −  (2) 

 

The vector U is given by the two parts U0 and ξUh: 

 

0

0 0

0

( , , ) ( , , ) ( , )

( , , ) ( , , ) ( , )

( , , ) ( , , ) 0

y

h x

u x y z u x y z r x y

U U U v x y z v x y z r x y

w x y z w x y z

ξ ξ
     
     = + = = + −     
     
     

 (3) 

 

where, u0, v0, w0 are the displacements, rx, ry are the 

rotations of the shell mid-surface and ξ the transverse 

direction vector which is normal to the mid-surface. The 

linear strain field consisting of membrane strains εm, 

flexural strains ξ κb and shear strains γ can be expressed 

in the following form: 

 

0, ,

0, ,

0, 0, , ,

x x y x

y m b y x y

xy y x y y x x

u r

v r

u v r r

ε
ε ε ξκ ξ
γ

     
     

= + = + −     
     + −     

 (4) 

 

0,

0,

y yyz

x xxz

w r

w r

γ
γ

γ

+  
= =    −   

 (5) 
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Fig. 1. Shell kinematics 

 

CS-DSG3 Formulation 

Firstly, an overview of the DSG3 formulation 

(Bletzinger et al., 2000) is given, followed by the further 

development (Nguyen-Thoi et al., 2013) which leads to 

the CS-DSG3 element formulation. 

DSG Element 

The shape functions related to the element 

coordinates xe and ye read (Bazeley et al. 1969): 

 

2 3 3 2

1

2 3 3 2

3 1 1 3

2

3 1 1 3

1 2 2 1

3

1 2 2 1

( )1
( , )

( ) ( )2

( )1
( , )

( ) ( )2

( )1
( , )

( ) ( )2

e e e e

e e

e ee

e e e e

e e

e e e e e ee

e e e e

e e

e e e e e ee

x y x y
N x y

y y x x x yA

x y x y
N x y

y y x x x yA

x y x y
N x y

y y x x x yA

− 
=  + − + − 

− 
=  + − + − 

− 
=  + − + − 

 (6) 

 

The approximation ue for the triangular element 

domain, associated with node i and shape function Ni, 

can be expressed as follows: 

 
3

1

e i i

i

u N d
=

=∑  (7) 

 

where, di = [ui,vi,wi,rx,ry,rz]
T
 are the nodal degrees of 

freedom. With the element displacement vector de = [d1, 

d2, d3]
T
 the membrane εm, bending zeκb and shear strains γ 

can be presented in matrix form: 

 

1 2 3, ,m m m m e m eB B B d B dε  = =   (8) 

 

1 2 3, ,e b e b b b e e b ez z B B B d z B dκ  = =   (9) 

The strain displacement matrices Bm and Bb can be 

expressed as: 
 

,

,

, ,

0 0 0 0 0

0 0 0 0 0

0 0 00

e

e

e e

i x

mi i y

i y i x

N

B N

N N

 
 

=  
 
  

 (10) 

 

,

,

, ,

0 00 0 0

0 0 0 0 0

0 0 0 0

e

e

e e

i x

bi i y

i x i y

N

B N

N N

 
 

= − 
 

−  

 (11) 

 
where, Ni,xe and Ni,ye (i = 1,2,3) are the constant 

derivatives of the shape functions in the local element 

coordinate system (xe, ye, ze; Fig. 2). 
The derivatives of the shape functions are obtained 

by the following geometric distances and the triangular 
element area Ae: 
 

1, 2 3 1, 3 2

2, 3 1 2, 1 3

3, 1 2 3, 2 1

( ) / 2 ( ) / 2

( ) / 2 ( ) / 2

( ) / 2 ( ) / 2

e e

e e

e e

x e e e y e e e

x e e e y e e e

x e e e y e e e

N y y A N x x A

N y y A N x x A

N y y A N x x A

= − = −

= − = −

= − = −

 (12) 

 

1 2 1 3 2 1 2 3 3 1 3 22 e e e e e e e e e e e e eA x y x y x y x y x y x y= − − + + −  (13) 

 
As previously mentioned, the DSG3 element 

eliminates shear locking effects by utilizing the ‘shear 
gap’ concept of displacements along the element edges. 
The shear strain field becomes to: 
 

1

00 0 01

´0 0 0 02

e

s
e e

b c A
B

d a AA

− 
=  − − 

 (14) 

 

2

0 0 / 2 / 2 01

0 0 ´ / 2 / 2 02
s

e

c bc ac
B

d bd adA

− 
=  − − 

 (15) 
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3

0 0 / 2 / 2 01

0 0 ´ / 2 / 2 02
s

e

b bc bd
B

a ac adA

− 
=  − 

 (16) 

 

2 1 2 1

3 1 3 1

e e e e

e e e e

a x x b y y

c y y d x x

= − = −

= − = −
 (17) 

 

The element stiffness matrix is then given in the 

global coordinate system by: 

 

( )
,e DSG

T T T T

m m m e b b b e s s s e

K

T B D B A B D B A B D B A T

=

+ +
 (18) 

 

where, T is the transformation matrix of coordinates 

from the global coordinate system (x,y,z) to the local 

element coordinate system (xe,ye,ze), Dm, Db, Ds are the 

constitutive matrices, E is Young's modulus; t is the 

thickness of the shell and ν is the Poisson constant. 

As previous mentioned has the element three 

rotational degrees of freedom at each node. The rotations 

rxi and ryi are directly associated with bending and 

twisting mode, in contrast the drilling degree of freedom 

rzi does not provide any resisting force or stiffness by 

itself. The resistance to the rzi rotation at each node 

comes from the coupling of the rotations of surrounding 

non planar elements (Erhart and Borrvall, 2013). 

Difficulty occurs if all the elements meet at a node are 

co-planar (e.g., flat segments). Then is the rotational 

degree of freedom totally free to spin and corresponding 

stiffness has a zero stiffness. In order to avoid this 

rotational singularity in the stiffness matrix the zero 

values corresponding to drilling degree of freedom rzi are 

replaced by an approximated value of 10
-3

 times of 

maximal diagonal value in the element stiffness matrix 

(Nguyen-Thoi et al., 2013): 

 

2

1 0

1 0
(1 )

0 0 (1 ) / 2

m

Et
D

ν
ν

ν
ν

 
 =  −
 − 

 (19) 

 

3

2

1 0

1 0
12 (1 )

0 0 (1 ) / 2

b

Et
D

ν
ν

ν
ν

 
 =  −
 − 

 (20) 

 

It was recommended (Bischoff et al., 2003) to add a 

stabilization term to the original DSG3 element to 

improve the accuracy of approximate solutions and to 

stabilize shear force oscillations. The basic idea is to 

modify the internal work parts which include parasitic 

locking effects (Llyly et al., 1993): 

 
* (1 )stab

γ γ γ γ γτΠ = Π +Π = Π − − Π  (21) 

where, Πy is the work done by shear deformation, Πy
stab 

is the stabilization term and τ the stabilization parameter. 

The stabilization parameter can be expressed as: 

 

2 2

1

1 ( / )
e

h t
τ

α
=

+
 (22) 

 

where, he is the longest element edge, α is a weight 

factor and t is the shell thickness. There are two 

requirements which have to be met for τ. The first one, if 

the element edges become zero, τ has to be 1. The 

second one, the work done by shear deformation is zero 

for an infinitesimal shell thickness corresponding to the 

Kirchhoff-Love kinematics. Bischoff et al. (2003) 

transferred this idea directly to the DSG elements which 

leads to the resulting constitutive matrix Ds which can be 

expressed as follows: 

 

2 2

1

1
s

e

kt
D

t h

ν
να
 

=  +  
 (23) 

 

In which k (k = 5/6) is the shear correction factor and 

α is a positive constant. 

 

 

 
Fig. 2. 3-node triangular shell element 

 

 

 
Fig. 3. CS-DSG3 sub-triangles 
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CS-DSG3 Element 

In the CS-DSG3 formulation the element domain is 

divided into three DSG3 sub-triangle elements by 

connecting the central point O of the triangle with the 

three element nodes (Fig. 3). In each sub-triangle the DSG 

formulation is used to obtain the strain-displacement 

matrices of the sub-tringles. Afterwards, in order to 

smooth the strains in the sub-triangles, strain smoothing 

technique on the whole triangular element is applied. As a 

result the CS-DSG3 overcomes the drawback of the DSG3 

element which depends on the sequence of node 

numbering and improves the accuracy and stability of the 

DSG3 element (Nguyen-Thoi et al., 2013). 

The displacement vector of the central point is 

assumed as average of the displacement vectors of the 

element nodes: 
 

( )0 1 2 3 / 3d d d d= + +  (24) 

 

The displacement vectors corresponding to the sub-

triangles (Fig. 2) read: 
 

1 0 1 2

2 0 2 3

3 0 3 1

d d d d

d d d d

d d d d

Λ

Λ

Λ

 =  

 =  

 =  

 (25) 

 
As a result of substituting d0 and rearranging the 

strain displacement matrix, matrices for the third sub-

triangle are obtained as follows: 
 

3 3 3 3 3

3 1 3 1 1 2

1 1 1

3 3 3
m m m m m

B B B B Bε Λ Λ Λ Λ Λ
Λ

 = + +  
 (26) 

 

3 3 3 3 3

3 1 3 1 1 2

1 1 1

3 3 3
b b b b b

B B B B Bκ Λ Λ Λ Λ Λ = + +  
Λ

 (27) 

 

3 3 3 3 3

3 1 3 1 1 2

1 1 1

3 3 3
s s s s s

B B B B Bγ Λ Λ Λ Λ Λ
Λ

 = + +  
 (28) 

 
The calculation of the other sub-triangle strain 

displacement matrices proceeds in a quite analogous 

manner. The resulting smoothed strain gradient matrices 

are given by: 
 

3

* 1

1 i

m mi Λii
e

B B A
A

Λ

=
= ∑  (29) 

 

3

1

1 i

b bi Λii
e

B B A
A

Λ

=
= ∑*  (30) 

 
3

1

1 i

s si Λii
e

B B A
A

Λ

=
= ∑*  (31) 

with the Element area Ae, the sub-triangle area AΛi and 

the B-matrices of the sub-triangles i

mi
BΛ , i

bi
BΛ , i

si
BΛ . The 

stiffness matrix of the CS-DSG3 element Ke,CS-DSG is 

computed by: 

 

( )
, 3

* * * * * *

e CS DSG

T T T T

m m m e b b b e s s s e

K

T B D B A B D B A B D B A T

− =

+ +
 (32) 

 

DKT-CST Formulation 

As already mentioned the DKT-CST shell element is 

obtained by combining a membrane element (CST) with 

and a plate bending element (DKT) with their nodal 

degrees of freedom dmi and dpi: 

 

[ ] [ ]T T

pi i xi yi mi i id w r r d u v= = =  (33) 

 

1 2 3 1 2 3

T T

p p p p m m m md d d d d d d d   = =     (34) 

 

DKT Plate Element 

For the C
1
 compatible (conforming) plate element a 

displacement interpolation function w consist of nine 

terms are used: 

 
2 2

1 2 3 4 5 6

3 3 2 2

7 8 9

. ...

( )

w c c x c y c x c xy c y

c x c y c x y xy

= + + + + + +

+ + +
 (35) 

 

Thus the first derivates with respect to x and y are: 

 

2 2

2 4 5 7 92 3 (2 )
w

c x c x c y c x c xy y
x

∂
= + + + + +

∂
 (36) 

 

2 2

3 5 6 8 92 3 ( 2 )
w

c c x c y c y c x xy
y

∂
= + + + + +

∂
 (37) 

 

Applying Equation 35-37 at the three element nodes 

the following system of equations is obtained with I = 

1,2,3: 

 

( )

2

1 2 3 4 5

2 3 3 2 2

6 7 8 9

...
i i i i i i

i i i i i i i

w c c x c y c x c x y

c y c x c y c x y x y

= + + + + +

+ + + +
 (38) 

 

( )2 2

2 4 5 7 92 3 2i
i i i i i i i

i

w
c x c x c y c x c x y y

x

∂
= + + + + +

∂
 (39) 

 

( )2 2

3 5 6 8 92 3 2i
i i i i i i

i

w
c c x c y c y c x x y

y

∂
= + + + + +

∂
 (40) 

 

These equations can be rewritten in the matrix form 

as: 
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1 1 3 3
1 3

1 1 3 3

...

T

p

w w w w
d w w Cc

x y x y

 ∂ ∂ ∂ ∂
= = ∂ ∂ ∂ ∂ 

 (41) 

 
where, c is the vector of the coefficients ([c1…c9]

T
) 

The inverse of C matrix multiplied with the nodal 

degrees of freedom of the plate element dp leads to the 

unknown constants c (c1…c9): 
 

1

pc C d−=  (42) 

 
Using Equation 35-37 and 42 the bending strains zeκb 

(Fig. 2) are obtained: 
 

1

0 0 0 2 0 0 6 0 2

0 0 0 0 0 2 0 6 2

0 0 0 2 0 0 0 0 4( )

e b e

e p

x y

z z y x c

x y

z QC d

κ

−

 
 = − − − 
 + 

=

 (43) 

 
As a result the bending strain displacement matrix Bp 

can be expressed as: 
 

1

pB QC−=  (44) 

 
The plate stiffness matrix Kp will be obtained by 

following integral, which can be solved by numerical 

integration: 
 

T

p p b p

V

K B D B= ∫  (45) 

 

CST Membrane Element 

The strain displacement matrix of the CST element 

and the resulting stiffness matrix are already defined in 

Equation 10 and 18. For the in-plane degrees of freedom 

dm the matrix Bm can be written as: 
 

1, 2, 3,

1, 2, 3,

1, 1, 2, 2, 3, 3,

0 0 0

0 0 0

e e e

e e e

e e e e e e

x x x

m y y y

y x y x y x

N N N

B N N N

N N N N N N

 
 

=  
 
  

 (46) 

 
The analytical integration over the element domain 

leads to the CST stiffness matrix Km: 
 

( )T T

m m m m eK T B D B A T=  (47) 

 
Afterwards the nodal matrices Kmi,j and Kpi,j (stiffness 

matrices of freedom i and j) are combined to the 

resulting DKT-CST stiffness matrix KDKT-CST,ij at Node i: 
 

,

, ,

0 0

0 0

0 0 0

m ij

DKT CST ij p ij

K

K K−

 
 

=  
 
 

 (48) 

As a result element stiffness matrix KDKT-CST is given 

by: 

 

,11 ,12 ,13

,21 ,22 ,23

,31 ,32 ,33

DKT CST DKT CST DKT CST

DKT CST DKT CST DKT CST DKT CST

DKT CST DKT CST DKT CST

K K K

K K K K

K K K

− − −

− − − −

− − −

 
 

=  
 
 

 (49) 

 

In order to avoid rotational singularity in the stiffness 

matrix the values corresponding to drilling degree of 

freedom are replaced by an approximate value of 10
−3

 

times of maximal diagonal value in the element stiffness 

matrix (see Sec. 2.2). 

Simplified Co-Rotational Geometrically 

Nonlinear FEM Formulation 

A geometrically nonlinear co-rotational FEM 

formulation implies that the geometrical nonlinearities in 

structural behavior are accounted for by means of an 

auxiliary, local reference frame that is attached to the 

material and performs the same rigid-body motion as the 

structural material. Such an approach decouples rigid-

body motion from deformational motion, thus allowing 

usage of engineering strain and stress measures in the 

formulation and, furthermore, decoupling geometrical 

from material nonlinearities. Theoretically, a co-

rotational reference frame may be assigned to each 

material particle. In FEM formulations, this is typically 

done for each element integration point as those points 

are used in the evaluation of element tangential 

stiffness matrix. However, in the simplified co-

rotational formulation, the essence of which is 

presented in this section, the rigid-body rotation is 

accounted for on a somewhat reduced level. Actually, 

an average rigid-body rotation is determined for each 

finite element and further used in the computation. In 

this manner, the elastic behavior of each element 

remains linear with respect to the local element frame 

attached to the element and following its rigid-body 

motion. Given the rotational matrix, Re, which 

describes the rigid-body rotation of an element, the 

element stiffness matrix is updated as follows: 

 

e e

R T

e e
K R K R=  (50) 

 

Hence, the deformation of an element with respect to 

the local, co-rotational frame is described by a linear 

model. The rotational matrix, current and initial 

configuration, xe and x0e, are used to determine the 

rotation-free displacements with respect to the initial 

configuration as: 

 
0

e 0

T

e e
u R x x= −  (51) 
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Finally, the internal forces with respect to the initial 

configuration are computed using the linear stiffness 

matrix and rotation-free displacements and are 

furthermore rotated to obtain the internal forces with 

respect to the current configuration: 
 

0

ee e
F R K u=  (52) 

 
Once the global tangential stiffness matrix and the 

vector of internal forces are updated, static or transient 

geometrically nonlinear FEM computation may proceed. 

As solid elements have only translational degrees of 

freedom and nodal forces as loads, Equation 50-52 give 

the essence of the proposed co-rotational FEM 

formulation for this type of finite elements. For other 

types of finite elements that additionally have rotations as 

degrees of freedom (beams, shells), the procedure needs to 

be adequately extended. The rotations and translations do 

not share the same properties and the update of rotational 

degrees of freedom is more demanding. The incremental 

rotations computed in each time-step are used to update 

the shell normals at each node. This is done by 

computing the incremental rotational matrix of a shell 

normal as (Argyris, 1982): 

 

( )
( )

2

sin / 2sin 1

2 / 2
Q I S S

γγ
γ γ

 
= + +   

 

2  (53) 

 

Where: 

 
2 2 2

, , ,g x g y g zr r rγ = + +  (54) 

 

and: 

 

,

,

, ,

0

0

0

g z y

z g x

g y g x

r r

S r r

r r

 −
 

= − 
 − 

 (55) 

 

With rg,x, rg,y and rg,z denoting the 3 incremental global 

rotations at the node. The rotational matrix Q is used to 

update the orientation of the shell node normal. Also, the 

initial normal at the node is rotated through the element 

rigid-body rotation. The so obtained direction is compared 

to the actual shell normal to get the deformational nodal 

rotations, free of rigid-body rotation. This enables the 

computation of internal nodal moments, which are needed 

to proceed with the geometrically nonlinear computation.  

Thin-walled structures are known for their 

susceptibility to large rotations, whereby the strains 

remain small. This is why they represent a perfect 

candidate to check the accuracy of the proposed 

formulation. The formulation has been implemented with 

the CS-DSG3 shell.  

Numerical Examples 

Various examples have been studied to assess the 

performance of the CS-DSG3 in linear and co-rotational 

nonlinear static analysis. For comparison purpose the 

DKT-CST element and results of Abaqus using the S3 

element are employed in the linear static cases. For the 

nonlinear static cases the results obtained by using the 

co-rotational approach and the CS-DSG3 element are 

compared with Abaqus solution (using S3 elements). 

Linear Static Cases 

Three linear static benchmark cases are studied using 

CS-DSG3, DKT-CST and Abaqus S3 elements.  

Pinched Hemispherical Shell with Hole 

Figure 4 illustrates one quadrant of a pinched 
hemispherical shell with forces at point A and point B as 
shown in Fig. 4. The hemisphere has a radius of 10 m, 
thickness of 0.04 m, Young's modulus is 68.25 MPa, 
Poisson's ratio is 0.3 and an 18° hole at the top. The 
quadrant of the hemisphere is modeled utilizing 
symmetric boundary conditions. Five meshes (8, 32, 
128, 512 and 2048 elements) are used. The utilized 
element orientation is presented in Fig. 4. 

The absolute values of the resulting displacements in 

z-direction at point A (|Uz,a|), using CS-DSG3, DKT-

CST and Abaqus S3 elements are presented in Fig. 5 and 

Table 1. For a better comparison displacements are 

normalized by the reference solution (Simo et al., 1989). 

Skew Plate 

The case geometry is shown Fig. 6. The analysis is 
performed for two different values of the skew angle, α: 
30°, 90° (Fig. 6). Three meshes (32, 128 and 512 
elements with element topology presented in Fig. 6) are 
used for each skew angle with CS-DSG3, DKT-CST and 
the Abaqus S3 elements. The plate is 0.01 m thick. All 
sides are 1.0 m long. The slenderness is 1/100 so that the 
plate is thin thus corresponding to the Kirchhoff-Love 
kinematics. Young's modulus is 30 MPa and Poisson's 
ratio is 0.3. The plate is loaded by a uniform pressure of 
1.0E-6 MPa applied over the entire surface. The edges of 
the plate are all simply supported (u = v = w = 0). 

The resulting vertical displacements at plate center 
are presented in Fig. 7 and Table 2. For a better 
comparison displacements are normalized by the 
reference solution (Morley, 1963). 

Comparing the examples of the pinched 
hemispherical shell and the skew plate and considering 
each of the element formulations separately, one may 
note that the nature of convergence remains similar. Of 
course, with different element formulations different rate 
of convergence is obvious as a consequence of the fact 
that they account for different kinematics (transverse 
shear included or excluded) or resolve the locking effects 
in different manner. 
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Fig. 4. Pinched hemispherical shell with hole 

 

 
 

Fig. 5. Convergence study; Pinched hemispherical shell with hole 

 

 
 

Fig. 6. Skew plate geometry 
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Fig. 7. Convergence study; Skew plate 

 
Table. 1. Displacements Uz at point A-Case: Pinched hemispherical shell 

Number of elements DKT-CST Abaqus S3 CS-DSG3 

8 1.101 0.184 1.045 

32 1.088 0.612 1.042 

128 1.074 0.898 1.019 

512 1.059 0.980 1.004 

2048 1.045 0.996 1.003 

 
Table. 2. Vertical displacements at plate centre-Case: Skew plate (30°, 90°) 

Number of elements DKT-CST Abaqus S3 CS-DSG3 

Skew angle α = 30° 

8 2.550 0.541 1.310 

32 1.505 0.845 1.076 

128 1.261 1.014 1.040 

Skew angle α = 90° 

8 1.375 0.839 0.994 

32 1.142 0.964 1.003 

128 1.070 0.992 1.006 

 

Nonlinear Static Cases 

Two geometric nonlinear static benchmark cases are 

solved using CS-DSG3 with a co-rotational formulation 

and Abaqus. The default automatic load incrementation 

scheme is adopted in Abaqus. 

Bending of a Cantilever Plate 

A flat cantilever plate (Fig. 8) is loaded with a 

bending moment at its tip. The solution to this 

problem, a beam ‘rolled up’ into a circular arc of 

radius ri, is given by the classical flexural formula 

(Shi and Voyiadjis 1991): 

 

max1 / /r M EI=  (56) 

 

where, Mmax is the applied end moment. A complete 

circle to following moment: 

max 2 /M EI L=  (57) 

 
where, L is the length of the cantilever and I the second 

moment of area. The analysis is performed with a mesh 

of 176 elements and with the following geometrical and 

physical properties: Young’s modulus E = 2E6 MPa, 

Poisson’s ratio of 0.0, L = 8.8 m, b = 0.4 m and h = 0.01 

m. The load-displacement (|u|, |w|) curve for the middle 

tip node is presented in Fig. 9. The solution in Abaqus 

aborted (at load factor of = 0.64) before the load reaches 

its maximum (Fig. 9). 

The Slit Annular Plate Loaded with Line Force 

The slit annular plate is presented in Fig. 10. The 

problem has been studied in (Buechter and Ramm, 

1992; Wriggers and Gruttmann, 1993; Kim et al., 

2003) among others. The line force P is applied at one 

end of the slit while the other end of the slit is fixed. 
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Fig. 8. Cantilever plate subjected to end moment (geometry) 

 

 
 

Fig. 9. Load-displacement curve (|u|, |w|) of the cantilever plate subjected to end moment 

 

 
 

Fig. 10. Slit annular plate lifted by line force P (geometry) 
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Fig. 11. Load-deflection curves for the slit annular plate lifted by line force P 
 
The analysis is performed with a mesh of 470 

elements and with the following geometrical and 

physical properties: Young’s modulus E = 2.E6 MPa, 

Poisson’s ratio of 0.0, ri = 6 m, b = 4 m and thickness 

t = 0.03 m. The load-displacement (w-vertical 

direction) curve is shown in Fig. 11. 

Conclusion 

The focus of the paper was highly efficient 

geometrically nonlinear analysis of shell structures. In 

order to reach that goal, two aspects were considered- the 

high quality low order elements and the co-rotational 

FEM formulation. The choice of the elements was 

explained and the basics of their formulation given. The 

element-base co-rotational FEM is chosen not only for the 

sake of numerical efficiency, but also due to high stability 

and therewith robustness it offers. With these properties, it 

may easily by the right choice for applications in the field 

of Multi-Body System (MBS) dynamics with elastic 

bodies included as well as in the field of real-time 

simulations, particularly when used in combination with 

the features of modern hardware (Nutti and Marinković, 

2014). Popular linear and geometrically nonlinear 

benchmark cases were considered in order to demonstrate 

the applicability of the proposed solution. 

Authors’ Contribution 

Gil Rama: The first author of this manuscript has 

coded the applied shell type finite element, considerable 

contribution in integration of the developed element into 

an existing solver, choice of the verifying examples and 

writing of this manuscript. 

Dragan Marinkovic and Manfred Zehn: 

Considerable contributions in integration of the 

developed element into an existing solver, choice of the 

verifying examples and writing of this manuscript. 

Ethics 

The authors would like to disclose that Dr. Dragan 

Marinkovic (the second author) is a member of the 

editorial board for the American Journal of Engineering 

and Applied Sciences. 

References 

Argyris, J.H., H. Balmer, J.S. Doltsinis, P.C. Dunne 

and M. Haase et al., 1979. Finite element method-

the natural approach. Comput. Meth. Applied 

Mechan. Eng., 17-18: 1-106. 

 DOI: 10.1016/0045-7825(79)90083-5 

Argyris, J.H., 1982. An excursion into large rotations. 

Comput. Meth. Applied Mechan. Eng., 32: 85-155. 

DOI: 10.1016/0045-7825(82)90069-X  

Bazeley, G.P., Y.K. Cheung, B.M. Irons and         

O.C. Zienkiewicz, 1969. Triangular elements in 

plate bending-conforming and nonconforming 

solutions. Proceedings of the 1st Conference on 

Matrix Methods in Structural Mechanics, (MSM’ 

69), Wright Patterson Air Force Base, Dayton, 

Ohio, pp: 547-576. 

Belytschko, T. and B.J. Hseih, 1973. Non-linear 

transient finite element analysis with convected co-

ordinates. Int. J. Numerical Meth. Eng., 7: 255-271. 

DOI: 10.1002/nme.1620070304 

Bischoff, M., F. Koschnick and K.U. Bletzinger, 2003. 

Stabilized DSG plate and shell elements. 

Proceedings of the 4th European LS-DYNA 

Conference, (LS-DYNA’ 03). 



Gil Rama et al. / American Journal of Engineering and Applied Sciences 2016, 9 (2): 420.431 

DOI: 10.3844/ajeassp.2016.420.431 

 

431 

Bletzinger, K.U., M. Bischoff and E. Ramm, 2000. A 

unified approach for shear-locking-free triangular 

and rectangular shell finite elements. Comput. 

Struct., 75: 321-334. 

 DOI: 10.1016/S0045-7949(99)00140-6 

Buechter, N.U. and E. Ramm, 1992. Shell theory versus 

degeneration-a comparison in large rotation finite 

element analysis. Int. J. Numerical Meth. Eng., 34: 

39-59. DOI: 10.1002/nme.1620340105 

Crisfield, M.A. and G.F. Moita, 1996. A co-rotational 

formulation for 2-D continua including incompatible 

modes. Int. J. Numerical Meth. Eng., 39: 2619-2633. 

DOI: 10.1002/(SICI)1097-

0207(19960815)39:15<2619::AID-

NME969>3.0.CO;2-N 

Dhatt, G., 1969. Numerical analysis of thin shells by curved 

triangular elements based on discrete Kirchhoff 

hypothesis. Proceedings of ASCE Symposium Appl. 

FEM in Civil Engineering, (CE’ 69), Vanderbilt 

University, Nashville, Tennessee, pp: 13-14. 

Erhart, T. and T. Borrvall, 2013. Drilling rotation 

constraint for shell elements in implicit and explicit 

analyses. Proceedings of the 9th European LS-

DYNA Conference, (LS-DYNA’ 13). 

Izzuddin, B.A., 2005. An enhanced co-rotational 

approach for large displacement analysis of plates. 

Int. J. Numerical Meth. Eng., 64: 1350-1374. 

 DOI: 10.1002/nme.1415 

Kim, J.H. and Y.H. Kim, 2002. Three-node macro 

triangular shell element based on the assumed 

natural strains. Comput. Mechan., 29: 441-458. 

DOI: 10.1007/s00466-002-0354-7 

Kim, C.H., F.K.Y. Sze and Y.H. Kim, 2003. Curved 

quadratic triangular degenerated- and solid-shell 

elements for geometric non-linear analysis. Int. J. 

Numerical Meth. Eng., 57: 2077-2097. 

 DOI: 10.1002/nme.756 

Li, Z.X., B.A. Izzuddin and L.H.Y. Wei, 2013. A four-node 

corotational quadrilateral elastoplastic shell element 

using vectorial rotational variables. Int. J. Numerical 

Meth. Eng., 95: 181-211. DOI: 10.1002/nme.4471 

Li, Z.X., B.A. Izzuddin and L. Vu-Quoc, 2008. A 9-node 

co-rotational quadrilateral shell element. Comput. 

Mechan., 42: 873-884. 

 DOI: 10.1007/s00466-008-0289-8 

Li, Z.X. and L. Vu-Quoc, 2007. An efficient co-

rotational formulation for curved triangular shell 

element. Int. J. Numerical Meth. Eng., 72: 1029-1062. 

DOI: 10.1002/nme.2064 

Llyly, M., R. Stenberg and T. Vihinen. 1993. A stable 

bilinear element for the Reissner-Mindlin plate 

model. Comput. Meth. Applied Mechan. Eng., 110: 

343-357. DOI: 10.1016/0045-7825(93)90214-I 

Marinković, D., H. Köppe and U. Gabbert, 2008. 

Degenerated shell element for geometrically 

nonlinear analysis of thin-walled piezoelectric active 

structures. Smart Mater. Struct., 17: 1-10. 

 DOI: 10.1088/0964-1726/17/01/015030 

Marinković, D., M. Zehn and Z. Marinković, 2012. 

Finite element formulations for effective 

computations of geometrically nonlinear 

deformations. Adv. Eng. Software, 50: 3-11. 

 DOI: 10.1016/j.advengsoft.2012.04.005 

Morley, L.S.D., 1963. Skew Plates and Structures. 1st 

Edn., Pergamon Press, New York, pp: 128. 

Nguyen-Thoi, T., P. Phung-Van, C. Thai-Hoang and     

H. Nguyen-Xuan, 2013. A Cell-based Smoothed 

Discrete Shear Gap method (CS-DSG3) using 

triangular elements for static and free vibration 

analyses of shell structures. Int. J. Mech. Sci., 74: 

32-45. DOI: 10.1016/j.ijmecsci.2013.04.005 

Nutti, B. and D. Marinković, 2014. An approach to 

efficient FEM simulations on graphics processing 

units using CUDA. Facta Univ., 12: 15-25.  

Rama, G., 2014. An automatized in-place analysis of a 

heavy lift jack-up vessel under survival conditions. 

Facta Univ., 12: 107-121.  

Rankin, C.C. and F.A. Brogan, 1986. An element 

independent corotational procedure for the treatment 

of large rotations. J. Pressure Vessel Technol., 108: 

165-174. DOI: 10.1115/1.3264765 

Samaei, A.T., S. Abbasion and M.M Mirsayat, 2011. 

Buckling analysis of a single-layer graphene sheet 

embedded in an elastic medium based on nonlocal 

Mindlin plate theory. Mechan. Res. Commun., 38: 

481-485. DOI: 10.1016/j.mechrescom.2011.06.003 

Shi, G. and Z. Voyiadjis, 1991. Geometrically nonlinear 

analysis of plates by assumed strain element with 

explicit tangent stiffness matrix. Comput. Struct., 

41: 757-763. DOI: 10.1016/0045-7949(91)90185-O 

Simo, J.C., D.D. Fox and M.S. Rifai, 1989. On a stress 

resultant geometrically exact shell model. Part II: 

The linear theory; computational aspects. Comput. 

Meth. Applied Mechan. Eng., 73: 53-92. 

 DOI: 10.1016/0045-7825(89)90098-4  

Wempner, G., 1969. Finite elements, finite rotations and 

small strains of flexible shells. Int. J. Solids Struct., 

5: 117-153. DOI: 10.1016/0020-7683(69)90025-0 

Wriggers, P. and F. Gruttmann, 1993. Thin shells with 

finite rotations formulated in biot stresses: Theory 

and finite element formulation. Int. J. Numerical 

Meth. Eng., 36: 2049-2071. 

 DOI: 10.1002/nme.1620361207 


