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Abstract: A new control design for teleoperation considering time delay 

is presented. Unlike existing methods for communication delays, the 

design presented here identifies and continuously moves the rightmost 

eigenvalues to desired positions. Signal transmission through the Internet 

using protocols (e.g., UDP) introduces time delays into the system. The 

time delays cause instability as the system is forced to make use of past 

information rather than the present in determining the output one agent 

sends to another agent. The proposed method controls rightmost 

eigenvalue in infinite spectrum such that the command signal to the cart 

ensures a sustained stabilized system. Experimental results are presented 

to validate the design method. 
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Introduction 

This paper looks at the stabilization of teleoperated 

systems under time delays. Systems react to external 
actions and the reaction is typically not instantaneous 

due to transport and propagation phenomena. 
Including information about the systems’ past in the 

model, can lead to instability of time delayed systems. 
Our aim in this study is to understand the effects of 

time delays on the stability of teleoperation and 

design a control system to reverse the adverse effects 
of the delay. Results are validated through 

experiment. For comparison, stable PV controller is 
designed for the teleoperation system without 

consideration of time delay using classical method. 

The gains are applied to a time delay system to 
investigate performance under time delay. The PV 

controller is then modeled considering time delay and 
the robustness is investigated. The design is validated 

with an experiment using two cart systems and 
application of the calculated controller gains. 

Time delays are inherent in various processes both 

natural and manmade, in biology, medicine, chemistry, 

physics, engineering, economics. Hence, modeling 

systems without delay can be approximations of the real 

life models (Kuang, 1993). For example, the presence of 

delay in an automatic regulator system may cause the 

appearance of self-exciting oscillations, of increase of 

overregulation and even of instability of the system 

(Norkin, 1972). Communicating between agents over the 

Internet also causes time delay. A perfect controller 

designed without consideration of time delay may 

become unstable due to the effects of the time delay. 

Time delay turns a finite-dimensional system into an 

infinite-dimensional system. The controller design 

methodology was developed based on eigenvalue based 

continuous pole placement method (Michiels et al., 

2002). The aim is to control the rightmost characteristic 

roots in a quasi-continuous way at desired locations in 

the Left Half-Plane (LHP). The difficulty is controlling 

infinite number of characteristic roots with finite 

number of controller parameters. In addition, 

nonlinearities in typical manipulators further 

complicate the analysis (Anderson and Spong, 1989). 

Two carts are subsequently used to implement the 

controller to experimentally validate the results. 

User Datagram Protocol (UDP), one of the transport 

layer protocols, is used to create process to process 

communication path for the cart system. The two host 

computers communicate through their IP addresses. 

Time delay arises due to connectionless information 

transfer through the Internet. In transporting signals from 

the master agent to the slave agent and feedback signals 

from the slave to the master, time delay arises. This 

delay causes undesired responses and instability. 
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Therefore, there is need to design a control system 

capable of stabilizing the plants considering the effects 

of the time delay. First a stable controller is designed 

without consideration of time delay and tested with 

time delay. The DDE-BIFTOOL is used to compute 

branches of steady-state solution. The DDE-BIFTOOL 

is a collection of routines written in MATLAB 

(Engelborghs et al., 2000) mostly used in scientific 

computing environments. Delay Differential Equations 

(DDEs) differ from Ordinary Differential Equations 

(ODEs) in that the derivative at any time depends on 

the solution at prior times. The package provides a tool 

for numerical bifurcation analysis of steady state 

solutions and periodic solutions of delay differential 

equations with multiple fixed, discrete delays. The 

DDEBIFTOOL is used to find the critical eigenvalues 

of the system. Given an equilibrium, it allows to 

approximate the rightmost, stability determining roots 

of the infinite dimensional characteristic equation. The 

results from the DDE-BIFTOOL are compare to 

simulation results and finally implemented on the two-

carts system for validation. 

The paper is organized as follows; Section 2 presents 

an overview of the experimental setup used for the study. 

In section 3, modeling of a teleoperation system with 

time delay is presented. Stability analysis is presented in 

section 4. Simulation and experimental results are 

presented in 5 and lastly, conclusions from the study are 

presented in section 6.  

Experimental Setup 

Two carts made by Quanser with two clients and 

Quarc UDP Server are used for the experiment. 

Multiagent synchronization without the effects of time 

delay was presented in (Okore-Hanson and Yi, 2016). 

This paper looks at synchronization of two cart systems 

under the effects of time delay. 

Time delay in transferring the signal from the master 

agent to the slave agent can be noticed by the motion of 

the slave. 

The setup is shown in Fig. 1. The setup consists of 

the following: 

 

• Two Carts with DC motors and encoder sensors  

• QPID data acquisition device by Quanser 

• 2 voltage amplifiers 

• 2 computers and hosts for implementing UDP 

communication using Matlab/Simulink 

 

The UDP transport protocol is responsible for 

creating a process to process connection and ensuring 

that the packet data gets to the correct process. If a 

stream of data is produced, the transport layer takes 

this stream of data from the application layer and 

break them into packets. Since UDP does not need to 

retransmit lost packets it is advantageous especially in 

situations where delay is of concern. The data is 

sampled at a rate of 0.002 Hz. 

 

 
 

Fig. 1. Schematic diagram of experimental tele-robotic system 



Theophilus Okore-Hanson and Sun Yi / American Journal of Engineering and Applied Sciences 2017, 10 (2): 327.333 

DOI: 10.3844/ajeassp.2017.327.333 

 

329 

Modeling and Control Design 

Generalized Delay Differential Equations (DDEs) 

can be represented in a matrix-vector form as: 
 

( ) ( ) ( )dx t Ax t A x t h= + −ɺ  (1) 

 
where, A and Ad are nxn coefficient matrices and x(t) is 

an nx1 state vector in the time domain. 

The cart is operated by a Faulhaber coreless DC 

motor. The transfer function without time delay is: 
 

( ) ( )

( 1) ( )
m

K X s
P s

s s V sτ
= =

+
 (2) 

 

where,τ = 0.05838[s] is the motor time constant, 

10.1436 radK
Vs−

 =   
 is the motor steady state gain, X(s) 

is the state vector in the Laplace domain and Vm(s) is 

the input voltage. The proportional-velocity controller 

is used to yield a stable control signal to regulate the 

motor position. It has the following structure for motors 

1 and 2 respectively: 
 

( ) ( )( )

( )
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( )
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where, Ku1 and Ku2 are proportional gains for motor 1 

and motor 2 delayed signals respectively. Kp1 and Kp2 are 

proportional control gains and Kv1 and Kv2 are velocity 

control gains. The displacements xc1 and xc2 are the 

measured positions of carts 1 and 2, respectively and xd 

is the desired reference. 

Finally, the Delay Differential Equation (DDE) for 

the PV control is written in the matrix vector-form as: 
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where, [ ]1 2 3 4

T
x x x x = [ ]1 1 2 2

T

c c c cx x x xɺ ɺ . The 

DDE-BIFTOOL is used to compute the rightmost, 

stability determining roots of the characteristic equation. 

Results from DDE-BIFTOOL and closed-loop control 

simulation is presented in subsequent sections. The block 

diagram for the PV control is shown in Fig. 2. 

Stability Analysis using Eigenvalues 

Stability criteria used to determine asymptotic 

stability of the teleoperation system is presented. The 

theoretical explanation is followed by simulation and 

experimental results using the two-cart system. Due to 

the infinite spectrum, it is difficult to determine the 

rightmost eigenvalues. The DDE-BIFTOOL is used to 

determine the stability of the system by allowing to 

calculate the rightmost, stability determining root of the 

characteristic Equation 4. 

The general DDE system is given by 

 

( ) ( ) ( )

( )
( )

1

2

( , ,

, ..,

, )m

d
x t f x t x t h

dt

x t h

x t h η

= −

− …

−

 (5) 

 

where, ( ) ( )1
, : *

n mn p nx t f R
+∈ →R R R

 
is a nonlinear 

smooth function depending on a number of parameters 

η∈R
p
 and delay hi>0, i = 1,…,m.  

Derivative ( )x tɺ  depends on the solution at previous 

time(s), it is therefore necessary to provide an initial 

history function to specify the value of the solution 

before time t = 0. 

The linearization of (5) around a solution x
*
(t) is the 

variational equation, given by, 

 

( ) ( ) ( ) ( ) ( )0

1

m

i i

i

d
y t A t y t A t y t h

dt =

= + −∑  (6) 

 

where, using f ≡ f(x0,x1,…,xm,η): 

 

( )
( ) ( )* * *

1 ), ), , , (

, 0,1, ,

m

i i

x t x t h x t h

f
A t i m

x
η− … −

∂
= = …
∂

 (7) 

 

If x
*
(t) corresponds to steady state solution: 

 

( ) ( )* * * *,  , , , 0nx t x with f x x η= ∈ … =R  

 

Then the matrices Ai(t) are constants Ai(t) ≡ Ai and the 

corresponding variational Equation 6 leads to a 

characteristic equation. Define the n×n - dimensional 

matrix ∆ as: 

 

( ) 0

1

m
hi

i

i

I A Ae λλ λ −

=

∆ = − −∑  
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Fig. 2. Block diagram for PV control of telerobotic system 
 

Then the characteristic equation reads: 
 

( )( )det ∆ 0Iλ =  (8) 

 
Equation 8 has an infinite number of roots λ∈C , which 

determine the stability of the steady-state solution x
*
. 

The steady state solution is (asymptotically) stable 

provided all roots of the characteristic equation in (8) 

have negative real parts (Engelborghs et al., 2000). 

From (Forde and Nelson, 2004) the transcendental 

equation of delay differential equation, at steady state 

determined for h = 0, will have the form: 
 

( ) ( ) ( )1 2, 0hP h P P e λλ λ λ −≡ + =  (9) 

 
where, h is the length of discrete time delay and P1 and 

P2 are polynomials in λ. We can rewrite Equation 9 as: 
 

0 0

0
N M

j j

j j

j j

a e bλτλ λ−

= =

+ =∑ ∑  (10) 

 
and assume that the steady state about which we have 

linearized is stable in the absence of delay. Therefore, for 

h = 0 all the roots of the polynomial have negative real 

part. As h varies, the roots change. We are interested in 

any critical value of h, such that the characteristic 

equation has a purely imaginary root (Norkin, 1972). 

That is to determine whether bifurcation can occur as a 

result of the introduction of delay. 

After finding a critical delay h
*
 and the point λ = iv

*
 at 

which the roots of a characteristic equation hit the 

imaginary axis, it is necessary to confirm that the root 

continues into the positive half-plane as h increases past h
*
.  

Simulation and Experiment 

The cart is operated by a DC motor with the 

following characteristics: Time constant τ = 0.05838[s] 

and the motor steady-state gain 10.1436 radK
Vs−

 =   
. To 

estimate the time delay in the UDP communication setup 

through the internet, the responses of the master and 

slave were plotted on the same axis and the time delay 

was estimated from the difference between the two 

responses. The time delay for the UDP cart system was 

estimated to be h = 1.62[secs].  

Figure 3 shows the response from gains calculated 

for a time delay h = 0 in Table 1. Without time delay the 

above calculated gains yield a stable response as shown 

in Fig. 3, however with time delay the system becomes 

unstable as shown in Fig. 4. It is therefore important to 

consider time delay when designing systems with 

delayed signals. 

The controller gains calculated at h = 0 were applied 

to Simulink block diagram with time delay h = 

1.62[secs], the unstable output is presented in Fig. 4. 

Using the DDEBIFTOOL with a time delay h = 

1.62[secs] and the parameters in Table 1 obtained at h 

= 0, instability of the system with the rightmost 

eigenvalue ℜ(λ) = 0.063 is confirmed. Result of the 

DDEBIFTOOL is shown in Fig. 5. The stable 

eigenvalues calculated without considering delay are 

shown in blue circles. The result agrees with the earlier 

results obtained in Fig. 4. Time delay shifts the 

rightmost eigenvalues to the unstable region. 

In order to verify the obtained results, the parameters 

calculated at time delay h = 0 are applied to the Carts 

system and the result is displayed in Fig. 6. 

Figure 7 shows poles obtained with the 

DDEBIFTOOL from gains calculated at h = 1.62 [secs]. 

The obtained results prove that time delay can limit and 

degrade the achievable performance of controlled 

systems and even induce instability (Yi et al., 2010). It is 

therefore imperative to consider time delay when 

designing control systems. 
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Fig. 3. PV Control simulated cart response at delay h = 0 and ℜ(λ) = -1.1853 
 

 
 

Fig. 4. PV control simulated response at time delay h = 1.62[secs] 
 

 
 

Fig. 5. Rightmost eigenvalue ℜ(λ) = 0.138 for delay Td = 1.62[secs]  
 

 
 

Fig. 6. Cart position from actual system with control parameters calculated at delay h = 0 
 

(
)

 
 

Fig. 7. Rightmost eigenvalue ℜ(λ) = -0.965 delay h = 1.62[secs] 
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Fig. 8. Simulated cart response time delay h = 1.62[secs] rightmost eigenvalue ℜ(λ) = -0.965 

 

 
 

Fig. 9. Continuous shift of rightmost eigenvalue as time-delay changes 
 

 
 

Fig. 10. Experimental cart response PV-controller 

 
Table 1. Controller gains calculated with time delay, h = 0 

Kp Ku 

Kp1 = 50, Kp2 = 80 Ku1 = 5, Ku2 = 80.0 

 
Table 2. Controller gains with delay h = 1.62 s and ℜ(λ) = -0.965 

Kp Kv 

Kp1 = 50, Kp2 = 35 Kv1 = Kv2 = 0.5 

 
Table 3. Controller gains for h = 1.62s and λ = -1.12 

Kp Kv 

Kp1 = 80, Kp2 = 35 Kv1 = Kv2 = 0.5 

 

In the continuous pole placement method used in this 

study, unstable eigenvalues are shifted to the stable 

region by adjusting the sensitivity of the rightmost 

eigenvalues with respect to the feedback gains. The 

rightmost eigenvalues are first computed using the DDE-

BIFTOOL. The computed eigenvalues are moved in the 

direction of the left half-plane by applying small changes 

to the feedback gains using their sensitivities. 

Response from a PV controller with controller gains 
in Table 2 obtained by sensitivity analysis explained 
above considering time delay h = 1.62[secs] are shown. 

Simulation of the response with the controller gains 

obtained by the continuous pole placement method is 

shown in Fig. 8 with stabilized output. 
Using the continuous pole placement method, the 

unstable eigenvalues can be shifted to the left half plane in a 
quasi-continuous way by applying small changes to the 
feedback gain, while monitoring the eigenvalues with large 
real parts (Michiels et al., 2002). Figure 9 shows continuous 
variation of the eigenvalues with change in time delay. 

The continuous pole placement is used to obtain the 

controller gains in Table 3. The controller gains are 

applied to the cart system through the internet and the 

response is displayed in Fig. 10. 

Conclusion 

A stabilization control method in teleoperation was 

developed and implemented. The paper showed that a 
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stabilized control system without consideration of the 

effect of time delay may yield instability. The designed 

controller considering the effect of time delay effectively 

stabilized the teleoperated system using the Cart systems. 

The DDE-BIFTOOL in Matlab provided an efficient tool 

in determining the rightmost eigenvalues. This method is 

very efficient especially when the dimension of the delay 

differential equation system is large. 
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