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Abstract: Purpose of this study is the study of loading and contact 

problems encountered at rotating machine elements and especially at 

tooth gears. Tooth gears are some of the most commonly used 

mechanical components for rotary motion and power transmission. This 

fact proves the necessity for improved reliability and enhanced service 

life, which requires precise and clear knowledge of the stress field at 

gear tooth. This study investigates three different study cases of the 

stresses occurring during the single tooth meshing, regarding the gear 

module, power rating and number of teeth as variable parameters. Using 

finite elements analysis, the stresses and deflections on discrete points 

of contact are derived. Finally from the finite elements analysis results 

calculated the peripherical bending stiffness of the loaded tooth. From 

FEM analysis and analytical calculation the magnitudes of root stresses, 

contact displacement and peripherical bending stiffness, during the 

single tooth contact, are presented with graphs versus the height of the 

contact to the total tooth height ratio. During the single tooth contact the 

values of the Equivalent and 1st principal stress at the addendum of the 

tooth, the bending deflection and the peripherical bending stiffness at 

the point of contact are proportional to the height of the contact in 

respect of the total tooth height. 

 

Keywords: Gears, Gears Tooth, Highest Point of Single Tooth Contact 
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Introduction 

Most mechanical systems including gear sets are 

sensitive to operating conditions such as excessive 

applied torque, bad lubrication and manufacturing or 

installation problems. When the tooth surfaces are 

subjected to excessive stress conditions, failure of the 

tooth surface may occur. This can cause removal and 

plastic deformation of the contacting tooth surfaces and 

fatigue crack apparition. Many works have been carried 

out to calculate this stiffness. Finite Elements Models 

(FEM) are the most popular tools used to do this. 

However, analytical methods showed good results in 

calculating tooth stiffness. They offer satisfying results, 

good agreements compared with FEM and reduced 

computation time (Fakher et al., 2009). 

First systematic attempt to calculate the position of 

critically stressed point is attributed to Lewis (1882), 

who considered that the inscribed isosceles parabola 

tangent to the dedendum of the tooth flank defines the 

critically stressed point which is located at the point of 

tangency at the side which is loaded by tensile stresses. 

Methods, such as AGMA standard and DIN 
(Kawalec et al., 2006), Heywood’s semi-empirical 
method (Heywood, 1962) and Dolan and Broghamer’s 
(1942) empirical formula, can be found on references 
and are recommended for the determination of the 
precise stress level caused by the phenomenon of the 

stress concentration at gear tooth root. 
According to method proposed by DIN 3990 (1987) 

and ISO 6336:3 (1996), standards, the bending stresses 

calculation at gear tooth root is based on the concept of 
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“30°C tangent”, (Heywood, 1962), which proves to be 

a disadvantage. Thus, this method is quite 

approximate and should not be applied to the design 

of high load gearings. 

Heywood’s method (Heywood, 1962), is applied for 

the determination of maximum real stress at critically 

stressed point at the root of a stubby beam with constant 

width. This method was later modified in order to make 

more precise prediction of the critical point which is 

located at a lower position from then on. 

Materials and Methods 

The previously mentioned methods of maximum 

stress calculation at gear tooth root will not be applied 

to the present study, because the determination of the 

necessary geometric features, especially at the critical 

region of gear tooth fillet which requires more precise 

computations, is a time-consuming procedure. Instead, 

the applied method assumes that the maximum load 

during gear tooth meshing is applied to the Highest 

Point of Single Tooth Contact (HPSTC), (Spitas et al., 

2005; Raptis et al., 2010). 

Gear Tooth Bending Stress Calculation According 

to the Gearing Theory 

The gear tooth bending stress calculations are made 

separately for pinion and meshing gear tooth. 

Assuming the gear tooth is a stubby cantilever beam, 

we calculate the stresses at gear tooth root, which are 

growing by the load Fn application. If we resolve load 

Fn into its components, there are the tangential 

component and the radial component. The first one, 

assuming that it’s a transversal load, bends the gear 

tooth causing bending and shear stresses while the 

second one, causes compressive stress. That means that 

there are three kind of stresses which are applying at 

gear tooth root. These three kinds of stresses are, the 

bending stress, the compressing stress and the shear 

stress, as seen at Fig. 1. 

Since the overlap coefficient (or contact ratio) is 

greater than 1 (ε > 1), it means that for a certain period of 

the implementation, a second pair of teeth comes into 

engagement before the first pair breaks contact. 

Therefore, load Fn is acting on both pairs of teeth. As 

seen at Fig. 2: 

 

• A is the point of contact at pinion root. From this 

point contact begins, so load Fn is distributed at two 

pairs of gear teeth 

• B is the internal single point of contact, according 

to pinion. The second pair of gear tooth breaks 

contact on point E. That means that only a single 

tooth pair is in contact subjected to the total load 

Fn at point B 

 

 
 

Fig. 1. Gear tooth flank loading 
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Fig. 2. Single points of contact at external tooth gear 

 

 
 

Fig. 3. Loads at spur gear teeth 
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Loads Applied at Pair of Gear Teeth 

Assuming that only one pair of spur gear teeth is on 

contact during a gear tooth meshing, then gear tooth 1 

profile which transmits motion, stresses gear tooth 2 

profile which takes motion. Transversal load Fn which 

applies at the gear teeth point of contact, coincides (if we 

put that point on the involute of the tooth curve) with the 

tooth contact path n-n, which crosses the pitch point C 

(Fig. 3). We assume that load Fn applies at the middle of 

the gear tooth length b. 

Load Fn1 applies at tooth profile following a fatigue 

failure line direction. Ignoring the fact of friction, load 

Fn2, which is numerical equivalent with load Fn1 but in 

opposite sense, set on motion gear tooth 2, following 

also a fatigue failure direction. 

Loads Fn1 and Fn2, resolve giving radial components 

Fr1, Fr2 and tangential components Ft1, Ft2 which 

transmit torque from gear tooth 1 to gear tooth 2. 

The torque Mt at gear 1 with a pitch diameter d1, is: 

 

1 1 ( )
2000

t
t

F
N m

d
M = ⋅

⋅
 (1) 

 

The tangential load is calculated by using the equation: 
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The transversal load is calculated by using the equation: 

 

1
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The radial load is calculated by using the equation: 

 

1 1
)tan (

r t
F F Nα= ⋅  (4) 

 

where, α is pressure angle, is the angle between the path 

contact and the common tangent of the two pitch circles 

at pitch point C. 

Formulas for Calculating the Gear Tooth Strength 

The section Sf, to the dedendum of the tooth flank 

(Fig. 1), which affects the calculating formulas of gear 

tooth strength, can be calculated by using the concept of 

“30°C tangent” (Heywood, 1962), or the general theory. 

The bending stress calculation at gear tooth root is made 

by using the following formula: 
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The transversal load Fu is calculated by using the 

following formula: 
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The torque Mt is calculated by using the following 

formula: 
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The gear tooth width is calculated by using the 

following formula: 
 

b m λ= ⋅  (8) 

 
Where: 

λ = A direction factor which depends on the gear 

tooth material quality and the bear way 

YF = A profile factor which depends on the shift and 

the number of gear teeth 

Yε = An overlap coefficient 

ΚFα = A factor of distribution load which depends on 

the gear tooth material quality 
 

Highest Point of Single Tooth Contact (HPSTC) 

During Tooth Meshing 

It is proven that the normal load PN on a gear tooth 

is not maximum when applied at the addendum circle. 

As shown in Fig. 4 during gear tooth meshing, from 

point A where tooth contact begins to point A’ of 

tooth contact path and from point B’ to point B, where 

tooth contact completes, two pairs of teeth ate in 

contact simultaneously. On the other hand, between 

points A’ and B’ only a single tooth pair is in contact 

subjected to the total load. 

It can, thus, be assumed that the worst loading 

condition for a tooth of gear 1 does not occur when 

the load is applied to the highest addendum point 

(point B), because the total load is distributed to two 

pairs of gear teeth at this point, but when applied to 

point B’ of contact path where only a single pair or gear 

teeth is meshing, (Niemann, 1982; Spitas et al., 2005; 

Tsolakis and Raptis, 2011).  

Point A’ is defined The Lowest Point of Single 

Tooth Contact (LPSTC) and point B’ is the Highest 

Point of Single Tooth Contact (HPSTC) for gear 1. 

That is, during portion A’B’ of the contact path only a 

single tooth of each gear is loaded, whereas during 

portions AA’ and BB’ the load is distributed to the 

teeth of each gear. Thus, we can infer that the 

maximum gear tooth loading occurs at a point on part 

A’B’ of the contact path. 
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Fig. 4. (a) Gear teeth profiles of a gear transmission stage (b) Position of tooth load variation 

 

 
 

Fig. 5. Geometric determination of HPSTC 

 
Table 1. Analytical data for each gear 

Gear No z1 = z2 m (mm) P (KW) n (rpm) Mt (Nm) 

1 18 6 20 1250 131,78 

2 20 10 20 1450 131,78 

3 22 8 20 1250 131,78 
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Determination of the point of maximum stresses 

during gear meshing (Fig. 4), (Niemann, 1960;        

Spitas and Spitas, 2007; Costopoulos and Spitas, 2009), 

is as follows: 

 

gAB t AC ABε= ⋅ = +  (9) 
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Substituting Equation 10 and 11 to Equation 9 results 

Equation 12: 
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HPSTC is located at point B’. During parts AA’ and 

BB’ of the contact path, load is transmitted through two 

pairs of gear teeth, while during part A’B’ only a single 

pair of gear teeth is subjected to the total load. The 

lengths of parts AB’ and A’B equal the gear circular 

pitch, tg, at the base circle. Thus, position of HSPTC is 

determined according to Fig. 5 as follows: 

 

( )
2 2 2

02 02 0 02 0
cos sinr m r rAC α α+ − ⋅ − ⋅=  (13) 

 

0
' ' cosgCB AB AC t AC m ACπ α= − = = ⋅ ⋅ −−  (14) 

 

Using triangle O1B’C, (Spitas et al., 2005; Spitas and 

Spitas, 2007; Raptis et al., 2012), radius rB’ can be 

calculated according to the following Equation: 

 

( )2 ' 2 0

01 01 0
2 ' cos 90B r CB r CBr α′ + − ⋅ ⋅ ⋅ +=  (15) 

 

Cartesians coordinates of point H are: (x, y) = (rB 

sinφ, rB cosφ) 

Results and Discussion 

Bending Stress Finite Element Analysis 

For the purposes of this investigation, computed 

Finite Element Analysis was used to simulate the loading 

of different gear teeth (Table 1), with one-tooth models 

fixed at their boundary (Fig. 6-8). For each tooth model, 

11 loaded models have been analyzed. 

 
 
Fig. 6. Solid model structure 

 

 
 
Fig. 7. Equivalent Stress at the HPSTC for m = 6 mm model 

 

 
 
Fig. 8. 1st Principal Stress at the HPSTC for m = 6 mm model 
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Fig. 9. Diagram between gear teeth h ratio and Equivalent - 1st Principal Stress (m = 6 and z = 18); Gear 2: (z1 = z2 = 20, m = 10) 

 

 
 

Fig. 10. Diagram between gear teeth h ratio and Equivalent - 1st Principal Stress (m = 8 and z = 22) 

 

 
 

Fig. 11. Diagram between gear teeth h ratio and Equivalent - 1st Principal Stress (m = 10 and z = 20) 
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Fig. 12. x-Displacement at the HPSTC for m = 6 mm model 

 

 
 

Fig. 13. Diagram between gear teeth height ratio and x displacement (mm) 
 

 
 

Fig. 14. Diagram between Gear Teeth Height ratio and Kx (N/mm) 
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Table 2. Parameters and FEA result values for m = 6 mm model 

Contact distance from Pressure Contact distance from Tangential  Equivalent 1st Principal Gear Teeth 

the gear 1center (mm) angle αο the gear 2center (mm) Load Ft (Ν) Stress (Ν/mm2) Stress (Ν/mm2) height ratio  

52,72 15,739 55,56 2499,6 224,00 212,50 0.4485 

53,00 16,794 55,28 2486,3 223,50 214,90 0.4700 

53,29 17,778 54,99 2473,0 226,.60 221,20 0.4915 

53,57 18,702 54,71 2459,9 232,40 227,30 0.5130 

53,86 19,575 54,42 2446,9 234,30 235,60 0.5345 

54,14 20,403 54,14 2434,1 240,80 242,40 0.5561 

54,42 21,192 53,86 2421,4 243,60 247,30 0.5776 

54,71 21,947 53,57 2408,8 249,70 255,90 0.5991 

54,99 22,670 53,29 2396,4 254,30 262,20 0.6206 

55,28 23,364 53,00 2384,1 260,70 271,10 0.6421 

55,56 24,033 52,72 2371,9 266,30 278,90 0.6636 

 

Table 3. Parameters and FEA result values for m = 8 mm model 

Contact distance from  Pressure Contact distance from Tangential Equivalent 1st Principal Gear Teeth 

the gear 1 center (mm) angle α
ο
 the gear 2 center (mm) Load Ft (Ν) Stress (Ν/mm

2
) Stress (Ν/mm

2
) height ratio  

97,96 16,415 102,412 1345,228 75,57 79,60 0.4576 

98,41 17,272 102,171 1339,145 76,12 80,32 0.4772 

98,85 18,083 101,930 1333,117 77,70 81,15 0.4968 

99,30 18,854 101,688 1327,142 79,92 82,68 0.5165 

99,74 19,589 101,447 1321,221 82,32 83,90 0.5361 

100,19 20,292 101,206 1315,353 84,53 85,22 0.5558 

100,63 20,966 100,965 1309,536 86,27 87,13 0.5754 

101,08 21,615 100,724 1303,771 89,88 88,71 0.5951 

101,52 22,240 100,482 1298,056 91,56 89,29 0.6147 

101,97 22,844 100,241 1292,391 93,82 90,69 0.6343 

102,41 23,428 100,000 1286,775 95,95 92,14 0.6540 

 
Table 4. Parameters and FEA result values for m = 10 mm model 

Contact distance from Pressure Contact distance from Tangential Equivalent 1st Principal Gear Teeth 

the gear 1 center (mm) angle α
ο
 the gear 2 center (mm) Load Ft (Ν) Stress (Ν/mm

2
) Stress (Ν/mm

2
) height ratio  

86,45 16,960 89,91 1524,31 98,65 105,5 0.4528 

86,80 17,693 89,56 1518,24 98,73 107,2 0.4730 

87,14 18,392 89,22 1512,22 101,6 108,6 0.4933 

87,49 19,061 88,87 1506,24 107,6 111,4 0.5135 

87,84 19,704 88,53 1500,31 109,3 112,8 0.5337 

88,18 20,322 88,18 1494,43 112,8 114,7 0.5540 

88,53 20,917 87,84 1488,60 114,7 116,2 0.5742 

88,87 21,493 87,49 1482,81 120,1 117,2 0.5944 

89,22 22,050 87,14 1477,06 122,5 119,9 0.6146 

89,56 22,590 86,80 1471,36 125,5 120,9 0.6349 

89,91 23,113 86,45 1465,70 127,4 122,4 0.6551 

 
Table 5. x Displacements versus tooth height ratio 

m = 6 mm  m = 8 mm  m = 10 mm 

------------------------------------------------- -------------------------------------------------- ------------------------------------------------- 

Gear Teeth x Displacement at the Gear Teeth x Displacement at the Gear Teeth x Displacement at the 

height ratio point of contact (mm) height ratio point of contact (mm) height ratio point of contact(mm) 

0.4485 0,0062 0.4576 0,0045 0.4528 0,0043 

0.4700 0,0064 0.4772 0,0046 0.4730 0,0045 

0.4915 0,0067 0.4968 0,0048 0.4933 0,0046 

0.5130 0,0070 0.5165 0,0050 0.5135 0,0049 

0.5345 0,0073 0.5361 0,0052 0.5337 0,0051 

0.5561 0,0077 0.5558 0,0054 0.5540 0,0053 

0.5776 0,0081 0.5754 0,0057 0.5742 0,0055 

0.5991 0,0084 0.5951 0,0059 0.5944 0,0058 

0.6206 0,0088 0.6147 0,0061 0.6146 0,0043 

0.6421 0,0092 0.6343 0,0064 0.6349 0,0045 

0.6636 0,0096 0.6540 0,0045 0.6551 0,0046 
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Table 6. Kx stiffness versus tooth height ratio 

m = 6 mm  m = 8 mm  m = 10 mm 

------------------------------------------- ------------------------------------------ ------------------------------------------ 

Gear Teeth  Gear Teeth  Gear Teeth 

height ratio Kx N/mm height ratio Kx N/mm height ratio Kx N/mm 

0,4485 300077,3 0,4576 268695,7 0,4528 239620,3 

0,47 288094 0,4772 260106,2 0,473 230847,3 

0,4915 276312,9 0,4968 248801,7 0,4933 222297,3 

0,513 264789,1 0,5165 239732,9 0,5135 214470,3 

0,5345 253829,7 0,5361 231208,7 0,5337 207120,4 

0,5561 243165,1 0,5558 222518,1 0,554 200450 

0,5776 233273,7 0,5754 215052,9 0,5742 193890,5 

0,5991 223867,2 0,5951 207588,6 0,5944 187619,9 

0,6206 214536,4 0,6147 200769,4 0,6146 181698,8 

0,6421 205877,3 0,6343 194290,1 0,6349 176027,1 

0,6636 197327,2 0,654 188127,5 0,6551 170298,5 

 

Bending Deflection Finite Element Analysis 

For bending deflection calculation the x Displacement 

at the point of contact values computed for all the single 

tooth models. Since the loading forces distributed to a 

mirror four lanes facial area which, as described, the effect 

of Hertz deflection was diminished, the value of the x 

Displacement derived from FEA at the contact point 

representing the circumference bending deflection with 

good approximation. 

Stiffness Estimation 

Finite element contact between pinion and wheel tooth 

pairs is not taken into account (Chaari et al., 2009). In 

order to find the singular stiffness of one tooth of the 

pinion, we follow the same load analysis as we have 

already described in chapter Materials and Methods. 

In order to find the singular stiffness of one tooth of 

the pinion, a linear distributed force F, which simulates 

the action of the meshing tooth of the wheel, is applied to 

the tooth flank normal to the involute profile and along the 

line of action at the appropriate nodes. This force is 

introduced by its two projections on _x axis and _y axis. 

Two deflections δx and δy are obtained and the deflection 

of the tooth along the direction of the force is given by: 
 

( ) ( )cos  sinm mx yδ δ α δ α= +  (16) 

 
where, αm is the operating pressure angle. 

The single stiffness of the tooth is then obtained by: 
 

/xK Fu xδ=  (17) 

 
Taking into account the data of Table 2-4, we identify 

single stiffness Kx of the tooth, due ratio (17). 

Conclusion 

In this study a discrete loading model of gears’ teeth 

was created and analyzed with method with application 

of FEA software. The mesh load was applied in discrete 

loading lanes all along the tooth contact surface from the 

LPSTC to the HPSTC. 
From the simulation of three different modul teeth, it 

eventuates (Table 5 and 6, Fig. 14). 
 
• The root bending stresses  

• The bending displacements at the points of contact 
 

Subsequently, evaluating the bending 

displacements data, the peripherical stiffness of each 

modeled tooth was calculated. 
The outcome results are presented in graphs versus 

the ratio of the contact point height to the total tooth 
height. The main conclusion that firstly all the above 
magnitudes shows linear distribution as the contact point 
moves from LPSTC to the HPSTC and secontly the 
bending stress and the deflection are in linearly 
proportional to gear teeth height ratio.  
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