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Abstract: Rigid memory mechanisms have played an important role in the 
history of mankind, contributing greatly to the industrial, economic, social 
changes in society, thus leading to a real evolution of mankind. Used in 
automated tissue wars, in cars as distribution mechanisms, automated 
machines, mechanical transmissions, robots and mechatronics, precision 
devices and medical devices, these mechanisms have been real support for 
mankind along the time. For this reason, I considered useful this paper, which 
presents some dynamic models that played an essential role in designing rigid 
memory mechanisms. 
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Introduction 

The development and diversification of road vehicles 
and vehicles, especially of cars, together with thermal 
engines, especially internal combustion engines (being 
more compact, robust, more independent, more reliable, 
stronger, more dynamic etc.)., has also forced the 
development of devices, mechanisms and component 
assemblies at an alert pace. The most studied are power 
and transmission trains. 

The four-stroke internal combustion engine (four-
stroke, Otto or Diesel) comprises in most cases (with the 
exception of rotary motors) and one or more camshafts, 
valves, valves and so on. 

The classical distribution mechanisms are robust, 
reliable, dynamic, fast-response and although they 
functioned with very low mechanical efficiency, taking 
much of the engine power and effectively causing 
additional pollution and increased fuel consumption, they 
could not be abandoned until the present. Another 
problem was the low speed from which these mechanisms 
begin to produce vibrations and very high noises. 

Regarding the situation realistically, the mechanisms 
of cam casting and sticking are those that could have 
produced more industrial, economic, social revolutions 
in the development of mankind. They have contributed 
substantially to the development of internal combustion 
engines and their spreading to the detriment of external 
combustion (Steam or Stirling) combustion engines. 

The problem of very low yields, high emissions and 
very high power and fuel consumption has been greatly 
improved and regulated over the past 20-30 years by 
developing and introducing modern distribution 

mechanisms that, besides higher yields immediately 
deliver a high fuel economy) also performs optimal 
noise-free, vibration-free, no-smoky operation, as the 
maximum possible engine speed has increased from 
6000 to 30000 [rpm]. 

The paper tries to provide additional support to the 
development of distribution mechanisms so that their 
performance and the engines they will be able to 
further enhance. 

Particular performance is the further increase in the 
mechanical efficiency of distribution systems, up to 
unprecedented quotas so far, which will bring a major 
fuel economy. 

The current oil and energy reserves of mankind are 
limited. Until the implementation of new energy 
sources (to take real control over fossil fuels), a real 
alternative source of energy and fuel is even "the 
reduction in fuel consumption of a motor vehicle", 
whether we burn oil, gas and petroleum derivatives, 
whether we will implement biofuels first and later 
hydrogen (extracted from water). 

The drop in fuel consumption for a given vehicle type 
over a hundred kilometers traveled has been consistently 
since 1980 and has continued to continue in the future. 

Even if hybrids and electric motor cars are to be 
multiplied, let us not forget that they have to be charged 
with electricity, which is generally obtained by burning 
fossil fuels, especially oil and gas, in a current planetary 
proportion of about 60%. We burn oil in large heat 
plants to warm up, have domestic hot water and 
electricity to consume and some of that energy is extra 
and we add it to electric cars (electric vehicles), but the 
global energy problem is not resolved, the crisis even 
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deepens. This was the case when we electrified the 
railroad for trains, when we generalized trams, 
trolleybuses and subways, consuming more electric 
power produced mainly from oil; oil consumption has 
grown a lot, its price has had a huge leap and we look at 
how the reserves disappear quickly. 

Generally generalizing electric cars (though we are 
not really ready for this), we will give a new blow to oil 
and gas reserves. 

Fortunately, biofuels, biomass and nuclear power 
have developed very much lately (currently based on 
the nuclear fission reaction). These together with the 
hydroelectric power plants have managed to produce 
about 40% of the total energy consumed globally. 
Only about 2-3% of global energy resources are 
produced by various other alternative methods 
(despite the efforts made so far). 

This should not disarm us and abandon the 
implementation of solar, wind, etc. 

However, as a first necessity to further reduce the 
share of global energy from oil and gas, the first 
vigorous measures that will need to be pursued will be to 
increase biomass and biofuels production along with the 
widening of the number of nuclear power plants (despite 
some undesirable events, which only show that nuclear 
fission power plants must be built with a high degree of 
safety and in no way eliminated from now on and they 
are still the one that has been so far "a bad evil "). 

Alternative sources will take them on an 
unprecedented scale, but we expect the energy they 
provide to be more consistent in global percentages so that 
we can rely on them in a real way (otherwise, we risk that 
all these alternative energies remain a sort of "fairy tale"). 

Hydrogen fuel energy "when it starts when it stops" 
so there is no real time now to save energy through them, 
so they can no longer be priority, but the trucks and 
buses could even be implemented now that the storage 
problems have been partially solved. The bigger problem 
with hydrogen is no longer the safe storage, but the high 
amount of energy needed to extract it and especially for 
its bottling. The huge amount of electricity consumed for 
bottling hydrogen will have to be obtained entirely 
through alternative energy sources, otherwise hydrogen 
programs will not be profitable for humanity at least for 
the time being. Personally, I think the immediate use of 
hydrogen extracted from the water with alternative 
energies would be more appropriate for seagoing vessels. 

Maybe just to say that due to his energy crisis (and 
not just energy, from 1970 until today), the production of 
cars and cars has increased at an alert pace (but naturally) 
instead of falling and they have and were marketed and 
used. The world's energy crisis (in the 1970s) began to rise 
from around 200 million vehicles worldwide, to about 350 
million in 1980 (when the world's energy and global fuel 
crisis was declared), about 500 million vehicles 

worldwide and in 1997 the number of world-registered 
vehicles exceeded 600 million. 

In 2010, more than 800 million vehicles circulate across 
the planet (Frăţilă et al., 2011; Pelecudi, 1967; Antonescu, 
2000; Comănescu et al., 2010; Aversa et al., 2016a; 2016b; 
2016c; 2016d; 2017a; 2017b; 2017c; 2017d; 2017e;      
Mirsayar et al., 2017; Cao et al., 2013; Dong et al., 2013; 
De Melo et al., 2012; Garcia et al., 2007; Garcia-Murillo 
et al., 2013;    He et al., 2013; Lee, 2013; Lin et al., 2013; 
Liu et al., 2013; Padula and Perdereau, 2013; Perumaal 
and Jawahar, 2013; Petrescu and Petrescu, 1995a; 1995b; 
1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 
2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 2016b; 
2016c; 2016d; 2016e; 2013; 2012a; 2012b; 2011; Petrescu 
et al., 2009; 2016a; 2016b; 2016c; 2016d; 2016e; 2017a; 
2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 
2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 
2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 2017v; 
2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 2017ac; 
2017ad; 2017ae; Petrescu and Calautit, 2016a; 2016b; 
Reddy et al., 2012; Tabaković et al., 2013; Tang et al., 
2013; Tong et al., 2013; Wang et al., 2013; Wen et al., 
2012; Antonescu and Petrescu, 1985; 1989; Antonescu et 
al., 1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 
2000b; 2001; List the first flights, From Wikipedia; Chen 
and Patton, 1999; Fernandez et al., 2005; Fonod et al., 
2015; Lu et al., 2015; 2016; Murray et al., 2010; 
Palumbo et al., 2012; Patre and Joshi, 2011; Sevil and 
Dogan, 2015; Sun and Joshi, 2009; Crickmore, 1997; 
Donald, 2003; Goodall, 2003; Graham, 2002; Jenkins, 
2001; Landis and Dennis, 2005; Clément, Wikipedia; 
Cayley, Wikipedia; Coandă, Wikipedia; Gunston, 2010; 
Laming, 2000; Norris, 2010; Goddard, 1916; Kaufman, 
1959; Oberth, 1955; Cataldo, 2006; Gruener, 2006; Sherson 
et al., 2006; Williams, 1995; Venkataraman, 1992; 
Oppenheimer and Volkoff, 1939; Michell, 1784; Droste, 
1915; Finkelstein, 1958; Gorder, 2015; Hewish, 1970). 

Materials and Methods 

Dynamic Model with a Degree of Freedom with 

Double Internal Damping 

In the paper (Wiederrich and Roth, 1974), there is 
presented a basic single-degree model with two springs 
and double internal damping to simulate the movement 
of the cam and punch mechanism (Fig. 1) and the 
relationships (1-2): 
 

2 2

2 2 2 1 1 1
2 2x x x y yξ ω ω ω ξ ω+ + = +ɺɺ ɺ ɺ  (1) 

 

 

( )

( )

1 21

1 2

1 21

1 1 2 2

; ;

2 ;2

K KK

M M

c cc

M M

ω ω

ξ ω ξ ω

+

= =

+

= =

 (2) 
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Fig. 1: Dynamic model with a degree of freedom with double internal damping 

 

 
 

Fig. 2: Dynamic model with two degrees of freedom without internal damping 

y = the input movement imposed 
by the cam profile, 
x = the output movement, of the 
follower, 
k1 and k2 represent the system 
elasticity 
c1 and c2 depreciation in the system 
and M is the reduced mass. 
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The motion equation of the proposed system (1) uses 
the notations (relations) in the system (2); ω1 and ω2 
represents the system's own pulses and is calculated from 
the relationship system (2), depending on the elasticities 
K1 and K2 of the system in Fig. 1 and the reduced mass 
M of the system. 

Dynamic Model with Two Degrees of Freedom 

without Internal Damping 

In the paper (Fawcett and Fawcett, 1974), the basic 
dynamic model of a mechanism with cam, barrel and 
valve, with two degrees of freedom, without internal 
damping (Fig. 2, Equation 3-5) is presented: 
 
y x z= +  (3) 

 

( )
2

1 1 02

d y
m K K y K x s

dt
+ + = −  (4) 

 
1 1 1 1

( )
n

F m x K y x m x k z= − − = −ɺɺ ɺɺ  (5) 
 
Dynamic Model with a Degree of Freedom with 

Internal and External Damping 

A dynamic model with both system damping, 
external (spring valve) and internal damping is the one 
presented in the paper (Jones and Reeve, 1974), (Fig. 3). 

Dynamic Model with a Degree of Freedom, Taking 

into Account the Internal Damping of the Valve 

Spring 

A dynamic model with a generalized degree of freedom 
is presented in (Tesar and Matthew, 1974), (Fig. 4). 

The motion equation is written as (6): 
 

( )2

2

rr

K KM d y C dy
y S

K dt K dt K

+

+ + =  (6) 

 
Using the known relation (7), Equation (6) takes the 

form (8): 
 

 ( )
K

K K

K

d y
y

dt
ω=  (7) 

 
 '' '

M C K
S y y yµ µ µ= + +  (8) 

 
where the coefficients µ have the form (9): 
 

( )
2
; ; 1,

rr

M C K r

K KM C
withK K

K K K
µ ω µ ω µ

+

= = = ≅ <<  (9) 

 
The vertical reaction has the form (10): 

 
( ) 2

'' '
K r r

F K S y P M y C y K y Pω ω= − + = + + +  (10) 

 
 
Fig. 3: Dynamic model with a degree of freedom with internal 

and external damping 
 

 
 
Fig. 4: Dynamic model with a degree of freedom, taking into 

account the internal damping of the valve spring 
 

 
 
Fig. 5: Dynamic two-degree, dual damping model 

m Mass 

Elasticity 
Internal damping 

External damping 

Cam 

Valve spring elasticity Valve spring damping, 

Kr Cr 

Output 
The equivalent 

mass of the system 

M 

y,y,y 

The equivalent mass of the system 

K 

Input 

S 

Kr1 Cr1 

M1 

Kr2 
Cr2 

K1 

1 1 1
, ,y y yɺ ɺɺ  

2 2 2
, ,y y yɺ ɺɺ  

M2 

K2 

S 

follower 



Florian Ion Tiberiu Petrescu / American Journal of Engineering and Applied Sciences 2018, 11 (4): 1242.1257 

DOI: 10.3844/ajeassp.2018.1242.1257 

 

1246 

Dynamic Two-Degree, Dual Damping Model 

Also in the paper (Tesar and Matthew, 1974) is 
presented the model with two degrees of freedom (Fig. 5) 
with double damping. 

The calculation relationships used are (11-16): 
 
 

4 1 3 1 2 1 1 1 0 1
S P y P y P y P y P y′′′′ ′′′ ′′ ′= + + + +  (11) 

 

 41 2

4

1 2

M M
P

K K
ω=  (12) 

 

 
( )2 1 1 2 3

3

1 2

r r
M C M C
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=  (13) 

 

( ) ( )2 1 1 1 1 2 2 1 2 2

2

1 2

r r r r
M K K M K K K C C

P
K K

ω

 + + + + +  =  (14) 

 

( ) ( )2 1 1 1 1 2 2

1

1 2

r r r r
C K K C K K K

P
K K

ω

 + + + +  =  (15) 

 
( )1 1 1 2 2 1 1 2 1 2

0

1 2

r r r r r
K K K K K K K K K K

P
K K

+ + + +

=  (16) 

 
Dynamic Model with Four Degrees of Freedom, 

with Torsional Vibrations 

In the paper (Sava, 1970) a dynamic model with 4 
degrees of freedom is proposed, obtained as follows: 
The model has two moving masses; these by vertical 
vibration each impose a degree of freedom; one mass 
is thought to vibrate and transverse, generating yet 
another degree of freedom; and the last degree of 
freedom is generated by torsional torsion of the 
camshaft (Fig. 6). 

The calculation relationships are (17-20). 
The first two equations resolve normal vertical 

vibrations, the third equation takes into account the 
camshaft torsional vibration and the last equation 
(independent of the others), the fourth, deals only with 
the transverse vibration of the system: 
 

( )1 1 1 2 2
2 ( )Mx cx k K x cx Kx P t+ + + − − = −ɺɺ ɺ ɺ  (17) 

 
( )2 2 2

1 1

2
ac

v ac

mx cx K k x

cx Kx F cs k s

+ + +

− − = + +

ɺɺ ɺ

ɺ ɺ

 (18) 

 

 
( )

2 2
' '

' '

r r ac

ac

Jq c q k q s k x cs x

s k s cs

+ + − − =

− +

ɺɺ ɺ ɺ

 (19) 

 
 

t h
mu k u F+ =ɺɺ  (20) 

 
 
Fig. 6: Dynamic model with four degrees of freedom, with 

torsional vibrations 

 

 
 
Fig. 7: Mono-dynamic damped dynamic model 

 
Mono-Dynamic Damped Dynamic Model 

Also in the paper (Sava, 1970) is presented a 
simplified dynamic model, amortized monomass (Fig. 7). 

The motion equation used has the form (21): 
 
 ( )Mx cx k K x cs Ks P+ + + = + −ɺɺ ɺ ɺ  (21) 

 
Which can be written more conveniently, (22): 
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 ( ) ( )2

1 1
x A y x y x Fω′′ ′ ′= − + − −  (22) 

 
Where the coefficients A1, ω1

2 and F are calculated 
with the expressions given in relation (23): 
 

( ) 2 2

020 0

1 1

0

2
; ;

K k tct Pt
A F

M M Ms
ω

+

= = =  (23) 

 
Dynamic Damped Two-Mass Model 

In Fig. 8 the bimass model proposed in the paper 
(Sava, 1970) is presented. 

The mathematical model is written (24, 25): 
 

( )1 1 1 2 2
2 ( )Mx cx k K x cx Kx P t+ + + − − = −ɺɺ ɺ ɺ  (24) 

 
( )2 2 2 1 1

2
ac

v ac

mx cx K k x cx Kx

F cs k s

+ + + − −

= + +

ɺɺ ɺ ɺ

ɺ

 (25) 

 
Equations (24-25) can be written as: 

 

( ) ( )2

1 1 2 1 1 2 1
2x A x x x x Fω′′ ′ ′= − + − −  (26) 
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( ) ( )

'' 2 2

2 1 2 1 2 2 1 1

1 2 3

2

1 '
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F y B B y B y

ω µω
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 (27) 

 
where the notations (28) were used. 

M

m
µ = ⇒  the ratio of the two masses, 

( ) 2 2

02 0

2

ac ac

k K t k t

m m
ω

+

= ≅ ⇒  the self dimensional pulse of 
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2 0

1 1 2 3 3 0

0

; ;
s

B B B s
µ

µ µ
φ

= = =  (28) 

 
A Dynamic Model with a Single Mass with 

Torsional Vibrations 

In Fig. 9 we can see a dynamic monosomic model 
that also takes into account the torsional vibrations of the 
camshaft (Sava, 1970). 

The study points out that camshaft torsional 
vibrations have a negligible influence and can, therefore, 
be excluded from dynamic calculation models. 

The same conclusion results from the work (Sava, 
1971) where the torsion model is studied in more detail. 

Influence of Transverse Vibrations 

Tappet elasticity, variable length of the camshaft 
during cam operation, pressure angle variations, camshaft 
eccentricity, kinetic coupler friction, translation wear, 
technological and manufacturing errors, system gaming 

and other factors are factors that favor the presence of a 
transverse vibration of the rod weight (Sava, 1970). 
 

 
 
Fig. 8: Dynamic damped two-mass model 
 

 
 
Fig. 9: A dynamic model with a single mass with torsional 

vibrations 
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Fig. 10: Influence of transverse vibrations 

 
In the case of high amplitude vibrations, the response 

parameters to the last element of the tracking system will 
be influenced. Following Fig. 10, it can be seen that if 
the curve a is the trajectory of the tip A, the point A will 
periodically reach point A', in which case the actual 
stroke of the yr bar will change according to the law: yr = 
y-yv = y-u.tgv, where y is the longitudinal displacement of 
the tappet, u represents the transverse displacement of 
the mass m, of the tappet and v is the pressure angle. The 
actual stroke, yr, will change after the law (29): 
 

( )
r v
y y y y utg v= − = −  (29) 

 
 The motion equation (dimensional) is written (30): 

 

( )
[ ]( )1

11 21 313

2

(1 ) '
1

Au
u F y B B y B y

A y
µ′′ ′′+ = + + + +

−

 (30) 

 
where were denoted by (31) the non-dimensional constants: 
 

2

0 0

1 23

11 1 1 21 1 2 31 1 3

3
; ;

; ;

EIt s
A A

ma a

B f B B f B B f B

= =

= = =

 (31) 

 
Also in the work (Sava, 1970), the influence of the 

diameter of the rod, the lifting interval, the maximum 
length outside the tiller guides, the maximum lifting 
stroke and the various cam profiles on the A trajectory 
are analyzed. 

Some conclusions: 

It is noted that the reduction of the diameter of the 
rod of the tappet leads to the increase of the amplitude 
and the decrease of the average frequency of the 
transverse vibrations. Reducing the diameter of 1.35 
times, leads to an increase in amplitude of almost three 
times and the average frequency decreases sensitively. 
Initial amplitudes are higher at the beginning of the 
interval, decreasing to the midpoint of the lifting 
interval, oscillation becoming insignificant and towards 
the end of the rise due to the reduction of the length a by 
decreasing the y stroke the frequency increases and 
consequently the amplitude decreases from double to 
simple the beginning of the interval. Increasing the stick 
length beyond its 2.2 to 3 cm guides leads to an increase 
in vibration amplitude of about 25 times.  

The law of motion without leaps in the input 
acceleration curve reduces the amplitude of the transverse 
vibration of the tappet. The author of the paper (Sava, 
1970) mentions that whatever the influence of the listed 
parameters is, for the cases considered, the amplitude 
values remain fairly small and in case of reduced friction 
in the upper coupler, they can decrease even more. 
Consequently, the author of the paper (Sava, 1970) 
concludes that the transverse vibrations of the tachet exist 
and must draw the attention of the constructor only in the 
case of exaggerated values of the constants that 
characterize these vibrations. Regarding the distribution 
of internal combustion engines, the transverse vibration 
can be neglected without affecting the response 
parameters made at the valve. 

Results 

Dynamic Model with Four Degrees of Freedom, 

with Bending Vibrations 

In the paper (Koster, 1974), a four-degree dynamic 
model with a single oscillating motion mass is presented, 
representing one of four degrees of freedom. The other 
three freedoms result from a torsional deformation of the 
camshaft, a vertical bending (z), camshaft and a bending 
strain of the same shaft, horizontally (y), all three 
deformations, in a plane perpendicular to the axis of 
rotation (Fig. 11). The sum of the momentary efficiency 
and the momentary losing coefficient is 1. 

The work (Koster, 1974) is extremely interesting by 
the model it proposes (all types of deformations are being 
studied), but especially by the hypothesis it advances, 
namely: The cams speed is not constant but variable, the 
angular velocity of the cam ω = f(β) being a function of 
the position of the cam (the cam angle of rotation β). 

The angular velocity of the cam is a function of the 
position angle β (which we usually mark with ϕ) and its 
variation is caused by the three deformations (torsion and 
two bends) of the shaft, as well as by the angular gaps 
existing between the source motors (drive) and camshaft. 
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Fig. 11: Dynamic model with four degrees of freedom, with bending vibrations 

 
The mathematical model taking into account the 

flexibility of the camshaft is the following; the 
rigidity of the cam between the cam and the cam is a 
function of the position β (cam angle of rotation), see 
the relationship (32): 
 

21 1 1 1 1

( ) ( )
x z y

tg
C C C C Cβ

α
β β

 
= + + + 

  
 (32) 

 

 
1 1 1

c x z
C C C

= +  (33) 

 
where, 1/Cc see (33) is a constant rigidity given by the 
rigidity of the tappet (Cx) and the cam (Cz) in the 
direction of the tappet: 
 

( ) ( )
tan

1 1 1

y
C C Cββ β

= +  (34) 

And 1/Ctan (β) see (34) represents the tangential 
stiffness, Cβ being the torsional stiffness of the cam and 
Cy the flexural stiffness at the y axis of the cam, with 
Cβ(β) given by the relation (35): 
 

( )
2

( )
K

C

R
β β

β
=
  

 (35) 

 
With (33) and (34) the relation (32) is rewritten in the 

form (36): 
 

( ) ( )

2

tan

1 1

c

tg

C C C

α

β β
= +  (36) 

 
where, α is the pressure angle, which is generally a 
function of β and at flat tachets (used in distribution 
mechanisms), it has the constant value (zero): α = 0. 

The motion equation is written as (37): 
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( ) ( ) ( )m x C x C hβ β β⋅ + ⋅ = ⋅ɺɺ  (37) 
 
where, h(β) is the motion law imposed by the cam. 

The pressure angle, α, thus influences (38): 
 

1

( )

dh
tg

R d
α

β β
=  (38) 

 
where, R(β) is the current radius, which gives the cam 
position (distance from the center of the cam to the cam 
contact point) and approximates by the mean radius R1/2. 
The relation (38) can be put in the form (39); Where the 
average radius, R1/2, is obtained with the formula (40): 
 

 
1/ 2

1

s

h
tg

R
α

ω

=

ɺ

 (39)  

 

 
1/ 2

1

2
b m

R R h= +  (40) 

 
Rb is the radius of the base circle and hm is the 

maximum projected stroke of the tappet. This 
produces an average radius, which is used in the 
calculations for simplifications; ωs = machine angle, 
constant, given by machine speed. The Equation (37) 
can now be written (41): 
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The solution of Equation (41) is made for α = 0, with 

the following notations. 
The period of natural vibration is determined with 

relation (42): 
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The period of the natural vibration period is obtained 

by the formula (43): 
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The slope during the lifting of the cam (44) is: 
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The shaft stiffness factor is obtained by the 

formula (45): 
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With dimensional parameters given by (46): 
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The motion equation is written in the form (47): 
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The nominal curve of the cam is known (48) and (49): 

 
 ( )H H T=
ɺ ɺ  (48) 

 
 ( )H H T=  (49) 

 
With (47), (48) and (49) the dynamic response is 

calculated by a numerical method. 
The author of the paper (Koster, 1974) gives a 

numerical example for a motion law, corresponding to 
the cycloid cam (50): 
 

( )
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sin 2 .
2
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π
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The work is especially interesting in how it 

manages to transform the four degrees of freedom into 
one, ultimately using a single equation of motion 
along the main axis. The dynamic model presented 
can be used wholly or only partially, so that on 
another classical or new dynamic model, the idea of 
using deformations on different axes with their 
cumulative effect on a single axis is inserted. 

Discussion 

The development and diversification of road vehicles 
and vehicles, especially of cars, together with thermal 
engines, especially internal combustion engines (being 
more compact, robust, more independent, more reliable, 
stronger, more dynamic etc.)., has also forced the 
development of devices, mechanisms and component 
assemblies at an alert pace. The most studied are power 
and transmission trains. 

The four-stroke internal combustion engine (four-
stroke, Otto or Diesel) comprises in most cases (with the 
exception of rotary motors) and one or more camshafts, 
valves, valves and so on. 

The classical distribution mechanisms are robust, 
reliable, dynamic, fast-response and although they 
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functioned with very low mechanical efficiency, taking 
much of the engine power and effectively causing 
additional pollution and increased fuel consumption, they 
could not be abandoned until the present. Another 
problem was the low speed from which these mechanisms 
begin to produce vibrations and very high noises. 

Regarding the situation realistically, the mechanisms 
of cam casting and sticking are those that could have 
produced more industrial, economic, social revolutions 
in the development of mankind. They have contributed 
substantially to the development of internal combustion 
engines and their spreading to the detriment of external 
combustion (Steam or Stirling) combustion engines. 

The problem of very low yields, high emissions and 
very high power and fuel consumption has been greatly 
improved and regulated over the past 20-30 years by 
developing and introducing modern distribution 
mechanisms that, besides higher yields immediately 
deliver a high fuel economy) also performs optimal 
noise-free, vibration-free, no-smoky operation, as the 
maximum possible engine speed has increased from 
6000 to 30000 [rpm]. 

The paper tries to provide additional support to the 
development of distribution mechanisms so that their 
performance and the engines they will be able to 
further enhance. 

Particular performance is the further increase in the 
mechanical efficiency of distribution systems, up to 
unprecedented quotas so far, which will bring a major 
fuel economy. 

The current oil and energy reserves of mankind are 
limited. Until the implementation of new energy 
sources (to take real control over fossil fuels), a real 
alternative source of energy and fuel is even "the 
reduction in fuel consumption of a motor vehicle", 
whether we burn oil, gas and petroleum derivatives, 
whether we will implement biofuels first and later 
hydrogen (extracted from water). 

The drop in fuel consumption for a given vehicle type 
over a hundred kilometers traveled has been consistently 
since 1980 and has continued to continue in the future. 

Even if hybrids and electric motor cars are to be 
multiplied, let us not forget that they have to be charged 
with electricity, which is generally obtained by burning 
fossil fuels, especially oil and gas, in a current planetary 
proportion of about 60%. We burn oil in large heat 
plants to warm up, have domestic hot water and 
electricity to consume and some of that energy is extra 
and we add it to electric cars (electric vehicles), but the 
global energy problem is not resolved, the crisis even 
deepens. This was the case when we electrified the 
railroad for trains, when we generalized trams, 
trolleybuses and subways, consuming more electric 
power produced mainly from oil; oil consumption has 
grown a lot, its price has had a huge leap and we look at 
how the reserves disappear quickly. 

Generally generalizing electric cars (though we are 
not really ready for this), we will give a new blow to oil 
and gas reserves. 

Fortunately, biofuels, biomass and nuclear power have 
developed very much lately (currently based on the nuclear 
fission reaction). These together with the hydroelectric 
power plants have managed to produce about 40% of the 
total energy consumed globally. Only about 2-3% of global 
energy resources are produced by various other alternative 
methods (despite the efforts made so far). 

This should not disarm us and abandon the 
implementation of solar, wind, etc. 

However, as a first necessity to further reduce the 
share of global energy from oil and gas, the first 
vigorous measures that will need to be pursued will be to 
increase biomass and biofuels production along with the 
widening of the number of nuclear power plants (despite 
some undesirable events, which only show that nuclear 
fission power plants must be built with a high degree of 
safety and in no way eliminated from now on and they 
are still the one that has been so far "a bad evil"). 

Alternative sources will take them on an 
unprecedented scale, but we expect the energy they 
provide to be more consistent in global percentages so that 
we can rely on them in a real way (otherwise, we risk that 
all these alternative energies remain a sort of "fairy tale"). 

Hydrogen fuel energy "when it starts when it stops" 
so there is no real time now to save energy through them, 
so they can no longer be priority, but the trucks and 
buses could even be implemented now that the storage 
problems have been partially solved. The bigger problem 
with hydrogen is no longer the safe storage, but the high 
amount of energy needed to extract it and especially for 
its bottling. The huge amount of electricity consumed for 
bottling hydrogen will have to be obtained entirely 
through alternative energy sources, otherwise hydrogen 
programs will not be profitable for humanity at least for 
the time being. Personally, I think the immediate use of 
hydrogen extracted from the water with alternative 
energies would be more appropriate for seagoing vessels. 

Maybe just to say that due to his energy crisis (and 
not just energy, from 1970 until today), the production of 
cars and cars has increased at an alert pace (but naturally) 
instead of falling and they have and were marketed and 
used. The world's energy crisis (in the 1970s) began to rise 
from around 200 million vehicles worldwide, to about 350 
million in 1980 (when the world's energy and global fuel 
crisis was declared), about 500 million vehicles 
worldwide and in 1997 the number of world-registered 
vehicles exceeded 600 million. 

Also in the work (Sava, 1970), the influence of the 
diameter of the rod, the lifting interval, the maximum length 
outside the tiller guides, the maximum lifting stroke and the 
various cam profiles on the A trajectory are analyzed. 

It is noted that the reduction of the diameter of the 
rod of the tappet leads to the increase of the amplitude 
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and the decrease of the average frequency of the 
transverse vibrations. Reducing the diameter of 1.35 
times, leads to an increase in amplitude of almost three 
times and the average frequency decreases sensitively. 
Initial amplitudes are higher at the beginning of the 
interval, decreasing to the midpoint of the lifting 
interval, oscillation becoming insignificant and towards 
the end of the rise due to the reduction of the length a by 
decreasing the y stroke the frequency increases and 
consequently the amplitude decreases from double to 
simple the beginning of the interval. Increasing the stick 
length beyond its 2.2 to 3 cm guides leads to an increase 
in vibration amplitude of about 25 times.  

Conclusions 

Rigid memory mechanisms have played an important 
role in the history of mankind, contributing greatly to the 
industrial, economic, social changes in society, thus 
leading to a real evolution of mankind.  

Used in automated tissue wars, in cars as distribution 
mechanisms, automated machines, mechanical 
transmissions, robots and mechatronics, precision 
devices and medical devices, these mechanisms have 
been real support for mankind along the time.  

For this reason, one considered useful this paper, 
which presents some dynamic models that played an 
essential role in designing rigid memory mechanisms. 
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