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Abstract: The machine is a technical system made up of distinct kinematic 
component parts (called kinematic elements) which, following the 
imprinting of movements imposed on an element or elements (considered 
as leading elements), cause movements to all other kinematic elements in 
order to execute a useful mechanical thing, or transforming some form of 
energy into mechanical energy. It follows from the previous definition, 
three essential characteristics of the machine: the machine is a technical 
system; its kinematic elements have determined (desmodromic) 
movements; either to perform either a useful mechanical thing, calling it a 
lucrative machine, or transforming some form of energy into mechanical 
energy, bearing the name of a motor car. The lucrative machines are cars, 
locomotives, motor wagons, presses, machine tools, pumps, compressors, 
agricultural machines, lifting and transporting machines, etc. The motor 
vehicles are external combustion (Stirling, Watt) or internal combustion 
engines (Lenoir, Otto, Diesel, Wankel, star), turbines, hydraulic motors, 
reaction engines, pneumatic motors, electromagnetic), ionic engines, energy 
beam or LASER motors, etc. The most used mechanisms in machine 
building were and still maintain those that operate in a plane or in parallel 
planes. For this reason, new analytical methods have been developed and 
developed to determine all the essential aspects of these mechanisms in order 
to improve the design of machine components. For this reason, it is necessary 
to present a general presentation of the mechanism of the design of the 
mechanisms, the present paper dealing only with the first aspect, namely 
the structure of the planar mechanisms. The most common mechanisms are 
planar, with bars, toothed, with cams, with a mortar cross, with chains, with 
belts, with tracks, with bolts, with liquids (hydraulic or sonic), with air 
(pneumatic). However, spacecraft with universal cardan shaft (universal 
joint) and cardanic transmission, with hyperboloidal gears (with cross axles), 
with pivots (spherical couplings), especially steering and suspension 
mechanisms, tripod mechanisms, mechanisms with space cams, screw and 
nut mechanisms, robots, serial and parallel systems, steppers, etc. The 
mechanism, as we have already shown, is composed of kinematic elements 
connected by kinematic joints (or couplings). 

 
Keywords: Machines, Mechanisms, Industrial Robots, Automation, 
TTT Manipulator, Design, Joints or Couplings, Structure, Elements 

 
Introduction 

The machine is a technical system made up of 
distinct kinematic component parts (called kinematic 

elements) which, following the imprinting of movements 
imposed on an element or elements (considered as 
leading elements), cause movements to all other 
kinematic elements in order to execute a useful 
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mechanical thing, or transforming some form of energy 
into mechanical energy. It follows from the previous 
definition, three essential characteristics of the machine: 
 
• The machine is a technical system 
• Its kinematic elements have determined 

(desmodromic) movements 
• Either to perform either a useful mechanical thing, 

calling it a lucrative machine, or transforming some 
form of energy into mechanical energy, bearing the 
name of a motor car 

 
The lucrative machines are cars, locomotives, 

motor wagons, presses, machine tools, pumps, 
compressors, agricultural machines, lifting and 
transporting machines, etc. 

The motor vehicles are external combustion (Stirling, 
Watt) or internal combustion engines (Lenoir, Otto, 
Diesel, Wankel, star), turbines, hydraulic motors, 
reaction engines, pneumatic motors, electromagnetic), 
ionic engines, energy beam or LASER motors, etc. 

Note: Engines may also be classified as lucrative 
machines, but only complex ones (complex work 
machines) called aggregates. 

The development and diversification of machines 
and mechanisms with applications in all fields requires 
new scientific researches for the systematization and 
improvement of existing mechanical systems by 
creating new mechanisms adapted to modern 
requirements, which involve increasingly complex 
topological structures. 

The modern industry, the practice of designing and 
building machinery is increasingly based on the results 
of scientific and applied research. 

Each industrial achievement has backed theoretical 
and experimental computer-assisted research, which 
solves increasingly complex problems with advanced 
computing programs using increasingly specialized 
software (Aversa et al., 2016a; 2016b; 2016c; 2016d; 
2017a; 2017b; 2017c; 2017d; Mirsayar et al., 2017; 
Cao et al., 2013;  Dong et al., 2013; De Melo et al., 2012; 
Garcia et al., 2007; Garcia-Murillo et al., 2013; He et al., 

2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013;      
Padula and Perdereau, 2013; Perumaal and Jawahar, 
2013; Petrescu and Petrescu, 1995a; 1995b; 1997a; 
1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 
2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 2016b; 
2016c; 2016d; 2016e; 2013; 2012a; 2012b; 2011; 
Petrescu et al., 2009; 2016 a-e; 2017a; 2017b; 2017c; 
2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 
2017k; 2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 
2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 
2017y; 2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae;  
Petrescu and Calautit, 2016a; 2016b; Reddy et al., 2012; 
Tabaković et al., 2013; Tang et al., 2013; Tong et al., 2013; 
Wang et al., 2013; Wen et al., 2012; Antonescu and 
Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 
1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001). 

The mechanism is a technical system consisting of 
distinct kinematic component parts (called kinematic 
elements), which have determinate and periodic 
movements, intended to transmit and/or transform the 
initial motion (given by one or more input elements) to 
the final element(s). 

The mechanism thus fulfills the first two essential 
characteristics of the machine. 

Mechanisms can be operated either separately or as 
devices included in winch machines or engines. 

It should be noted that a machine generally contains 
several mechanisms. 

The mechanism has kinematic elements and 
kinematic couplings. 

Below are some mechanisms. 
The most common mechanisms are planar, with bars, 

toothed, with cams, with a mortar cross, with chains, with 
belts, with tracks, with bolts, with liquids (hydraulic or 
sonic), with air (pneumatic). However, spacecraft with 
universal cardan shaft (universal joint) and cardanic 
transmission, with hyperboloidal gears (with cross axles), 
with pivots (spherical couplings), especially steering and 
suspension mechanisms, tripod mechanisms, mechanisms 
with space cams, screw and nut mechanisms, robots, serial 
and parallel systems, steppers, etc. 

 

       
 (a) (b) 
 

Fig. 1: Mobile components of a thermal engine 
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Fig. 2: Components of a V engine 
 

        
 (a) (b) 
 

Fig. 3: Bar mechanisms: (a) mec. piston; (b) mec. quadrilateral 
 

    
 (a) (b) 
 

Fig. 4: Flat plane mechanisms with bars: (a) mec. with swinging rod; (b) mec. slide swing 
 

      
 (a) (b) 
 

Fig. 5: (a) mecanismul transportor cu cruce; (b) mecanismul unui motor clasic în V 
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Figure 1a shows the pin connected to the piston 
(via a bolt) and Fig. 1b shows the engine shaft (or 
crank) which together constitutes the three movable 
elements of a thermal motor or compressor. In Fig. 2 
we can see the main part of a classic engine crank in 
V (missing crankshaft). 

In Fig. 3 there are presented two flat bars: (a) The 
whip-crank-piston mechanism; (b) planar (or articulated) 
quadrilateral mechanism. 

In Fig. 4 there are presented two other planar 
mechanisms with bars: (a) The oscillating rod 
mechanism; (b) oscillating slide mechanism. 

 

      
 (a) (b) 
 

Fig. 6: (a) the mechanism of a Lenoir engine (two-stroke engine); (b) the mechanism of a classic gearshift (manual) 
 

     
 (a) (b) 
 

Fig. 7: (a) Cardan or universal joint mechanism (the cardan cross); (b) The two-beginner Malta cross crossing mechanism 
 

     
 (a) (b) 
 

Fig. 8: (a) planetary mechanism; (b) rotating cam mechanism and translatable stick 
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In Fig. 5, two other flat bars are presented: (a) The 
cross conveyor mechanism; (b) Engine mechanism in V. 

In Fig. 6, two other mechanisms are presented: (a) 
The mechanism of a Lenoir engine (two-stroke engine); 
(b) Mechanism of a classic gearshift (manual). 

In Fig. 7, two other mechanisms are presented: (a) 
Cardan or universal joint mechanism (cardan cross); (b) 
The two-beginner Malta cross crossing mechanism. 

In Fig. 8 two other mechanisms are presented: (a) the 
planetary mechanism; (b) the rotary cam mechanism and 
the translatable bar. 

Materials and Methods 

The mechanism, as we have already shown, is 
composed of kinematic elements connected by kinematic 
joints (or couplings). 

Definition: "The kinematic couple is the permanent, 
direct and mobile link between two kinematic elements." 

The classification of kinematic couplings can be done 
according to four main criteria: Geometric, cinematic, 
constructive and structural. 

The Geometric Criterion 

Geometrically, there are inferior and superior 
kinematic couplings. 

The lower kinematic couplers are those where the 
contact between the elements is made on a surface. This 
surface may be cylindrical, conical, spherical, planar, 
helical, etc. 

The lower kinematic couplers are reversible, the 
surfaces in contact being geometrically identical, the 
relative movement of the elements not changing 
regardless of which of them is fixed or movable, 
conducting or driven. 

The higher kinematic couplers are those where the 
contact between the elements is made by a line or a 
point. The line may be straight or curved (arc of circle). 

The higher kinematic couplers are irreversible. The 
best example is that of the wheel rail coupler (Fig. 9). 

In case the rail 2 is fixed and the wheel 1 rolls the 
contact point I will describe the cyclode C12. If wheel 1 
is fixed and rail 2 rolls, contact I will describe the 
evolution of E21 (Antonescu, 2000). 

The Kinematic Criterion 

From a cinematic point of view, we distinguish 
planar couplings and space couplings. 

The planar kinematic couplets allow component 
elements only for plane movements (in one plane, or in 
several parallel planes between them). 

Spatial kinematic couples allow spatial movement of 
space elements (there is at least one point that cannot be 
framed by moving it in only one plane). 

 
 
Fig. 9: High-wheel-rail superior coupling 
 
Constructive Criterion 

From a constructive point of view, the closed 
kinematic couplers and open cinematic couplings are 
distinguished. 

Closed kinematic couplers are those in which the 
coupling of the coupling elements is made by steer 
guidance and the two coupling elements can not be 
separated without dismantling or breaking. 

Open kinematic couplers are those where contact 
between the coupling elements is made directly by 
external forces (weight, electromagnetic, voltage, elastic, 
etc.) and the two coupling elements can be easily and 
directly separated without dismantling or breaking. 

Structural Criterion 

Structurally, kinematic couples are divided into five 
classes, depending on the number of degrees of freedom 
abducted, C1-C5. 

If we denote the number of degrees of relative 
freedom that the kinematic coupler permits (l = 1,5) and 
with k the number of stopped movements (restricted by 
coupling), (k = 1,5), we can write the relations (1): 
 

6

6

6

l k

l k

k l

+ =

= −

 = −

 (1) 

 
The kinematic coupling class will be given by k 

(number of restrictions imposed by the coupling). 
For Class 1 couples, which have a single restriction 

and 5 freedoms, the sphere coupling in the upper 
(space, open, C1) plane is shown. For second-class 
couples, we have the sphere in the cylinder (upper, 
space, closed, C2) and the cylinder on the plane (upper, 
space, open, C2). At third class couples, we have the 

(E21) 

(C12) 1 

2 
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sphere in the sphere (lower, space, closed, C3), the 
sphere in the cylinder, with a finger (upper, space, 
closed, C3) and plane (lower, flat). 

In fourth class couplings, we have a torch that 
guides another torch (upper, space, closed, C4) and 
cylinder in the cylinder (lower, space, closed, C4). Here 
too we can remember the upper couplers with cams, 
toothed wheels, with a bolt, a cross from Malta, a 
universal or universal joint (Fig. 10), the tripods 
(planetary ones, Fig. 12), the Thompson coupler (Fig. 
11) with constant speed, or ball (Fig. 13), etc. 

For fifth class couplings, we have the rotation coupler 
(lower, flat, closed, C5) and the translation coupler 
(lower, flat, closed, C5). However, we can also 
remember the nutnut coupling (Fig. 14). 

By definition, kinematic couples bind two kinematic 
elements between them, but no less than two. 
 

 
 
Fig. 10: Cardan cross or universal joint 
 

 
 
Fig. 11: The Thompson couple 
 

 
 
Fig. 12: The tripod couple 

In some classifications, therefore, normal couplings 
are called simple and complex (or compound or 
multicouple) are referred to as couplers that violate the 
definition consisting of multiple elements, but also from 
multiple links. Such a coupling has always p-1 bonds 
and p elements and has the radial elements (in parallel, 
Fig. 15a), in series (Fig. 15b), or mixed (Atkinson et al., 
1986). It is considered to be a single composite couple 
and it analyzes all its movements given by the freedoms 
gathered from all the simple component couplings (Fig. 
16). Thus, the coupling of Fig. 16 is composed of four 
distinct kinematic elements and three simple couplings. 
In the table in Fig. 17 are presented the axonometric 
constructive schematic of the elementary couplings. 
 

  

 
 
Fig. 13: Constant speed coupling (ball coupling) 
 

 
 
Fig. 14: Screw-nut coupling 

2 

1 
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 (a) (b) 
 

Fig. 15: Complex couplers 
 

 
 
Fig. 16: Complex couplers 
 

 
 
Fig. 17: Table with axonometric constructive representations 

of elementary couplings 

Results 

The structural analysis of plane mechanisms will be 
followed, being the most common mechanisms. It is 
intended to determine the mode of formation of the 
mechanism, specifying the number and type of component 
kinematic elements and couplings, the degree of mobility 
of the mechanism, as well as the class to which it belongs 
(for this purpose the kinematic scheme, the structural 
scheme and the block diagram or connections). 

Figure 18a shows a schematic diagram of a planar 
mechanism with bars. Figure 18b shows the kinematic 
schematics of the planar mechanism in Fig. 1, a 
simplified scheme that helps to study the mechanism 
(cinematic, structural, cinetostatic, dynamic, etc ...). 

In Fig. 19 shows how to determine kinematic elements 
starting from the leading element 1 which performs a 
complete rotation (crank movement) and in Fig. 20, the 
kinematic coupler of the mechanism is identified and the 
complete kinematic schema with identified kinematic 
elements and kits will appear in Fig. 21. 

The kinematic elements and couplings have already 
been intuitively identified on the drawing so that the tables 
of the couplings and the kinematic elements can easily be 
drawn, showing how each coupling is formed by 
connecting two elements (the resulting fifth-class coupling, 
which can be rotation - R or translation - T), but also how 
many links each element has (see table in Fig. 22). 

The degree of mobility of the planar bar mechanism 
is determined by formula (2): 
 

3 5 43 2 3 2

3 7 2 10 0 21 20 0 1

M m C C m i s= ⋅ − ⋅ − = ⋅ − ⋅ −

= ⋅ − ⋅ − = − − =
 (2) 

 
where, m is the number of movable elements (in the 
present case m = 7), C5 = i = the number of fifth or fifth 

0 

0 

1 

1 2 

2 
p 

p 

P 

C B A 
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class couplings, comprising both the R and the R 
couplers (for the given mechanism i = 10) and C4 = s 
represents the number of fourth or upper class 

couplings (camshaft couplings, toothed gears, Malta 
cross, contact profiles, etc.), (in the case of the upper 
coupler not present, s = 0). 

 

    
 (a) (b) 
 

Fig. 18: (a) Schematic drawing of the planar mechanism with bars (b) The kinematic scheme of the mechanism 
 

 
 
Fig. 19: How to determine kinematic elements starting from 

the leading element 1 
 

 
 
Fig. 20: The kinematic coupler of the mechanism is identified 

 
 
Fig. 21: The complete kinematic schema 

 

 
 
Fig. 22: The kinematic elements and couplings 

1 

2 

3 

4 

5 

6 

7 

0 

0 

0 
0 

ω 

B 

A 
C 

D 

H 

I J 

F 

G 

E 

G 
I 

6 

F 

7 

0 

B 

1 

2 

0 

5 

H 

C 

D 

A 

0 

0 

3 

J 

4 

E 

ω 

Couple table 

A(0,1)R 
 

B(1,2)R 
 

C(2,3)R 
 

D(3,4)R 
 

E(4,0)T 
 

F(3,5)R 
 

G(5,0)R 
 

H(3,6)R 
 

I(6,7)R 
 

J(7,0)T 

0(A,E,G,J)IV 

 
1(A,B)II 
 
2(B,C)II 

 
3(C,D,F,H)IV 

 
4(D,E)II 
 
5(F,G)II 
 
6(H,I)II 
 
7(I,J)II 

Elements table 

A 

E G 

J 

A B 

B C 

C 

D 

H 

F 

D E 

F G 

H I 

I J 



Relly Victoria Virgil Petrescu et al. / American Journal of Engineering and Applied Sciences 2018, 11 (1): 245.259 
DOI: 10.3844/ajeassp.2018.245.259 

 

253 

 
 
Fig. 23: The structural scheme of the mechanism 
 

The structural diagram of the mechanism is built from 
the kinematic element table. It starts from the fixed 
element (0). After drawing it with the potential kinematic 
couplers (in the present case A, E, G, J), the first movable 
kinematic element (element 1) is attached to the frame, 
taking care to match the coupler A from the frame to that 
of element 1 Add the coupling B to it; then stick the 
elements 2, 3, 4 and 5 always matching the respective 
couplers. Add items 6 and 7; all kinematic elements and 
couplings are noted, after which the structural diagram is 
ready (see Fig. 23). Important observation: In the 
structural scheme, all the couplings are inferior (after the 
kinematic equation of the upper ones) and all are equally 
circular, as if only rotating, even if some of them are 
translation. Active couplers (motors) are black. 

The mechanism connection scheme (Fig. 25) consists 
of rectangular blocks connected to each other. Goes to 
block 0, representing the fixed element that has only 
output buttons (A, E, G, J). The first linked button is A, 
which represents both the output of block 0 and the input 
to block 1 (EC driver element, or ME element moto). For 
1 button B is output and for triad (2,3,4,5) it is input, just 
like the buttons (E and G). The triad has three inputs (B, 
E, G) and three inner couplings (C, D, F); An output 
coupler H is added, which becomes an inlet coupling for 
diada D (6,7), just like the coupling J coming out of the 
frame. Diada always has two input couplers (in this case, 
H and J) and an inner coupler (at the given mechanism, 
coupling I). No diaphragm (6, 7) is added to any output 
coupler so that the mechanism is fully studied. 

Determining the structural formula is done using the 
structural scheme (divided into structural groups), or by 
using the connection scheme. 

For the exemplary mechanism the structural formula 
reads. 

Z (0) + EC (1) + T (2,3,4,5) + D (6,7) or Z (0) + ME 
(1) (6,7) or MF (0,1) + T (2,3,4,5) + D (6,7), i.e., zero 
pole + Guide element 1 (Moto Element), 1) to which 
triad T (2,3,4,5) and diada D (6,7) are added. 

 
 
Fig. 24:The structural scheme of the bar mechanism divided 

into the structural groups: One can see a triad T 
(2,3,4,5) and a dyad D (6,7) 

 

 
 
Fig. 25: Scheme of connection of the mechanism 
 

The simplest structural group is diada. 
A structural group (or Assuric) must not change the 

degree of mobility of the mechanism to which it is 
added; in other words the structural group has the degree 
of mobility equal to zero. For Flat Mechanisms, flat 
structural groups are used, which are synthesized 
according to the structural formula. 

After equating the higher kinematic couplers, the 
formula takes the form (3): 
 
3 2 0m i⋅ − ⋅ =  (3) 
 

In Table 1 we give a few pairs of numbers that satisfy 
the relation (3), pairs by which the flat Assurice 
structural groups, containing only the couplers i, will be 
constructed. 

The simplest structural group is dyad (see the first 
cell in Fig. 26). It consists of two kinematic elements 
(both of which have the rank II, that is, both the element 
1 of length AB and the element 2 of length BC each have 
only two kinematic couplings, so each is of the order II). 

2 C 
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H 
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In any structural group, the class of the group is given 
by the highest deformable closed contour, or by the 
highest ranked kinematic element. 

There is no outline in the diadem, so its class is 
given by the highest rank element. Since both 
elements of a dyad have the second rank, it follows 
that the dyad class is also II. 

The order of a structural group is given by the 
input couple of the group, couples which are also 
called semi couples or potential couples (since they 
only conclude when the structural group links to a 
mechanism). 

Each structural group has (a + b) couplings: 
 
• Inputs (semi couples) (they give the order of the 

group) 
• inner couplings 
• Output couplers (semi couples); these can be added 

in unlimited number or even absent, they are not 
represented on the definition of a structural group, 
they are added but are not part of the respective 
structural group 

 
Diada has two input (potential) couplings, (in Fig. 26, 

marked with A and B), so the order of any dyad is 2. 
Each diadem also has an inner coupler (in the table in 
Fig. 26, it is marked with C). 

In conclusion, the dyad is the simplest class II class 
of the 2nd order, having 2 elements and three couplings 
(two of which are semi couples because they are the 
input and the third is the inner one). 
 
Table 1: Pairs of numbers that satisfy the relationship (3) 
M 2 4 6 … 
i 3 6 9 … 

 

 
 
Fig. 26: Several schemes of simple (usual) structural groups 

In the table of Fig. 26, the triad is immediately below 
the diadem. It has four elements and six kinematic 
couplings, of which 3 (three) are external input couplers 
(A, B, C) and three are inner couplers (D, E, F). The 
triad does not have any deformable contour, so its class 
will be given by the highest rank element. As it has three 
elements of rank II and one of rank III (triangle), it 
follows that any simple triad has the third class. 

The order of the triad is given by the input couples 
(three in number), so the triad has the order 3. 

Also, with four movable elements and six couplings, 
another structural group, namely tetrad, can be 
constructed (see the entire column on the left, the third 
row in the table in Fig. 26). 

Tetrada has a definite deformable contour of IV, so it 
is a class IV class structure. 

Since four couplings are internal and only two inputs 
(A and B), the tetrad is of the order 2. 

In the same table on the right of the tetrad can be seen 
a tetrad in the cross, which is also the fourth class, the 
2nd order. 

In row 1, the second column, you can see a double 
triad (with 6 elements and 9 cups), it is also class III, but 
of the 4th order. 

Below it is a triple triad (with 8 elements and 12 
couplings), with a 3rd order, 5th order. 

There are also pentas, hexas, etc ... but the usual ones 
are only: Dyad, triad or double triad and normal tetrad or 
a cross tetrad. 

Discussion 

For the mechanisms with five movable kinematic 
elements and a fixed one with one driving element 
(motor) two types of structural schemes can be obtained: 
(James) Watt (Fig. 27) or (George) Stephenson (Fig. 28). 

However, we choose the fixed and leader elements in 
the Watt scheme to obtain two dyads. On the Stephenson 
scheme, we can get two dyads, but we can reach a triad 
if we choose the fixed and leading elements in a certain 
way (for example, in the structural scheme of Fig. 28, 
the movable element 5 must be chosen as the leading 
element, triad 1,2,3,4). 
 

 
 
Fig. 27: Watt structural diagram 
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Fig. 28: Stephenson Structural Scheme 
 
Conclusion 

The machine is a technical system made up of 
distinct kinematic component parts (called kinematic 
elements) which, following the imprinting of movements 
imposed on an element or elements (considered as leading 
elements), cause movements to all other kinematic 
elements in order to execute a useful mechanical thing, or 
transforming some form of energy into mechanical 
energy. It follows from the previous definition, three 
essential characteristics of the machine: The machine is a 
technical system; its kinematic elements have determined 
(desmodromic) movements; either to perform either a 
useful mechanical thing, calling it a lucrative machine, or 
transforming some form of energy into mechanical 
energy, bearing the name of a motor car. 

The lucrative machines are cars, locomotives, 
motor wagons, presses, machine tools, pumps, 
compressors, agricultural machines, lifting and 
transporting machines, etc. The motor vehicles are 
external combustion (Stirling, Watt) or internal 
combustion engines (Lenoir, Otto, Diesel, Wankel, 
star), turbines, hydraulic motors, reaction engines, 
pneumatic motors, electromagnetic), ionic engines, 
energy beam or LASER motors, etc. 

The most used mechanisms in machine building were 
and still maintain those that operate in a plane or in 
parallel planes. For this reason, new analytical methods 
have been developed and developed to determine all the 
essential aspects of these mechanisms in order to 
improve the design of machine components. For this 
reason, it is necessary to present a general presentation 
of the mechanism of the design of the mechanisms, the 
present paper dealing only with the first aspect, namely 
the structure of the planar mechanisms. 

The most common mechanisms are planar, with bars, 
toothed, with cams, with a mortar cross, with chains, 
with belts, with tracks, with bolts, with liquids (hydraulic 
or sonic), with air (pneumatic). 

However, spacecraft with universal cardan shaft 
(universal joint) and cardanic transmission, with 

hyperboloidal gears (with cross axles), with pivots 
(spherical couplings), especially steering and suspension 
mechanisms, tripod mechanisms, mechanisms with 
space cams, screw and nut mechanisms, robots, serial 
and parallel systems, steppers, etc. 

The mechanism, as we have already shown, is 
composed of kinematic elements connected by kinematic 
joints (or couplings). 
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