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Abstract: In this study, a Fault Detection, Isolation and Reconfiguration 

(FDIR) strategy is proposed for dealing with the problem of single sensor 

faults during a re-entry flight. The proposed algorithms rely on a model 

based Fault Detection and Isolation. After the generation of a residual 

through a Kalman filter observer, detection is obtained via the estimation of 

residual signal statistics while isolation is obtained thorough the analysis of 

either residual vector direction or the residual covariance matrix, depending 

on which fault type has been detected. Finally, for some failure conditions, 

an adaptive reconfiguration strategy of the control laws is also developed. 

The effectiveness of the FDIR strategy has been shown through numerical 

simulations of single fault scenarios. 
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Introduction 

The problem of detecting a fault, finding the location 

and then taking appropriate actions is the basis of Fault 

Tolerant Control (FTC). In fact, Fault Detection and 

Isolation (FDI) plays a vital role in active FTC as it 

provides information about incoming subsystem faults 

and, furthermore, gives the possibility to make 

reconfiguration actions (Zhang and Jiang, 2008) thus 

having Fault Detection, Isolation and Reconfiguration 

(FDIR) capability. 

In aerospace applications, sensor faults may have 

dramatic impact on the vehicle stability. It is then of 

great importance to have health information in order to 

use them to either avoid feeding back the corrupted 

measurements or reconfigure the control laws based on 

actual sensor accuracy. In case of a space vehicle 

experiencing a re-entry flight, FDI is even more 

challenging as the vehicle passes through several flight 

conditions, extremely different from each other and 

consequently flight dynamics are highly unsteady. 

A well-known approach to the FDI problem is the 

model-based one; the idea under the model-based fault 

diagnosis is the determination of a fault through the 

comparison of available system measurements with the 

system outputs predicted by a mathematical model 

(known as observer) of the system itself. The mismatch 

between estimated and measured outputs gives rise to a 

residual signal, which is then used as an indicator of the 

presence of a fault. 

A great variety of model-based FDI approaches exists 

(Chen and Patton, 1999; Ding, 2013) which model the 

monitored system as Linear Time Invariant (LTI). In 

recent years, the concept of residual generation in model-

based FDI has been extended to Linear Time Varying 

(LTV) systems. In Fernandez et al. (2005), the 

Fundamental Problem of Residual Generation (FPRG) is 

generalized to the class of nonlinear systems that are 

affine in the control and the fault modes. The LTV FDI 

filter design is based on an extension of the FPRG 

concepts elaborated for LTI systems (Fernandez et al., 

2005; Szászi et al., 2005; Hammouri et al., 1999; 

Murray et al., 2008; 2010) and, therefore, a synthesis of 

FDI is performed on linearized models of the vehicle 

trimmed around a re-entry trajectory. 

To be truly effective, FDI should be coupled with a 

reconfiguration strategy. It means that FDI information 

should be used to adapt the G&C system either to 

degraded accuracy of available measurements or to a 

malfunctioning of the actuators. Most of the existing 

works deal with actuator/thrusters faults (see for 

instance, among the most recent ones, Zolghadri et al., 

2016; Fonod et al., 2015) while only few concern sensor 

faults despite the fact that, in aerospace applications, 

sensor faults may cause the loss of control stability and 
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performances. In this regard, the reader may want to see 

the following references (Oliva, 2001; Patre and Joshi, 

2011; Lu et al., 2015; 2016; Sevil and Dogan, 2015; 

Poderico et al., 2014 and references therein). However, in 

some cases only air data sensors are considered (Lu et al., 

2016; Sevil and Dogan, 2015) while in other cases FDI 

problem is not addressed at all (Oliva, 2001; Patre and 

Joshi, 2011; Poderico et al., 2014). 

In the present work, the control laws reconfiguration 

strategy proposed in Poderico et al. (2014) is extended to 

include also a model-based Fault Detection and Isolation 

scheme, which detects and isolates single sensor faults. 

With respect to other existing approaches, the proposed 

strategy combines FDI algorithms with a reconfiguration 

strategy, which adapts control parameters thus obtaining 

a FDIR architecture. 

The following sensor fault types have been 

considered: (1) bias fault, i.e., the measurement value 

differs from the true value by a constant offset; (2) loss 

of accuracy fault, i.e., measurement noise is much larger 

than expected. 

The proposed FDI scheme relies on a model-based 

approach. The first step is the construction of a system 

observer for the generation of a residual signal. To 

this end, a linear Kalman Filter (KF) is used. The 

process whose state shall be estimated by KF is 

obtained through the linearization of vehicle rotational 

dynamics around an equilibrium point. However, the 

resulting linearized system will depend on trajectory 

variables like airspeed, Mach and dynamic pressure, 

which will describe the system behavior along the 

flight envelope encountered during a re-entry flight. 

After the residual generation, detection is performed 

by estimating the statistics of residual signal. Finally, 

depending on which type of fault has been detected, 

different isolation techniques are used. In case a bias 

fault is detected, isolation is obtained by means of a 

maximum likelihood strategy based on the direction 

of residual vector. Otherwise, if the loss of accuracy 

fault is detected, isolation is obtained through the 

analysis of the residual covariance matrix, as it will be 

explained in the next sections. Furthermore, in case of 

loss of accuracy fault, control laws reconfiguration is 

also implemented via the on-line adaptation of control 

parameters that directly influence the control 

sensitivity to measurement noise. 

The effectiveness of the proposed FDIR solution has 

been evaluated through the simulations of single fault 

scenarios during the re-entry flight of FTB3 vehicle, a 

flying test bed designed by Italian aerospace Research 

Centre in the framework of USV3 project (Palumbo et al., 

2012), which was aimed at demonstrating enabling 

technologies for future generation reusable aerospace 

hypersonic transportation system. 

The paper is organized as follows. The problem of 

Fault Detection, Isolation and Reconfiguration is first 

introduced, then the proposed algorithms are described 

and finally simulations results and performance 

evaluation are provided. The manuscript ends with some 

concluding remarks. 

Problem Formulation 

Model-based FDI approach obviously requires a 

mathematical model of the system to monitor. Clearly, 

the more accurate is the model, the more reliable is the 

fault diagnosis of the system. 

In aerospace applications, a common approach for 

modelling the aircraft dynamics concerns the 

linearization of flight dynamics along one or more 

points of the flight envelope. However, during a re-

entry flight, a wide range of flight conditions are 

encountered, from hypersonic to subsonic regime, 

thus leading to rapidly varying dynamics. For this 

reason, it is more convenient to describe the 

monitored system as a linear system having the state-

space description function of some (time varying) 

parameters like airspeed, Mach, dynamic pressure that 

can be easily measured. In this way, linearization 

along a number of operative points is not required and 

a model-based FDI analysis can be designed to ensure 

robustness along the entire operative envelope as it 

will be explained in the following sections. 

Re-Entry Flight Dynamics 

A set of differential equations is generally used to 

describe the translational and rotational motion of the 

reentry vehicle (Roskam, 1995). Under the following 

assumptions: 

 

• Rigid vehicle (no elastic modes) 

• No wind shears or turbulence 

• Time rate of change of mass and inertia is assumed 

to be negligible 

• Only the effect of the moments produced by 

Reaction Control System (RCS) is taken into 

account while the effect of RCS forces is neglected 

• Contributions of spherical and rotating Earth will 

not be considered. Even though this contribution is 

not negligible in case of a reentry flight, it will be 

anyway accounted for as a source of uncertainty in 

the Kalman Filter observer (see next sections) 

 

The resulting equations are reported below (position 

equations are omitted): 
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where, V is the true air speed, m  is the vehicle mass, α 

the angle of attack, β the angle of sideslip, ϕ, ϑ, ψ are 

the Euler angles, p, q, r the angular rates, q∞ is the 

dynamic pressure, S the reference surface, CL, CD, CY are 

lift, drag and side-force coefficients respectively, l, m, n 

are the total moments along the body axes (aerodynamic 

moments plus RCS ones), i.e.: 
 

( )
( )
( )

, , , , , ,

, , , , ,

, , , , ,

l RCS

m RCS

n RCS

l q S bC M p q r l

m q S cC M p q r m

n q S bC M p q r n

α β δ

α β δ

α β δ

∞

∞

∞

= ⋅ ⋅ +

= ⋅ ⋅ +

= ⋅ ⋅ +

 (3) 

 
where, Cl, Cm, Cn are the coefficients of roll, pitch and 
yaw moments, respectively, δ is the elevon deflection, b 
is the wing span, c is the mean aerodynamic chord and 
lRCS, mRCS, nRCS are the moments generated by RCS. 

For the development of a state observer, the airspeed 

equation will not be taken into account; therefore the 

system state will be made of the angle of attack α, angle 

of sideslip β, angular rates p, q, r and Euler angles ϕ, ϑ, ψ. 

The non-linear dynamic system will have the 

following state-space representation: 
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As mentioned earlier, state vector is x = [α, β, p, q, r, 

ϕ, θ, ψ] and ρ is a vector of parameters that contains true 

airspeed, Mach number and dynamic pressure, i.e., ρ = 

[V, M, q∞]. The input vector will be u = [δ, lRCS, mRCS, 

nRCS] while the output vector is made of the state 

variables but it also includes the body axes accelerations, 

i.e., y = [x, ax, ay, az] where: 
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Linearization 

System of Equation 4 can be linearized around an 

equilibrium point xtrim with the input equal to the trim 

elevon deflection δtrim and zero RCS moments, i.e., u = 

[δtrim, 0,0,0]. 

Trim elevon deflection is computed as the elevon 

deflection at which the pitch moment coefficient Cm is 

zero for a given angle of attack, Mach number, zero 

angular rates and zero sideslip angle (longitudinal trim), 

i.e., Cm (M, α, β = 0, p = q = r = 0, δ = δtrim) = 0. 

Therefore, the following system is obtained: 

 

( ) ( )
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=
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where, x = x − xtrim. 

The matrices A,B,C are obtained through 

differentiations of Equation 4 around the equilibrium 

point, that is: 
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Under the above assumptions, the trim value for the 

state x is: 

 

, , , , , , , ,

,0,0,0,0,0, , ,0,0,0

 =  

 =  

trim trim trim trim trim trim trim trim trim

trim trim trim

x p q rα β ϕ θ ψ

α θ ψ
 (8) 

 

It is worth noting that trim values of 

lateral/directional variables β, ϕ, p, r are zero because 

the trim condition corresponds to longitudinal 

equilibrium. Pitch rate is assumed zero as well. 

Proposed FDI Algorithms 

In this section, the proposed fault detection and 

isolation strategy is described. Fault detection and 

isolation in model-based approach goes through the 

following stages: Residual generation, detection and, 

finally, isolation based on the analysis of residual itself. 

Residual Generation 

Once the system to monitor has been modeled as in 

Equation 6, a residual signal shall be generated. This is 

possible after constructing a state observer, which 

predicts system outputs that will be compared to the 

measured outputs. In the proposed strategy, Kalman 

Filter is used for this goal. 

Kalman filter represents a well-known methodology 

for the optimal estimation of state variables in presence 

of process and measurements noises (Gelb, 1989). 

A generic linear system is given in the form: 

 

dx
Ax Bu w

dt

y Cx v

= + +

= +
 (9) 

 

where, x ∈ℜh
 is the state vector, u∈ℜp

 is the input 

vector, y ∈ℜm
 is the output vector, w and v are 

uncorrelated white Gaussian noises with zero mean and 

diagonal covariance matrices Q∈ℜhxh
 and R∈ℜmxm

. 

Measurement noise v accounts for the difference 

between true and measured outputs while process noise 

w accounts for model uncertainties. In this regard, as 

explained earlier, process noise will also include the 

model errors due to simplifying assumptions under 

which Equation 1 and 2 have been obtained. 

The predictor-corrector equations of Kalman filter are 

reported below. 
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The covariance matrices Q and R are determined as 

filter parameters. After estimating the system state, 

residual signal can be simply computed as r = y − ˆCx . 

Fault Detection 

Once the residual signal has been generated, the 

decision about whether a fault is present or not (i.e., 

detection stage) could be carried out by simply 

comparing the instantaneous value of residual signal 

with a threshold (Ding, 2013). However, since the 

residual signal (computed through a Kalman Filter) is a 

stochastic process, an effective detection stage use the 

estimation of residual statistics and hypotheses testing. 

Under nominal (no fault) condition, the statistics of the 

residual are indeed (hypothesis H0): 
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where the subscript k indicates the instant at which the 

above quantities are computed, the superscript T 

indicates matrix transpose, mean{⋅} and cov{⋅} are the 

mean and covariance operators respectively. When a 

fault occurs, the statistics of the residual will be different 

from the nominal ones. Therefore, deviations of the 

monitored system from its nominal behavior can be 

detected via the estimation of residual mean and 

covariance and comparison with thresholds, i.e.: 
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where, Tµ and Tσ are threshold vectors. Clearly, low 

thresholds ease the fault detection but, at the same time, 

increase the probability of signaling a fault that has not 

occurred (false alarm). On the contrary, high threshold 

reduce the false alarm probability but also the capability 

of detecting faults. For the above reasons, threshold 

values should be selected as a trade-off between 

sensitivity to faults (low threshold) and insensitivity to 

measurement noise (high threshold). 
Equation 13 must be intended in the following way: 

If at least one component of mean{rk} overcomes the 

related threshold, a fault is signaled. Similarly, for what 

concerns the covariance matrix cov{rk}, only the 
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elements of the main diagonal are considered and if at 

least one of these elements overcomes the related 

threshold, the fault is signaled. Mean and covariance 

are continuously estimated with a moving average of 

fixed length, i.e.: 

 

( ) ( )
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where, r is a column vector and represents the residual 

signal as in Equation 12, ˆ rµ is a column vector 

representing the estimation of mean{r}, ˆ rS is a matrix 

representing the estimation of cov{r} and the superscript 

T indicates matrix transpose. Finally, N is the number of 

samples in the time window used for the moving 

average. It is worth specifying that, depending on either 

the mean or the covariance overcomes the threshold, a 

bias fault or a loss of accuracy fault is detected. 

Fault Isolation 

Once that the fault has been detected, the next task is 

the identification of which sensor is faulted. This task 

goes under the name of fault isolation. 

For what concerns the bias fault, the proposed 

isolation strategy does not rely on schemes based on 

observers’ banks such as Generalized Observer 

Scheme (GOS) and Dedicated Observer Scheme 

(DOS) (Zhang and Jiang, 2008). This dramatically 

reduces the computational complexity and eases the real-

time implementation of the proposed FDI algorithms. 

Fault isolation is indeed obtained via the 

computation of the residual direction and comparison to 

all possible residual directions generated by a set of 

specific faults. Therefore, the detected fault is 

attributed to the sensor whose fault would generate a 

residual having a direction that is most similar to the 

computed one. The comparison is carried out through 

the computation of a correlation coefficient. Actually, 

this computation is quite straightforward only under the 

hypothesis that the closed-loop matrix of the observer 

is diagonal (Chen and Patton, 1999). However, if we 

make the assumption that the main contribution to the 

residual response is given by the DC component of the 

fault signal, the steady state value of residual response 

can be easily obtained without any assumption about 

the observer closed-loop matrix, i.e.: 

 

( ) 0|sens sens s sensr W s f==  (15) 

 

where, K is the observer gain, Wsens(s) = C(sI-(A-KC))
-1

 

K + I is the transfer matrix of the system having the fault 

vector fsens as input and the residual vector rsens as output, 

where 0j

sens
f ≠  only if the j-th sensor is faulted. 

The above transfer matrix has been computed from 

dynamic equations of a generic state observer, i.e.: 
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where, x̂ is the state of observer system. 

Even though the above equations are valid only for 

a LTI system, we assume that the monitored system 

can be “locally” (i.e., for few instants after the fault 

occurrence) seen as a LTI system. Therefore, 

correlation index of the j-th sensor fault can be easily 

obtained as: 
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where the symbol (⋅) means the dot product and ||⋅||2 is 

the vector norm. Fault is then attributed to the sensor 

having the highest correlation coefficient. 

Clearly the above described isolation method is not 

effective for the fault concerning the increase of 

measurement noise (loss of accuracy fault) since, in that 

case, noise mean is not affected by fault (only noise 

variance changes), hence the fault vector fsens would 

exhibit a zero DC component. In this case, the isolation 

is carried out by looking at residual covariance matrix, 

which can be written as in Equation 12: 

 

{ }cov T

k k k k kr C P C R= +  (18) 

 

As for the detection stage, only the elements of the 

main diagonal are considered. Furthermore, we make the 

assumption that, in case of loss of accuracy in the i-th 

sensor, the variance of the i-th measurement error is the 

predominant contribution to variance of the i-th residual 

component. In this way, we obtain { }2 i ii

k kr Rσ ≈  where 
i

k
r  

is the i-th component of residual vector rk, 
ii

k
R  is the 

element of the matrix Rk in the i-th row and i-th column 

and σ2
{⋅} is the variance operator. 

Under the above assumption, the isolation is 

straightforward; indeed, if the i-th component of residual 
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variance { }2 i

krσ  overcomes the related threshold (see 

Equation 13), the i-th measurement is considered faulted. 

Control Laws Reconfiguration 

In presence of loss of accuracy fault (i.e., 

measurements with degraded accuracy), a Fault 

Tolerance Control strategy should take into account the 

actual measurement accuracy and adapt the control gains 

accordingly. In this section, a strategy similar to the one 

proposed by the same authors in Poderico et al. (2014) is 

used to take advantage of the information on 

measurement accuracy. 

Let’s consider a generic linear plant defined by the 

equations below: 

 

dx
Ax Bu

dt

y Cx

= +

=
 (19) 

 

where, Am ∈ ℜnxn
, B ∈ ℜnxm

, C∈ ℜpxp
 are the dynamic, 

input and output matrices respectively. A state feedback 

control law u = Kx can be applied and, by choosing 

control matrix: 
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−
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where, Am∈ℜ
pxp

 is a Hurwitz matrix, the output 

dynamics can be assigned, i.e., y = Amy, provided that 

high frequency gain matrix CB is invertible. Therefore, 

considering the closed loop system: 
 

( )dx
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=
 (21) 

 

the system response to a measurement error ∆x = xmeas-

xtrue can be written (in Laplace domain) as: 
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1

y s C sI A BK BK x s
−
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Since we are interested in the degradation of 

measurement accuracy due to an increase of the sensor 

noise, we can focus on the high frequency gain matrix. 

For a generic linear plant as the one defined in Equation 

19, the high frequency gain matrix is equal to CB, 

therefore for the system of Equation 22, it will be CBK 

whose expression can be easily computed from the 

Equation 20, i.e.: 

 

m
CBK A C CA= −  (23) 

 

Let’s consider nom n

x
w ∈ℜ , the sensor noise in 

nominal condition (no fault). As mentioned earlier, in 

case of loss accuracy fault, an increase of sensor noise 

is assumed, i.e.: 
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w
σ ∈ℜ  are the standard deviations of 

noise vector in nominal and fault condition respectively 

and Ω is a diagonal matrix having the i-th element of the 

main diagonal equal to: 
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with η > 1. The objective of control reconfiguration is to 

adapt control parameters such that closed-loop response 

to the measurement noise of failed sensor is almost the 

same of the nominal (no fault) case. Considering that the 

high frequency gain matrix can be written as CBK, this is 

obtained by ensuring that: 
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According to Equation 23, the (reconfigured) control 

parameter fail
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A must be computed such that: 
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By substituting Equation 24 in Equation 27, it is 

finally obtained: 

 

( ) 0
x

fail nom

m m w
A C A C CA CA σΩ − − Ω + =  (28) 

 

The above equation is true for each 
x

nom n

w
σ ∈ℜ and 

only if ( ) 0fail

m mA C A C CA CAΩ − − Ω + = . It is easy to show 

that fail

m
A can be then computed as: 

 

( ) 1ˆfail

m mA A C CA CA C− += + Ω − Ω  (29) 

 

where, C
+
 is the right pseudo-inverse of C and Ω̂  is an 

estimation of Ω, provided by FDI algorithms as 

described in sec. 3. Therefore, Equation 29 allows 

adapting the control sensitivity to the actual 

measurement noise level, which is estimated by FDI 

after that a loss of accuracy is detected. 

Numerical Results 

In this section, the effectiveness of the proposed 

FDIR strategy has been evaluated through a numerical 



Gianfranco Morani and Mariangela Di Lorenzo / American Journal of Engineering and Applied Sciences 2018, 11 (2): 455.470 

DOI: 10.3844/ajeassp.2018.455.470 

 

461 

analysis in which the re-entry flight of FTB3 (a Flying 

Test bed designed by Italian aerospace Research Centre) 

(Palumbo et al., 2012) has been simulated (nominal 

reentry trajectory is reported in Fig. 1). The model used 

for the analysis has been developed in a 

Matlab/Simulink® environment and it includes 6Dof 

equations of FTB-3 flight dynamics, Guidance, 

Navigation and Control algorithms, navigation sensors, 

actuators and Reaction Control System. Proposed FDI 

algorithms have been evaluated with respect to some fault 

scenarios concerning both accelerometers and gyroscopes. 

As explained in the introduction, the following fault types 

have been considered: Bias, i.e., a constant offset between 

the actual and measured signals and loss of accuracy, i.e. 

the level of measurement noise is increased. 

Accelerometer Bias Increase 

Fault has been modeled as a step signal added to the 

true value of accelerometer. The fault magnitude is equal 

to 2 m/s
2
. The fault has been injected at t = 500 s. For 

sake of brevity, only the case of fault on y-axis 

accelerometer is reported. FDI algorithms readily 

perform the fault detection and isolation (Fig. 2). Fault 

isolation flag indicates that fault is on the measurement 

labeled with number “10”, which actually refers to ay (as 

explained earlier). 

In Fig. 3, the mean and standard deviation of 

residual signal are reported (difference with respect to 

the threshold are plotted). As explained earlier, 

residual signal is a vector having the same dimension 

of system output and detection flag is raised when at 

least one component overcomes the related threshold; 

therefore, at each instant, the maximum value of 

residual vector wrt threshold (i.e., the value of the 

largest component) is reported. 

Gyroscope Bias increase 

Fault has been modeled as a step signal added to the 

true value of gyroscope. The fault has been injected at t 

= 500 s. and fault magnitude is equal to 0.2 deg/s. 

Only the case of fault on pitch rate measurement is 

reported. FDI algorithms readily perform the fault 

detection and isolation (Fig. 4). Fault isolation flag 

indicates that fault is on the measurement labeled with 

number “4”, which actually refers to q (as explained 

earlier). In Fig. 5, the mean and standard deviation of 

residual signal are reported (as explained before, 

difference with respect to the threshold are plotted). 

 

 
 

Fig. 1: Mach number, dynamic pressure and altitude along FTB3 re-entry trajectory 
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Fig. 2: FDI signals in abrupt fault of y-acceleration sensor 

 

 
 

Fig. 3: Residual mean and standard deviation - bias fault of y-acceleration sensor 



Gianfranco Morani and Mariangela Di Lorenzo / American Journal of Engineering and Applied Sciences 2018, 11 (2): 455.470 

DOI: 10.3844/ajeassp.2018.455.470 

 

463 

 
 

Fig. 4: FDI signals in bias fault of pitch rate sensor 

 

 
 

Fig. 5: Residual mean and standard deviation - bias fault of pitch rate sensor 
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Fig. 6: FDI signals when the accuracy of roll rate sensor abruptly degrades 

 

 
 

Fig. 7: Residual mean and standard deviation – roll rate fault 
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Fig. 8: FDI signals when the accuracy of pitch rate sensor abruptly degrades 

 

 
 

Fig. 9: Residual mean and standard deviation – pitch rate fault 
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Fig. 10: Residual mean and standard deviation – pitch rate fault 

 

 
 

Fig. 11: Residual mean and standard deviation – yaw rate fault 
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Fig. 12: Roll rate loss of accuracy fault –roll rate and commanded roll torque with and without control laws reconfiguration. Residual 

mean and standard deviation – pitch rate fault 

 

 
 
Fig. 13: Pitch rate loss of accuracy fault - pitch rate and commanded pitch torque with and without control laws reconfiguration. 

Residual mean and standard deviation – yaw rate fault 
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Fig. 14: Yaw rate loss of accuracy fault – yaw rate and commanded yaw torque with and without control laws reconfiguration 

 
Table 1: RCS fuel consumption for the first 100 seconds. 

Scenario Fuel consumption [kg] 

No failure 0.3812 

Noise increasing of p (roll rate) measurement without reconfiguration 0.5603 

Noise increasing of p (roll rate) measurement with reconfiguration 0.3915 

Noise increasing of q (pitch rate) measurement without reconfiguration 1.4060 

Noise increasing of q (pitch rate) measurement with reconfiguration 0.5264 

Noise increasing of r (yaw rate) measurement without reconfiguration 1.0911 

Noise increasing of r (yaw rate) measurement with reconfiguration 0.4495 

 

Loss of Accuracy for Gyroscope 

This fault has been modeled by increasing the 

standard deviation of gyroscope noise by a factor 5 (from 

0.05 to 0.25 deg/s). 

FDI algorithms readily perform the fault detection 

and isolation (Fig. 6, 8 and 10). Furthermore, the 

accuracy of faulted gyroscope is correctly estimated. 

Mean and standard deviation of residual signal (with 

respect to threshold) are also reported in Fig. 7, 9 and 11. 

As explained earlier, the detection of this type of failure 

triggers reconfiguration of control laws. From Fig. 12 to 

14, the measured angular rates are reported both without 

and with reconfiguration of control laws. 

As it can be seen from the figures, control laws 

reconfiguration allows reducing the sensitivity to 

measurement noise. Consequently, this leads to a 

reduction of control effort (less RCS fuel consumption) as 

shown in Table 1. As explained earlier, reconfiguration is 

done by using the estimation of actual sensor accuracy, 

coming from FDI subsystem and adapting control 

parameters such that closed loop response to high 

frequency disturbance (i.e., measurement noise) is almost 

the same as in the nominal situation. 

It is worth noting that this adaptation of control 

parameters, which reduce the control sensitivity, also 

reduces the control accuracy. However, in case of this 

type of sensor failure, the main goal would be to avoid a 

high control effort and, consequently, a significant 

increase of RCS fuel consumption, which might lead to 

catastrophic consequences, as the efficiency of RCS 

thrusters is strongly dependent on the available fuel mass. 
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Conclusion 

In this study, a FDIR strategy for single sensor faults 

during a re-entry flight has been presented. The proposed 

strategy is model based and relies on a linearized model of 

rotational flight dynamics, which continuously depends on 

some trajectory variables (like airspeed, Mach and dynamic 

pressure) thus being effective for modeling the rapidly 

changing flight conditions typical of a re-entry mission. 

The FDI scheme makes use of a stochastic observer 

(Kalman Filter) for the generation of a residual signal. 

Detection is accomplished through the estimation of the 

statistics of residual signal while isolation is obtained 

thorough the analysis of either residual vector direction or 

the residual covariance matrix, depending on which fault 

type has been detected. Finally, in case of loss of accuracy 

fault, reconfiguration to sensors failure is obtained through 

the modification of control parameters that directly 

influence the sensitivity to measurement noise. 

The effectiveness of the proposed FDIR strategy has 

been shown by means of numerical simulations where 

some accelerometer and gyroscope faults have been 

reproduced. Fault scenarios included bias increase and 

loss of accuracy. The analysis has been carried out with a 

6DoF model of FTB3 vehicle (a Flying Test Bed designed 

by Italian Aerospace Research Centre for inflight 

validation of hypersonic and atmospheric re-entry 

technologies). Simulations showed promising results, in 

terms of both detection and isolation. Furthermore, in case 

of loss of accuracy of failed sensor, the proposed FDI 

algorithms correctly estimated actual sensor accuracy and 

allowed control laws reconfiguration, which in turn 

significantly reduced RCS fuel consumption. 
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