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Abstract: Dynamics, or dynamic processes, is the part of mechanics dealing 
with the study of processes trying to describe as real as possible the 
movement of a body, element, mechanism, car, etc., also taking into account 
the action of the forces on the respective system with their influence on the 
actual movement of system. The present paper aims to present the study of 
the dynamics of the vehicles, with particularization on the buses. Here are the 
main elements of the bus dynamics, taking into account all the elements that 
influence the dynamic operation of a bus, in general and in particular 
situations, with emphasis on the main systems and elements that act on the 
actual, dynamic, on a normal path or on an inclined with an alpha angle path. 
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Introduction 

Transport is the movement of persons as well as 
goods, signals or information from one place to another. 
The term comes from Latin, from "transport", trans 
(over) and porting (meaning wearing or carrying). 

Transport is an activity that arose with the existence 
of man. The physical limits of the human body in terms 
of walking distances and the quantity of goods that could 
be transported led, over time, to the discovery of a 
variety of ways and means of transport. 

Transport facilitates access to natural resources and 
stimulates trade. 

The transport sector has different aspects. 
Simplifying and generalizing can be discussed by three 
major branches: Infrastructure, vehicles, management: 

Transport infrastructure, including the entire 
transport network (streets, motorways, railways, 
waterways, flight color, pipelines, etc.) and terminals 
(airports, railway stations, bus stations, etc.). 

Vehicles of all types: Motor vehicles, trains, ships, 
airplanes, etc., together with all aspects related to vehicle 
design, construction, diagnosis and exploitation, road 
traffic, management. 

Transport management is the responsibility of 
transport engineering and engineering for the design of 
transport networks and systems, aiming at optimizing 

transport systems, increasing transport safety, protecting 
the environment, etc. 

Land transport is the most widespread form of 
transport. People can move by their own forces or using 
means of transport that use human power, such as a 
bicycle, or they can use animal traction to pull wagons or 
other types of carriages. The most widespread and 
efficient form of land transport uses vehicles equipped 
with liquid-fueled engines (Frăţilă et al., 2011; Pelecudi, 
1967; Antonescu, 2000; Comănescu et al., 2010;     
Aversa et al., 2016a; 2016b; 2016c; 2016d; 2017a; 2017b; 
2017c; 2017d; 2017e; Berto et al., 2016a; 2016b; 2016c; 
2016d; Mirsayar et al., 2017; Cao et al., 2013; Dong et al., 
2013; De Melo et al., 2012; Garcia et al., 2007; Garcia-
Murillo et al., 2013; He et al., 2013; Lee, 2013; Lin et al., 
2013; Liu et al., 2013; Padula and Perdereau, 2013; 
Perumaal and Jawahar, 2013; Petrescu and Petrescu, 
1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 
2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e, 
2016a; 2016b; 2016c; 2016d; 2016e; 2013; 2012a; 2012b; 
2011; Petrescu et al., 2009; 2016a; 2016b; 2016c; 2016d; 
2016e; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 
2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 
2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 
2017v; 2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 
2017ac; 2017ad; 2017ae; Petrescu and Calautit, 2016a; 
2016b; Reddy et al., 2012; Tabaković et al., 2013;      
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Tang et al., 2013; Tong et al., 2013; Wang et al., 2013; 
Wen et al., 2012; Antonescu and Petrescu, 1985; 1989; 
Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994; 
1997; 2000a; 2000b; 2001). 

Materials and Methods 

Airflow Resistance  

Air resistance is the force that opposes the forwarding 
of the bus while moving into the air. 

The causes of air resistance when driving a bus are as 
follows: 
 
1. Pressure exerted by the air particles encountered on 

the front of the bus 
2. Friction of the outer surface of the bodywork by air 

particles 
3. In particular, whirlwinds are produced in front of the 

bus and a depression zone (Fig. 1) is created behind 
the bus, which consumes much energy (generating 
high resistances on the bus) 

 
For the calculation of air resistance, the motion of the 

bodies is used in fluid media at speeds below 300 m/s. In 
this case, the air resistance is given by the relation (1), in 
which: c is a coefficient of resistance to advance which 
depends on the shape of the body; ρ air density in kg/m3; 
A is the transverse (frontal) area of the bus in m2; v is the 
bus speed in m/s. 
 
 2

a
R c A vρ= ⋅ ⋅ ⋅  (1) 

 
If we take into account that the air density ρ has very 

small (insignificant) variations at the height from the 
ground at which the vehicles circulate, then the product 
c. ρ = K = constant and the relation (1) takes the form (2) 
bears the name of the aerodynamic coefficient: 

 
2

a
R K A v= ⋅ ⋅  (2) 

Taking into account that for buses their travel 
speed v is usually expressed in km/h, the relation (2) 
can be written in the form (3), where V is the speed of 
the bus in km/h: 
 

2

21

3,6 13a

V
R K A K A V

 
= ⋅ ⋅ = ⋅ ⋅ 

 
 (3) 

 
The power consumed by the bus [W] to overcome the 

air resistance will be given by the relationship (4), where 
as previously mentioned the bus speed V is introduced in 
km/h, the cross-sectional area of the bus A is given in m2 
and the power consumed Pa results in W: 
 

2

2 3

1

13 3,6

1
0,27 0,021

13

a a

V
P R v K A V

K A V V K A V

= ⋅ = ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅

 (4)  

 
For a driver to be able to operate economically on the 

bus, he should go as low as possible, given that the 
treadmill is the main factor that increases the air 
resistance when the bus goes and even the third; in other 
words, the air resistance increases directly in proportion 
to the cube of the bus speed. Obviously a bus on a 
national or international road can not travel at very low 
speed and then the only way to reduce the air resistance 
when driving a bus is to reduce constructively the 
aerodynamic coefficient K from the body design. 

For rapid, approximate, good results, the surface A 
can easily be determined by the relationship (5), where B 
is the bus path (front gauge, distance between the front 
axle wheels) and H the maximum bus height, both 
measured in m. 

Instead of gauge or track, the width of the bus 
(trolley, or truck, as the case may be) may be more 
accurate (Fig. 2): 
 
A B H= ⋅  (5)  

 

 
 

Fig. 1: Spectrum of leakages produced by air lines on a bus on the road 
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Fig. 2: Schema for approximate front surface calculation 
 

 
 

Fig. 3: New building designs for buses to reduce aerodynamic coefficients 
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Fig. 4: Resistance to climbing a slop of a bus 
 

For urban buses (including trolleybuses) the 
aerodynamic coefficient K = 0,030 ... 0,044, while the 
frontal area of a bus varies within A = 4,5 ... 12,5 m2 for 
the usual cases. 

As shown, it is necessary to reduce the aerodynamic 
coefficient from the design, which is why modern buses 
have new constructive shapes (Fig. 3). 

Resistance to Climbing a Slope 

The slope resistance of a bus (Fig. 4) is a component 
parallel to the sloping path (of the slope) of the total 
weight of the bus Gt, i.e., the component Rp = Gt.sinα, 
given by the relation (6): 
 

sinp tR G α= ⋅  (6)  

 
where, Gt is the total weight of the bus given in daN, the 
angle α represents the slope angle of the slope versus the 
horizontal in degrees deg. 

In the case of small slopes (α<10°) we can 
approximate: sinα = tgα = α [rad] = p. Thus the 
resistance to the ascension of a slope will be given by the 
relation (7): 
 
 p tR G p= ⋅  (7) 

 
When descending a slope, the weight component of the 

bus becomes an active force, tending to increase its speed. 
The power consumed by an extra bus for ascending 

an angle slope α, precisely for overcoming the slope 
resistance, is given by the relation (8): 

[ ] [ ] [ / ]

[ ] 0,27 [ / ]

10 [ ] 0,27 [ / ]

[ ] 2,7 [ / ]

[ ] sin 2,7 [ / ]

[ ] 2,7 [ / ]

p p

p

p

p

t

t

P W R N v m s

R N V km h

R daN V km h

R daN V km h

G daN V km h

G daN p V km h

α

= ⋅

= ⋅ ⋅
= ⋅ ⋅ ⋅

= ⋅ ⋅
= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅

 (8)  

 
Resistance to Acceleration 

Acceleration resistance is a force that opposes the 
bus movement, which occurs at the speed of the bus 
and the start of it, being an inertial force. Force 
acceleration force is the force of inertia that opposes 
speed variations and is given by the relation (9), where 
g is the gravitational acceleration in m/s2, considered 
constant (for a given location of the planet and a certain 
height on average with the calculation value of 9.81 
ms−2), a is the acceleration of the bus which creates the 
inertia force, given also in m/s2 and Gt is the total 
weight of the bus, which in the international system of 
measurement is taken in N, technically given in daN, 
the force Rd having the same unit of measure as the 
weight of the Gt bus. If Gt is considered in daN 
obviously and Rd will result all in daN: 
 

t
d

G
R m a a

g
= ⋅ = ⋅  (9)  

 
In relation (9), the additional movements of certain 

assemblies belonging to the bus, such as the engine's 
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flywheel, transmission organs, which also perform 
rotational movements with some influence on the final 
translation movement of the bus, the lost power and 
on its stability. 

For rotation of the organs during the acceleration 
period, additional power is spent so that the acceleration 
resistance will actually be composed of the inertia force 
corresponding to the accelerated translation of the entire 
bus and the inertia force corresponding to the angular 
acceleration of the movement of the organs in rotation. 
This second force of inertia can be taken into account in 
calculations by means of a coefficient δ, called 
coefficient for increasing the speeds of the masses in 
rotation. The total resistance to bus acceleration will now 
be given more precisely by the relationship (10): 
 

 t
d

G
R m a a

g
δ δ= ⋅ ⋅ = ⋅ ⋅  (10)  

 
The value of the coefficient δ is determined by 

calculation. It can be determined by an empirical 
relationship (11), where icv is the transmission ratio of 
the gearbox in that gear and σ is a coefficient, which for 
buses takes values in the beach: σ = 0,05 ... 0.07: 
 
 21

cv
iδ σ= + ⋅  (11)  

 
The power required to overcome the bus acceleration 

resistance can be calculated using the relationship (12): 
 

[ ] [ ] [ / ]

[ ]
[ / ]

10 [ ]
0,27 [ / ]

[ ]
2,7 [ / ]

d d

t

t

t

P W R N v m s

G N
a v m s

g

G daN
a V km h

g

G daN
a V km h

g

δ

δ

δ

= ⋅

= ⋅ ⋅ ⋅



⋅= ⋅ ⋅ ⋅ ⋅


= ⋅ ⋅ ⋅ ⋅


 (12)  

 
Results and Discussion  

Normal Pathway Reactions at Bus Decks 

Determination of normal reactions on decks is 
considered to be a bus that ascends a slope α with an 
accelerated motion. The forces and moments acting on 
the bus are shown in Fig. 5. 

Writing the equation of moments to the center of 
gravity of the bus, the relation (13) is obtained, in which: 
Z1 and Z2 are the normal dynamic reactions at the front 
and rear axles; Gt is the total weight of the bus that 
decomposes on the inclined slope of the slope in the two 
components Gt.sinα parallel to the path and Gt.cosα 
perpendicular to the track; Ra is the air resistance on the 
bus; Rd is the acceleration resistance of the bus; Mrul1 and 

Mrul2 are the moments corresponding to rolling resistance 
for the front axle and rear axle respectively; Ft is the 
traction force at the engine wheels; hg is the height of the 
center of gravity of the bus and ha is the height of the 
center of pressure where air resistance is assumed to act; 
rr is the radius of the wheels: 
 

1 2 1 2

( ) 0
rul rul

t g a a g

Z a Z b M M

F h R h h

⋅ − ⋅ + +

+ ⋅ + ⋅ − =
 (13) 

 
For the determination of the two reactions, the equation 

of projection of the forces on a plane perpendicular to the 
plane of the tread (14) is also written: 
 

1 2 costZ Z G α+ = ⋅  (14)  

 
Taking into account the relation (15), the relation 

(13) takes the form (16): 
 

( )
1 2 1 2

1 2 cos
rul rul r r

r r t

M M f r Z f r Z

f r Z Z f r G α

+ = ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅ + = ⋅ ⋅ ⋅
 (15)  

 

1 2 cos

( ) 0
r t

t g a a g

Z a Z b f r G

F h R h h

α⋅ − ⋅ + ⋅ ⋅ ⋅

+ ⋅ + ⋅ − =
 (16)  

 
Since in most buses the ha-hg difference is very small, 

the product Ra(ha-hg) can be neglected, so that the relation 
(16) obtains the approximate, simplified form, (17): 
 

1 2 cos 0r t t gZ a Z b f r G F hα⋅ − ⋅ + ⋅ ⋅ ⋅ + ⋅ =  (17)  

 
Thus, a two-equation system (18) with two 

unknowns, Z1, Z2, is obtained, from which two dynamic 
normal reactions at the bus bridges, Z1 and Z2 (system 
19), where L = a + b: 
 

1 2

1 2

cos 0

cos

r t t g

t

Z a Z b f r G F h

Z Z G

α

α

⋅ − ⋅ + ⋅ ⋅ ⋅ + ⋅ =


+ = ⋅
 (18) 

 
( )

( )

1

2

cos

cos

t r t g

t r t g

G b f r F h
Z

L

G a f r F h
Z

L

α

α

 ⋅ − ⋅ ⋅ − ⋅
=


⋅ + ⋅ ⋅ + ⋅ =

 (19) 

  
Taking into account that the product f.rr has a small 

value in relation to the distances (lengths) a, b, the 
system (19) gets the simplified form (20): 
 

1

2

cos

cos

t t g

t t g

G b F h
Z

L

G a F h
Z

L

α

α

⋅ ⋅ − ⋅
=


⋅ ⋅ + ⋅ =

 (20)  
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Fig. 5: The forces, moments and reactions that act on a bus when climbing a slope with an accelerated motion 
 

 
 

Fig. 6: Forces and reactions acting on a bus that is in a straight line on a α inclination and transient (acceleration) 
 

From the system (20) we find that dynamic loads on 
the bridges Z1 and Z2 depend on the total weight of the 
bus Gt, the position of the center of gravity (a, b, hg), the 
slope angle α and the force traction Ft and the tractive 
force loads the rear axle and simultaneously unloads the 
front axle, the more it is. 

Air resistance and acceleration resistance do not really 
influence the dynamic loads on the two front axles. 

Equation of Bus Movement 

In order to establish the general equation of bus 
movement, it is considered a straight-ahead bus on a α 
inclination path, in dynamic mode (variable speed, 
acceleration period). 

Figure 6 shows the forces and responses acting on the 
bus in the mentioned case, these being: The weight of 
the Gt bus (with the two components), the rolling 
resistance Rr1 and Rr2 at the two decks, the normal 
reactions of the path Z1 and Z2, the resistance due the 
slope Rp, the air resistance Ra, the acceleration resistance 
Rd and the tangential reaction Ft of the path to the drive 
wheels (equal to the traction force). 

The projection equation, on a path parallel to the 
path, of the forces acting on the bus has the form (21) or 
(22), wherein Rr = Rr1 + Rr2: 
 

( )1 2 0t r r p a dF R R R R R− + + + − =  (21) 
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( )d t r p aR F R R R= − + +  (22) 

 
If the acceleration resistance (22) is replaced in 

relation (22), the expression (23) is obtained, where ΣR’ 
= Rr + Rp + Ra: 
 

't
t

G
a F R

g
δ⋅ ⋅ = −∑  (23) 

 
From the relation (23) directly follows the expression 

(24), which represents the differential equation of the 
rectilin motion of the bus; it expresses the value of the 
acceleration that the bus can obtain for a certain value of 
the traction force Ft and a certain value of the cumulative 
resistances ΣR': 
 

( )'t

t

g
a F R

Gδ
= ⋅ −

⋅ ∑  (24) 

 
Conclusion 

 The present paper aims to present the study of the 
dynamics of the vehicles, with particularization on the 
buses. Here are the main elements of the bus dynamics, 
taking into account all the elements that influence the 
dynamic operation of a bus, in general and in particular 
situations, with emphasis on the main systems and 
elements that act on the actual, dynamic, on a normal path 
or on an inclined with an alpha angle path. The paper 
presents the second part of the bus dynamics. 
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