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Abstract: Today, various types of gearboxes have been introduced into the 
vehicles to change the way the classic manual gearboxes work, such as 
automatic gearboxes, semi-automatic, continuous variable, dual-clutch 
automatic gearboxes etc. However, most gear shifters for in-service vehicles 
are still classical manuals, which is why their optimal synthesis based on their 
dynamics and especially on optimal performance is now more than 
necessary. The paper presents how to accurately determine the mechanical 
performance of a gearbox for passenger buses. Based on these relationships, 
an optimal synthesis of the performance of a classic, mechanical, manual 
gearshift can be achieved regardless of its operating status. 
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Introduction 

The gearbox, or gearshift, is the centerpiece of a 
transmission.  

The most common types of gearboxes have been and 
are still maintained, the classic gearboxes, initially the 
first gearboxes being built with spur gears, with straight 
teeth since they were permanently coupled with the 
secondary (output) shaft, rotating permanently with it, 
the various steps being practiced by coupling or 
decoupling such balancing wheel with its equivalent 
wheel located on the tertiary, intermediate or auxiliary 
shaft, all the wheels on the secondary shaft being also 
permanently connected in rotation. The tertiary 
(intermediate or auxiliary) shaft receives constant 
rotation from the input shaft by means of a permanent 
fixed gear made between the input shaft sprocket and the 
corresponding sprocket on the intermediate shaft, thus 
constantly driving the intermediate shaft together with 
all its wheels (Fig. 1). 

At the initial solution (Fig. 1), the output shaft wheels 
were coupled in turn with one of the wheels of the 
intermediate shaft by moving them on the output shaft 
guided on some grooves. Obviously for this reason, they 
could only be riding straight teeth (which have many 
drawbacks compared to tilted or curved teeth). 

 
 
Fig. 1: Classic gearbox with sliding wheels 

 
Since the 1970s, this initial solution has been 

quickly replaced with a top one with all the wheels 
(including those of the output shaft) designed with 
inclined or curved teeth, the output shaft wheels being 
normally free on their secondary (output shaft ), i.e., 
rotating freely on it and being rotatably coupled to the 
secondary shaft, in turn, by means of syncrons, which 
are smaller toothed wheels with straight teeth 
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permanently rotating with the secondary shaft and 
which can to balancing to engage with the respective 
gear, thus enabling it to (selectively) engage the 
secondary shaft in rotation. Such a solution, also used 
in trucks and buses, is shown in Fig. 2, the classic 
gearbox with syncrones representing the best solution 
that existed and which is still the most used today, 
even if the boxes appeared, refined and multiplied 
hybrid or automatic gears. 

The paper presents how to accurately determine the 
mechanical performance of a gearbox for passenger 
buses. Based on these relationships, an optimal synthesis 
of the performance of a classic, mechanical, manual 
gearshift can be achieved regardless of its operating 
status (Frăţilă et al., 2011; Pelecudi, 1967; Antonescu, 
2000; Comănescu et al., 2010; Aversa et al., 2016a; 
2016b; 2016c; 2016d; 2017a; 2017b; 2017c; 2017d; 
2017e; Mirsayar et al., 2017; Cao et al., 2013; Dong et 

al., 2013; De Melo et al., 2012; Garcia et al., 2007;    
Garcia-Murillo et al., 2013; He et al., 2013; Lee, 2013; 
Lin et al., 2013; Liu et al., 2013; Padula and Perdereau, 
2013; Perumaal and Jawahar, 2013; Petrescu and 
Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 
2000b; 2002a; 2002b; 2003; 2005a; 2005b; 2005c; 
2005d; 2005e, 2016a; 2016b; 2016c; 2016d; 2016e; 

2013; 2012a; 2012b; 2011; Petrescu et al., 2009; 2016a; 
2016b; 2016c; 2016d; 2016e; 2017a; 2017b; 2017c; 2017d; 
2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 2017l; 
2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 2017s; 
2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 2017z; 
2017aa; 2017ab; 2017ac; 2017ad; 2017ae; Petrescu 
and Calautit, 2016a; 2016b; Reddy et al., 2012; 
Tabaković et al., 2013; Tang et al., 2013; Tong et al., 
2013; Wang et al., 2013; Wen et al., 2012; Antonescu 
and Petrescu, 1985; 1989; Antonescu et al., 1985a; 
1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 
2001; List the first flights, From Wikipedia; Chen and 
Patton, 1999; Fernandez et al., 2005; Fonod et al., 
2015; Lu et al., 2015; 2016;    Murray et al., 2010; 
Palumbo et al., 2012; Patre and Joshi, 2011; Sevil and 
Dogan, 2015; Sun and Joshi, 2009; Crickmore, 1997; 
Donald, 2003; Goodall, 2003; Graham, 2002; Jenkins, 
2001; Landis and Dennis, 2005; Clément, Wikipedia; 
Cayley, Wikipedia; Coandă-1910, Wikipedia; 
Gunston, 2010; Laming, 2000; Norris, 2010; Goddard, 
1916; Kaufman, 1959; Oberth, 1955; Cataldo, 2006; 
Gruener, 2006; Sherson et al., 2006; Williams, 1995; 
Venkataraman, 1992; Oppenheimer and Volkoff, 
1939; Michell, 1784; Droste, 1915; Finkelstein, 1958; 
Gorder, 2015; Hewish, 1970). 

 

 
 

Fig. 2: Manual gearbox, synchronous (with curved or sloping teeth) 
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Materials and Methods 

The input shaft (7) of the primary shaft (7) continuously 
transmits the rotational movement to the intermediate shaft 
by means of the wheel (8), the permanent gear 7-8 being the 
one that participates in all the obtained gears. 

For stage I, the wheel 1 of the output shaft is rotated 
with it, via its synchronizer, supported by a sleeve actuated 
by the corresponding fork, which in turn is actuated by the 
gearshift lever (gearbox). Normally, the wheel 1 rotates 
permanently on the output shaft (free to pull it), being in 
permanent engagement with the wheel 9 of the intermediate 
shaft. The power flow is permanently transmitted to the 
wheel 1 by the wheels 7-8-9-1, by means of the two gears 
7-8 and 9-1. When the wheel 9 is coupled to the output 
shaft, the power flow will also be transmitted to it. Latching 
mechanisms do not allow simultaneous coupling of two or 
more steps. The power flow of the first step can be 
expressed using relationships 1: 
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The second step is achieved by coupling the wheel 2 

in rotation with the output shaft, through its mechanism, 
with the corresponding synchronous. The power flow 7-
8-10-2, will be given by system relationships (2): 
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The third step is achieved by coupling the wheel 3 in 

rotation with the output shaft, through its mechanism, with 
the corresponding synchronous. Power flow 7-8-11-3, will 
be given by system relationships (3): 
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The fourth stage is achieved by coupling the wheel 4 

in rotation with the output shaft, through its mechanism, 

with the corresponding synchronizer. The power flow 7-
8-12-4 will be given by system relationships (4): 
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The fifth (last, forward) step is achieved by coupling 

the wheel 5 in rotation with the output shaft, through its 
mechanism, with the corresponding synchronous. The 
power flow 7-8-13-5 will be given by system 
relationships (5): 
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The sixth step (reversing, or mars arriere) is 

accomplished by coupling the wheel 6 in rotation with 
the output shaft, through its mechanism, with the 
corresponding synchronous. The power flow 7-8-14-15-
6, will be given by system relationships (6): 
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At each gear ratio of an outer gear, there is a minus sign 

showing that the direction of rotation from the input wheel 
of gear to the output wheel of the gear is changed. This sign 
is a conventional one, but it is important in calculations 
because the product of a even number of reports gives the 
sign plus to the end, while the product of an odd number of 
transmission reports generates the final sign minus. 

From the final system relationship (6), written for 
backward travel, it can be noticed that with three gears 
instead of two (as in the forward steps), three minus signs 
multiplied finally give the minus sign so that the spindle 
the output changes its direction of rotation relative to the 
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input shaft, causing the wheels of the bus to rotate in 
reverse and move it backwards, even if the internal 
combustion engine never changes its direction rotation. 

Each forward gear shall have two corresponding 
transmission reports to two gears and three gears 
corresponding to three gears shall be taken at the 
reverse gear. 

The main gear unit 7-8 is involved in achieving the 
power flow in each of the six gears achieved. 

The flow is actually reversed by only four wheels 7-
8-14-6 and the reversing wheel 15 does not actually 
participate in the final transmission ratio, iMR, but has the 
essential role of changing the direction of rotation of the 
shaft output of the gearbox. 

Results and Discussion 

The efficiency of each gearbox step is calculated 
individually, depending on the gears involved in the gear. 
Exact calculations are made using relations 7-9, where z1 
always represents the number of teeth at the input wheel 
of a gear and z2 the number of teeth at the output wheel of 
a gear; α0 is the normal engagement angle on the dividing 
circle, which typically has a standardized value, the most 
used being the value of 20°; β represents the tilting angle 
of the gear teeth (normally the gear teeth, but a gear uses 
compulsory wheels with the same taper angle β and the 
same engagement angle α0); ε represents the degree of 
coverage of a gear (i.e., how many pairs of teeth are in the 
gear engaged). For external gearing, the degree of 
coverage ε is calculated first with relation (8) and then the 
mechanical efficiency of the gear using the relation (7). If 
we are dealing with an inner gear, first determines its 
degree of coverage by means of the relation (9), after 
which the mechanical efficiency of the gear is calculated 
by means of the relation (7). The calculations are repeated 
for each gear separately. Note: In relation (7) there is a 
plus or minus sign, where it will be taken + (plus) for all 

situations where the input gear wheel is externally toothed 
and the – (minus) sign will only be adopted if the input 
wheel in the gear will be one with internal teeth (a toothed 
crown). When determining the degree of coverage in the 
case of an inner gear, which uses instead of two external 
gear wheels, an external tooth wheel and another internal 
tooth, the ze and zi notations corresponding to the number 
of teeth of the external teeth wheel respectively of the one 
with internal teeth (instead of the z1 and z2 notations used 
for the external engagement): 
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At each transmission stage of the forward gearbox 

(for the box in Fig. 2, being five forward strokes) we 
have two gears, so two separate mechanical returns (one 
for each gear) will be determined separately, the 
mechanical yield of the respective step being given by 
the product of the partial yields (belonging to the two 
gears participating in the respective gear). 

For the gearbox in Fig. 2, the system relations (10) 
will be used to determine the first gear: 
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For the gearbox in Fig. 2, the system relations (11) will be used to determine the gearing of the second gear: 
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For the gearbox of Fig. 2, the system relations (12) will be used to determine the gearing of the third gear: 
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For the gearbox of Fig. 2, the system relationships (13) will be used to determine the fourth gear gear: 
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For the gearbox of Fig. 2, the system relationships (14) will be used to determine the fifth gear gear: 
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For the gearbox of Fig. 2, the system relationships (15) will be used to determine the sixth gear (reverse). 
Observation. The reverse gear is made up of three different gears, which is also reflected in the dynamics of the 

gearshift mechanism, so that gearbox performance in the reverse gear is determined by three partial yields calculated 
each separately so that total efficiency of the sixth step (its mechanical yield) is then determined as the product of the 
three partial yields: 
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Conclusion 

 Since the 1970s, this initial solution has been quickly 
replaced with a top one with all the wheels (including 
those of the output shaft) designed with inclined or 
curved teeth, the output shaft wheels being normally free 
on their secondary (output shaft ), i.e., rotating freely on 
it and being rotatably coupled to the secondary shaft, in 
turn, by means of syncrons, which are smaller toothed 
wheels with straight teeth permanently rotating with the 
secondary shaft and which can to balancing to engage 
with the respective gear, thus enabling it to (selectively) 
engage the secondary shaft in rotation. Such a solution, 
also used in trucks and buses, is shown in Fig. 2, the 
classic gearbox with synchronous representing the best 
solution that existed and which is still the most used 
today, even if the boxes appeared, refined and multiplied 
hybrid or automatic gears. 

Today, various types of gearboxes have been introduced 
into the vehicles to change the way the classic manual 
gearboxes work, such as automatic gearboxes, semi-
automatic, continuous variable, dual-clutch automatic 
gearboxes etc. However, most gear shifters for in-service 
vehicles are still classical manuals, which is why their 
optimal synthesis based on their dynamics and especially on 
optimal performance is now more than necessary. The 
paper presents how to accurately determine the mechanical 
performance of a gearbox for passenger buses. Based on 
these relationships, an optimal synthesis of the performance 
of a classic, mechanical, manual gearshift can be achieved 
regardless of its operating status. 
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