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Abstract: Adjustable mass dampers are recently used to reduce seismic 

vibrations of engineering structures. Function of these types of systems 

requires a suitable setting of their parameters. In this study, a practical 

method to design Multiple Tuned Mass Dampers (MTMD) has been 

proposed to minimize the maximum displacement of roof, acceleration 

of roof and TMDs displacement to reduce the seismic response of 

structures. To solve the problem Cuckoo Optimization Algorithm 

(CMOA) has been used. The results of numerical simulations for a shear 

frame of ten floors exposed to earthquakes demonstrate that CMOA is 

able to present appropriate solutions in the form of Parato charts for 

setting optimal parameters of MTMD, caused by creating a proper 

compromise between the objective functions in conflict with each other. 

Eventually, MTMD desirably reduces seismic responses of structures. 

Also, MTMD performance depends on input quake, TMD mass ratio 

and the number of TMDs. 

 

Keywords: Passive Control of Structures, Multiple Tuned Mass Dampers, 

Multi-Objective Optimization, Cuckoo Algorithm, Tuned Mass Dampers, 
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Introduction  

Tuned Mass Damper (TMD) is one of the passive 

means of energy dissipation. By absorbing some of the 

input energy from the dynamic load to the structure, this 

tool reduces the demand for energy dissipation in the 

main structure (Hoang and Warnitchai, 2005). 

MTMD is made up of several single TMDs. These 

dampers can be divided and designed into two forms: 

Parallel and series and be installed in the structure; 

moreover, they can be used in a structural system for both 

integrated (integrated in one place) or distributed mode 

(distributed in structures space) (Ohtori et al., 2004). 
Surveys depicted that MTMD function depends on 

the mass value, the number of TMDs, frequency range 
and the quality of their distribution (Kareem and 
Kline, 1995). MTMD can be adjusted to different 
modes and dampers are placed in different positions in the 
main structure to enhance seismic performance. According 
to the light weight of the dampers in the system, improper 
use of any TMD setting will not cause destructive effects on 
the structural seismic response. In addition, MTMD 
performance is less sensitive to the uncertainty of 

system parameters (Yamaguchi and Harnpornchai, 
1993), (Abé and Fujino, 1994). 

The application of a TMD on tall buildings 

practically, there may be the need to a heavy mass and 

substantial space to install it. Designing a TMD, for very 

tall buildings that in higher modes may play a significant 

role in the overall response, may have little effect on the 

control response of higher modes just for the first mode 

of vibration. To solve the problem, the use of MTMD 

instead of a single TMD is suggested. To design MTMD, 

several methods have been used. In the early stages of 

designing MTMD to simplify the analysis and design 

process, some design constraints such as mass and 

damping ratios have been considered as known for 

TMD. Igusa and Xu (1994), aiming to generalize optimal 

design issue, ignored the TMD's mass and damping 

ratios in design and have proposed an asymptotic 

analysis for designing MTMD for a SDOF structure 

influenced by wind power. Jangid (1999) suggested a 

method for determining the optimal MTMD parameters 

for a not damped system under harmonic excitation bid. 

This method was based on minimizing the stable movement 

of the original system by using numerical study techniques. 
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In a study proposed by (Wu and Chen, 2000) MTMD had 

been divided into several groups, that each one was 

related to a mode and included multiple dampers 

distributed in different floors. As a result, the acceleration 

of the structures reduced to optimal minimum by MTMD. 

Li (2002) evaluated the performance of five MTMD 

makeups that included different combinations of 

parameters of the TMD (mass, stiffness and damping). To 

study the effectiveness and capability of MTMD 

(Dehghan‐Niri et al., 2010) used a general optimization 

method for designing MTMD systems to reduce response 

of unstable structure under harmonic excitation. Moon 

(2010) examined distributed MTMD efficiency vertically 

along with the height of a building. (Tigli, 2012) studied 

linear dampers system subject to random loads and 

presented a formula. It has proposed an efficient method 

for designing MTMD to reduce the seismic response of 

structures based on the definition of an optimization 

problem (GA) where TMDs' parameters are considered as 

variables and minimizing the greatest structural response 

is considered as a function. 

In this study, the optimization problem is defined with 

the aim of setting optimal parameters of MTMD and to 

solve it CMOA is used. MTMD parameters are considered 

as design variables. Since set the parameters of MTMD is 

basically a multi-objective optimization problem, it is 

defined in single, two, three-objective modes and MTMD 

optimal parameters for each mode is determined. In this 

study, besides designing multiple mass damper using the 

proposed method, the impact of various factors such as the 

number of TMDs, mass percentage, record of different 

earthquakes is investigated in MTMD. 

Equation of Structure Motion Equipped with 

MTMD 

Dynamic equation for an n degree of freedom shear 

structure with linear behavior, under Üg(t) basic 

acceleration and NTMD number of single mass dampers 

with different dynamic characteristics, where the 

dampers are installed on the last floor of the structure 

and in parallel is expressed as follows:  

 

         gMx t Cx t Kx t M eu t    (1) 

 

where, mass, damping and stiffness matrixes are 

obtained as follows. 
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where, in the above equation, 

   1
1 1 1... 1

TMD

t

n N
e

 
     the momentum transfer vector 

Üg(t) to the masses x(t), ẋ(t) and ẍ(t) expressing 

displacement, velocity and acceleration of the floor 

vectors in adjustable mass dampers (Tigli, 2012). 

Introducing Cuckoo Optimization Algorithm  

Cuckoo search is a stochastic metaheuristic 
algorithm that models the obligate brood parasitism of 
some cuckoo birds. CS has been introduced by (Yang and 
Deb, 2009) to solve optimization problems. Two 
important features in this algorithm make CS superior 
to many other metaheuristic algorithms. First, having 
infinite mean and variance, Lévy flights can explore the 
search space better than standard Gaussian processes. 
Secondly, CS restores a balance between local search 
and global search exploration. Some studies showed 
that CS provides a better performance than GA and 
PSO in terms of simplicity of algorithms, having less 
parameter to tune and higher speed (Rajabioun, 2011), 
(Gandomi et al., 2013). Also, a comparison between 
CS, PSO and ACO shows that CS gives more robust 
results (Civicioglu and Besdok, 2013). 

The population size n, switching probability pa, 

step-size α and the Lévy flights exponent β are 

configurable parameters of CS. Apart from the 

population size, the switching probability is the key 

parameter of the CS. Other parameters such as the 

Lévy flights exponent and step-size can be set as α = 

0.1 and β = 1.5 for most problems, pa and n are 

variable and have great effects on the algorithm 

performance. A balance between local and global 

optimization is created by the switching probability. 

The probability for global optimization is reduced 

with increasing pa and vice versa (Rajabioun, 2011), 

(Yang and Deb, 2009). 
The steps of the standard CS algorithm can be 

described as follows (Yang and Deb, 2009; 2014): 

I. Each cuckoo lays one egg at a time and dumps it in 

a randomly chosen nest (crossover operator) 

II. Number of nests that contain eggs with high quality 

will be transferred to the next generation (elitism) 

III. The number of available host nests is fixed and a 

host can discover an alien egg with a Probability pa 

(mutation operator) 

 

The first rule produces a new solution using a Lévy 

Flights and can be considered as a crossover operator. 

Outline of generating new solution via Lévy flight is 

summarized as below: 

 

 1t t

i iX X Le vy      (2) 

 

where,  0

t t

j iX X     and  
1

/ | |Le vy u v


  Here, 

𝑎 is the step size parameter, 𝑎0 is the step size scaling 

factor, t

jX and t

iX are two randomly selected solutions, 

Lévy(β) is the step length which is produced according 

the Lévy Flights and β is Lévy flights exponent. In 

addition, the parameters u and v are given by the normal 

distributions as shown in Equation (5). In this equation, 

G is the standard Gamma function. 
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 (3) 

 

The second rule applies elitism strategy to accelerate 

convergence rate of CS. Finally, the third rule 

incorporates probabilistic strategy to replace not so good 

solutions. Indeed, it can be treated as a mutation search 

operator and prevents algorithm of being trapped in a 
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local minimum. Equation (4) indicates how a new 

solution can be generated by this search operator: 
 

   1t t t t

i i a j kX x r H X X         (4) 

 

In which H(u) represents the Heaviside function, ϵ 

and r are some random numbers with uniform 

distributions and Xj
t, Xk

t are two solutions that are 

selected randomly. The basic steps of the CS can be 

summarized as the pseudo code shown in Fig. 1. 

Numerical Example 

To evaluate the performance of the proposed method 

in optimum designing of MTMD and influence of TMDs 

parameters on structural response, a 10-story structure 

has been simulated with the same mass, stiffness and 

damping for all stories, respectively with the values of 

360 tons, 650 MN/m and 6.2 MN.sec/m. 

Earthquake Design 

Generally, dynamic loads like earthquakes and 

strong winds are incidental non-predictive loads. 

Since the seismic events are random processes, to get 

acceptable results in designing, there is a need for 

time history analysis. However, if optimum 

parameters of TMDs are set for a specific earthquake, 

there is no guarantee that they are also effective for 

other earthquakes. 

Carrying out these settings for several different 

earthquakes is time consuming and due to the large 

volume of outputs, making it difficult to judge how to set 

optimal parameters. 

To fix this problem, one can use spectral density 

function instead of a set of time history input in random 

analyses. White noise is as a random process with 

uniform spectral-power density with S0 velocity on the 

range of all frequencies. Since the turbulence created is 

net, to use this turbulence as the basic provocation for a 

structure, using a filter that makes waves on the 

modeling of the soil is essential. Accordingly, the 

artificial acceleration of land used for modeling probable 

earthquakes is produced with the help of Gaussian white 

noise with a narrow band filter known as filter models 

(Fan and Ahmadi, 1990). 

With regard to different earthquakes near to and far 

from a fault with different frequency content and using 

least-squares fitting techniques, (Nagarajaiah and 

Narasimhan, 2006) proposed a modified form of Kanai- 

Tajimi filter that well models accelerated induced 

parameters of various earthquakes that can be used in 

simulation of earthquakes. Equation (5) represents the 

transfer function provided by them: 
 

 
2 2

4

2
g

g g

gg

S
F s

S S


 

 


 
 (5) 

 

g and g, are the damping and frequency of the 

ground respectively, have different soils for different 

values. In these studies the values 

2 , 0,3g g

rad

s
    that correspond to the typical soils 

are considered. Artificial earthquakes generated from this 

function, a good statistical representation of this earthquake 

with different intensity and frequency content. 
 

 
 

Fig. 1: Pseudo code of CS 

Initialize a population of C host nests each with n solution xi, i = 1,2,…, n 

Calculate fitness value for each solution in each nest 

while (stop condition = false) 

For ith solution in X 

generate Xi t +1 solution by levy flight [Equation (2)] 

End for 

stochastically choose a nest (say y) 

for ith solution in X 

If (fitness (Xi 

t+1 fitness (Yi)) 

replace solution Yi by Xi t+1 

end if 

end for 

throw out a fraction (pa) of worse nests 

for each abandoned nest like K 

for ith solution in K 

Generate Kit+1 solution by standard random walk [Equation (4)] 

end for 

end for 

evaluate new nests, rank the solution and find the current best 

end while 
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Defining the Optimal Problem for Setting TMD 

Optimal Parameters 

In this study, the optimization problem with the aim of 

setting optimal parameters MTMD defined and to solve it 

cuckoo multi-objective optimization algorithm is used. 

MTMD setting parameters are considered as designing 

variables. Since setting MTMD parameters is a multi-

objective optimization problem, optimization problem in 

single, two and three objectives are defined and MTMD 

optimized parameters are determined for each state. In this 

study, besides designing multiple mass damper using the 

proposed method, the impact of various factors such as the 

number of TMDs, the mass percentage and different 

earthquake records are reviewed in MTMD performance. 

In reducing MTMD setting optimal parameters problem, 

three seismic answers including roof displacement, roof 

acceleration and displacement of TMD can be considered as 

objective functions. Given that these three objectives are in 

conflict with each other, therefore basically setting MTMD 

parameters is a multi-objective optimization problem. 

Multi-objective optimization methods can provide a 

suitable reconciliation between the objectives in conflict 

with each other. Considering reduction of roof displacement 

alone may lead to roof momentum increase, on the other 

hand, the reduction of TMD displacement due to physical 

space limitations defined for TMDs movement should be 

considered in the optimization. This is while, in previous 

studies, the problem of setting optimal parameters of TMD 

and MTMD is studied only with respect to one objective 

function. To define the optimization problem, three criteria 

are defined as the following: 
 

1 2 3

max | | max | | max | |

max | | max | | max | |

rc rc tmd

ru ru rc

x x x
I I I

x x x
    (6)  

 
where, I1 is maximum displacement of the roof class of the 

building in the structure equipped with MTMD, normalized 

to the maximum displacement of roof class without 

MTMD. The I2 is the maximum acceleration of roof class in 

the structure equipped with MTMD that is normalized to 

the maximum acceleration of the roof class without MTMD 

and I3 is the maximum displacement of MTMD normalized 

to the maximum displacement of the roof class equipped 

with MTMD. 

TMD parameters get specified range of values that is 

defined based on the view of the designer and some 

practical constraints. In this research, studies of setting 

the optimal parameters of MTMD for a given mass ratio 

of TMD is done so that if μ and Mtot are mass percentage 

of TMDs and the total mass of the structure respectively, 

in the case of non-uniform distribution of MTMD 

masses, equation can be considered: 
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If the same mass is chosen for all selected TMDs, then: 
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In this case, for each predetermined , there are four 

optimization problem have been defined as follows: 
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Case1: Minimize: I1 

Case2: Minimize: I1,I2 

Case3: Minimize: I1,I3 

Case4: Minimize: I1,I2,I3 
 

By using multi-objective optimization algorithm for 

U = 0,02 and NTMD and max 4d
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.
20d
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M
  are done. Convergence of cuckoo 

algorithm in minimizing I1 index is shown in Fig. 2. 

The Parato charts obtained from multi-objective 

optimization process in three modes in defining the 

optimization problem for states 2, 3 and 4, are 

respectively shown in Fig. 3 to 5. It is found that the 

Parato charts obtained from the process of multi-

objective optimization produce a set of optimized solutions 

that based on engineering comments and practical situation 

of the design, the designer can choose one of the solutions 

to the questions as the final solution. These figures well 

show the scramble among defined objective function. A 

suitable compromise among these goals can be provided 

with a proper answer. Accordingly, the optimal values of 

the parameters set by tuned mass dampers for different 

defined modes of optimization problem are given in 

relations (10) to (13): 
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7.17,2.84,13.23,19.92,19.85,18.22,13.71,7.59,

4 5.15,1.02,157.12,305.1,386.35,219.1,462.62,

1646.073,14.28,252.85,186.94,987.71
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To evaluate the seismic behavior of structures 

equipped with MTMD, time history analysis of 

structures under study were exposed to two 

earthquake far from faults in El Centro 1940 and 

Hachino 1968 as well as two earthquake near faults in 

Notridge 1994 and Kobe 1995, respectively, with 

maximum acceleration of 0.8267 g, 0.2250 g, 0.3417 

g and 0.8178 g and the amount of seismic parameters, 

including maximum displacement of roof structures, 

roofing maximum acceleration, maximum drift of 

floors, maximum of base shear, RMS of roof displacement, 

RMS acceleration of roof, RMS drift of floors, RMS of 

base shear, maximum TMD displacement and displacement 

of RMS and TMD displacement. 

RMS of each solution represents the root mean 

square of the solution to evaluate the extent of structural 

response reduction during periodic in the risk of 

earthquakes. To avoid prolonged paper, the results are 

only given for Kobe and El Centro earthquakes and 

given in Tables 1 and 2. Two seismic responses of 

TMDs including maximum displacement of TMDs 

and RMS of TMD displacement are listed in the 

tables. The corresponding percentage reduction for 

four different modes compared to uncontrolled 

(without MTMD) for the mentioned earthquakes are 

shown in Tables 3 and 4: 
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Fig. 2: Convergence Cuckoo optimization algorithms in reducing I1 
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Fig. 3: Light curve in mode 2 
 

 
 

Fig. 4: Light curve in mode 3 
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Fig. 5: Light curve in mode 4 

 
Table 1: Seismic response of structures to earthquake in El Centro 

Seismic responses Uncontrolled Case 1 Case 2 Case 3 Case 4 

Maximum Roof Displacement (cm) 18.78 12.35 12.60 12.13 12.02 

Maximum Acceleration Roof (m/s2) 8.32 5.94 5.14 5.94 5.42 

Maximum Drift Stories (cm) 3.06 2.30 2.38 2.37 2.43 

Maximum Base Shear (MN) 19.86 14.72 15.39 15.15 15.65 

RMS (cm) Roof Displacement 3.53 2.76 2.87 2.79 2.69 

Roof Acceleration RMS (m/s2) 1.48 1.14 0.98 1.14 1.13 

Drift Stories RMS (cm) 0.52 0.40 0.42 0.41 0.40 

Base Shear RMS (MN) 0.53 0.41 0.43 0.41 0.41 

Maximum Displacement TMD (cm) --- 107.82 111.35 82.62 86.15 

DisplacementTMD RMS (cm) --- 2.93 1.39 1.11 0.68 

 
Table 2: Seismic response of structures to earthquake in Kobe 

Seismic responses Uncontrolled Case 1 Case 2 Case 3 Case 4 

Maximum Roof Displacement(cm) 52.68 47.74 45.75 46.03 46.00 
Maximum Acceleration Roof (m/s2) 23.83 21.78 21.18 19.16 21.75 
Maximum Drift Stories (cm) 7.33 6.61 6.70 6.80 6.69 
Maximum Base Shear (MN) 47.70 43.18 42.90 40.68 42.38 
RMS (cm) Roof Displacement 6.03 3.61 3.76 3.37 3.88 
Roof Acceleration RMS (m/s2) 2.52 1.61 1.51 1.68 1.64 
Drift Stories RMS (cm) 0.90 0.54 0.55 0.57 0.56 
Base Shear RMS (MN) 0.91 0.58 0.58 0.61 0.59 
Maximum Displacement TMD (cm) --- 240.77 265.01 198.87 201.20 
DisplacementTMD RMS (cm) --- 0.08 0.07 0.10 0.07 

 
Table 3: Percentage of reduction of seismic response of structures to earthquake in El Centro compared to uncontrolled state 

% Reduction in Seismic responses Case 1 Case 2 Case 3 Case 4 

Maximum Roof Displacement% Reduction in 32.28 23.63 22.29 22.64 
% Reduction in Maximum Acceleration Roof 27.83 28.59 38.24 28.55 
% Reduction in Maximum Drift Stories 32.26 24.82 22.04 22.40 
% Reduction in Maximum Base Shear 32.07 25.87 22.53 23.71 
RMS % Reduction in Roof Displacement 23.81 21.76 18.77 20.99 
% Reduction in Roof Acceleration RMS 22.18 23.43 34.13 22.96 
% Reduction in Drift Stories 23.82 23.34 19.68 22.49 
% Reduction in Base Shear RMS 22.18 23.43 19.42 22.96 

 
Table 4: Percentage of reduction of seismic response of structures to earthquake in Kobe earthquake compared to uncontrolled 

% Reduction in Seismic responses Case 1 Case 2 Case 3 Case 4 

Maximum Roof Displacement% Reduction in 9.37 13.14 12.61 12.67 
% Reduction in Maximum Acceleration Roof 8.61 11.14 19.59 8.73 
% Reduction in Maximum Drift Stories 9.75 8.53 7.23 8.63 
% Reduction in Maximum Base Shear 9.49 10.08 14.72 11.16 
RMS % Reduction in Roof Displacement 40.04 37.71 44.08 35.67 
% Reduction in Roof Acceleration RMS 35.88 39.86 33.21 35.05 
% Reduction in Drift Stories 40.11 38.78 36.32 37.26 
% Reduction in Base Shear RMS 35.88 35.89 33.21 35.05 
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The results show that MTMD can appropriately 

reduce the seismic response of the structure. The extent 

of reduction is largely dependent on the input earthquake 

to structure, for example, MTMD have provided the 

most reductions in El Centro earthquake. The results 

show that the designer can, considering designing goals, 

define his optimization problem and achieve the preset 

optimal performance indices. For example, if 

optimization problem is considered to be single-

objective, MTMD are not so able to reduce the structural 

acceleration as they are in reducing shift of classes. 

However, with regard to the second mode of the 

problem, where deceleration of structural optimization is 

considered as objective function, the structure is able to 

properly reduce the acceleration. In addition, to reduce 

TMD displacement, the reduction of this response can 

also be considered in optimization problem to reduce the 

displacement of TMDs. This problem, from the 

standpoint of implementation issues of TMD project, is 

important to their move due to limitations in physical 

space. Figures 6 and 7 show the effect of number of 

TMDs and mass ratio of TMDs in reducing displacement 

and acceleration of structure roof by stimulation of 

artificial earthquake. As is seen, with increase in mass 

ratio of TMDs to 6%, the values of I1 and I2 reduce and 

for values more than 6%, the decline process has not 

changed a lot. It is also seen that for a fixed mass ratio 

increasing TMDs from 1 to 10 leads to a suitable 

reduction in I1 and I2 values, but with more increase of 

TMDs the response has not changed much. The amount 

of this being affected in structural shift is more than in 

deceleration of the structure. 
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Fig. 6: Effect of number of and mass ratio of TMDs on the value of I1 index 
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Fig. 7: Effect of number of and mass ratio of TMDs on the value of I2 index 
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Conclusion 

In this study, an effective way has been proposed to 

design MTMD to reduce the seismic response of structures 

that is based on defining a multi-objective optimization 

problem and to solve it cuckoo multi-objective optimization 

algorithms is used. Since MTMD is a multi-objective 

optimization problem, three objective criteria including 

minimizing the maximum displacement of roof, maximum 

acceleration of roof and TMD maximum displacement of 

roof are considered in the optimization problem. The 

results of numerical simulations for a shear frame of ten 

floors exposed to earthquakes show that CMOA is able to 

offer appropriate solutions in the form of Parato charts for 

setting optimal parameters of MTMD, based on the 

objectives of the designer, which is because of creating a 

proper compromise among the objective functions in 

conflict with each other. 

In addition, the results show that MTMD desirably 

reduce seismic response of structures; the results also 

show that MTMD performance depends on input 

quake, TMD mass ratio and the number of TMDs. 

MTMD performance to input earthquake depends on 

mass ratio of TMD and the number of TMDs. TMD 

mass ratio increase to a certain extent reduces the 

seismic response and then has no big impact on 

responses. This result has also been obtained for the 

number of TMDs. In the studied structures by increase in 

TMDs mass ratio to 6%, displacement and acceleration 

of roof reduces and for more than 6%, decline process 

has not greatly altered. It is also seen that for a fixed 

mass ratio increasing TMDs from 1 to 10 leads to a 

good reduction in I1 and I2 values, but with more 

increase of TMDs the response has not changed much. 
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