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Abstract: In this study, we compress and decompress the vibration signals 

from the functioning of a ball bearing. The methodology used to compress 

the vibration data in this study is to reduce the size of the data by reducing 

the spectral redundancy of the samples. We have used the DCT, which is 

recognized for its representational parsimony and bleaching power. To 

reduce the execution time of the algorithm, we used the Lazy wavelet. This 

wavelet separates the original signal into two signals half the size of the 

original signal. Parallel processing of two halves of the original signal reduces 

the computational load of the algorithm. We tested (compressed and then 

decompressed) these signals using three compression algorithms separately 

under the same quantification and coding conditions. These are the algorithms 

based on DCT, WHT and the Lazy Wavelet associated with DCT. The 

comparison made on the basis of the measurements of SNR, MFD, MSE, PRD 

and CR allowed to retain the algorithm based on the use of the Lazy wavelet 

and the discrete cosine transform. The results are considered very encouraging. 
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Introduction  

Industrial maintenance is a sector that is developing 

more and more with the improvement of the machines. 

Unexpected outages are sometimes very expensive. The 

loss of production during repairs creates a shortfall that 

can affect the company’s profits. It becomes clear that 

such failures should not be tolerated. Vibration analysis 

consists of detecting possible malfunctions and 

monitoring their evolution in order to plan or to defer a 

mechanical intervention. However, experience has 

shown that the most reliable parameter that gives the 

earliest and best manner the state of deterioration of a 

rotating machine is vibration. Indeed, the vibratory 

signal is the support of the indicators (physical 

quantities) used regularly to monitor the installations. 

The evolution of vibrations makes it possible to alert the 

technician to a degradation of the functioning of an 

industrial installation. For this, we distinguish scalar or 

global level indicators (NG) and shape or spectral 

indicators. All machines vibrate and as the condition of 

the machine deteriorates (clumsy, bearing or bearing 

defect....) the vibration level increases. By measuring 

and monitoring the level of vibration produced by a 

machine, an ideal indicator of its condition is obtained. If 

the increased vibration of the machine makes it possible 

to detect a defect, the analysis of the vibration 

characteristics of the machine makes it possible to 

identify the cause (Chaib et al., 2004).  
The objective of our work is to compress the 

vibration signals that come from the operation of a ball 

bearing. This compression allows to optimize the storage 

space of these data and to improve their transmission 

speed. To this goal, several compression techniques are 

proposed. We can mention the scalar/vector quantification, 

differential coding, predictive coding and transformed 

coding (Salleh and Soraghan, 2007; Jolivet and Stouls, 

1972; Pesquet and Tziritas, 1988; Trabuco et al., 2017). 

Among these techniques, those using transforms offer better 

results (Iqbal et al., 2007). The use of transform coding is 

justified by the fact that points adjacent to a signal can be 

strongly correlated. The efficiency of a decorrelation 

depends on the type of transformation used (destructive 

compression). In terms of compression all non-detectable 

elements by human sensors are removed (Non-destructive 

compression) (Aimé et al., 2019). Thus, (Sunitha and 

Chitneedi, 2014) compressed the voice using the 

Discrete Wavelet Transform (DWT) supplemented by 

Kalman’s adaptive filtering. Their aim was to improve 

audibility in mobile communication. Shnain et al. (2020) 
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to improve the compression ratio of the EZW algorithm, 

they used their modified version of EZW for lossless 

compression. Abo-Zahhad et al. (2015) presented a new 

approach of medical images compression. This approach is 

based on the pre-processing of images using the DPCM 

method. The result of this pretreatment is decomposed by 

DWT. Wavelet coefficients are then encoded by Huffmann. 

Chaoang et al. (2020) presented a new reconstruction 

method for vibration signals from the bearings of an axial 

piston pump. This algorithm is based on the sparse 

adaptive dictionary model. Narayan et al. (2019) 

explored the potential relationship between various 

combustion events monitored using a pressure transducer 

in the cylinder and vibration using an accelerometer. The 

resulting data was compressed. Despite the abundance of 

work in a very current field such as signal compression, 

an algorithm composed of a Lazy Wavelet (LW) and a 

DCT has not yet been tested on vibratory signals.  

The originality of this study lies in the improvement 

of both the compression ratio while maintaining the 

quality of the reconstructed signal and the compression 

time. We cannot forget the comparison under the same 

conditions of quantization and coding of algorithms 

based on DCT, WHT and the LW associated with DCT. 

This comparison specifies the compression capabilities 

of each of these algorithms.  

This article consists of three parts: Materials and 

Methods, Results and Discussion. 

Materials and Methods 

Generalities on the Compression 

Compression of the data allows the reduction of the data 

size while preserving a better quality of the reconstructed 

data. There are two types of compression: Lossless 

compression that allows a perfect reconstruction of 

information but for very low compression ratios and lossy 

compression that improves compression ratio at the expense 

of reconstructed information quality (Huffman, 1952; 

Fernandes and Jeberson, 2014). The general principle of 

compression/decompression is shown in Fig. 1. 

Figure 1 shows the general data 

compression/decompression procedure. Depending on 

the type of compression envisaged, the components of 

the encoder change. In the case of lossless 

compression, the original signal is simply encoded to 

reduce its size. If the compression is lossy, the coder 

necessarily contains a mathematical application. This 

application, often orthogonal, projects the data in a 

space with a better representation (parsimony). This 

change of space allows the removal of non-detectable 

information by human sensors and redundant ones 

(bleaching). In both cases, the decompression follows 

the same algorithm but in the opposite direction. 

 

 
Fig. 1: Compression/decompression chain 

Compression Evaluation Parameters 

The evaluation of a compression algorithm is done 

through two groups of parameters: Quantitative and 

qualitative parameters. The quantitative parameter 

often used is the compression ratio. Its value is 

defined by Eq. (1): 
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Compression ratio defines the ability of a 

compression algorithm to reduce data size.  

The quality of the reconstructed information is given 

by Eqs. (2 to 5): 

 

 Mean Quadratic Error (MSE) is the parameter that 

expresses the qualitative difference between the 

original and reconstructed signal. It is defined by 

Eq. (2): 
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s0(n) = The original signal 

sr(n) = The reconstructed signal 

N = The number of samples of the signal 

 

 The Signal-to-Noise Ratio (SNR) is the parameter 

that expresses the energy conservation of the 

signal and defines by: 
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with, 2

x  representing the power of the original 

signal and 2

e  representing the power of the error: 
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 Mean Frequency Distorsion (MFD) 
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In the expression (4), Forig and Frecoms represent the 

average frequency calculated respectively on the original 

signal and on the reconstructed signal: 

 

 The PRD (Percent Root mean square Difference): 
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N = The number of points of the original signal 

μ = The Analog-to-Digital Converter (ADC) 

reference value used for the acquisition of s(n) 

and μ = 0 data 

 

Proposed Method 

Compression/Decompression Procedure 

The compression/decompression scheme implemented 

in our algorithm is given in Fig. 2.  

Figure 2 shows the proposed compression algorithm. 

In this algorithm, the signal is separated into two signals 

by the lazy wavelet. This separation is done by taking 

into account the sample index in the original signal. All 

odd indices form a signal and even indices form a second 

signal. Each signal is decomposed by the DCT. The 

coefficients obtained are quantized. Quantization limits 

the number of bits to be transferred. The Huffman 

encoding allows transforming the values of the 

coefficients obtained into a binary train (coded data). 

Reconstruction of the signal follows the Fig. 3. 

Figure 3 shows the data decompression scheme 

according to our algorithm. Here, we have to go through 

the same steps as those realized in the case of 

compression but in reverse. 

Discrete Wavelets Transform 

In mathematics, a wavelet  is a square-integrable 

functions from the space of Hilbert L2(ℝ), most often 

oscillating and zero-averaging, chosen as a multi-scale 

analysis and reconstruction tool. We define a family s, 

where (s,)ℝ+*xℝ of wavelets from the mother wavelet : 
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where, s is scaling factor and  represents time shift factor. 

 

 

 

Fig. 2: Proposed compression algorithm 

 

 
 

Fig. 3: Proposed algorithm of decompression 
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To analyze a square-integrable function in wavelets 

consists in calculating all its scalar products with the 

wavelets family. The resulting numbers are called 

wavelet coefficients and the operation associating its 

wavelet coefficients to a function is called wavelet 

transform. The continuous wavelet transform of a 

function fL2(ℝ) is defined by: 
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For compression applications the Discrete Wavelet 

Transform (DWT) is used. This transformation is 

defined by the following equations: 
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In the Eqs. (8 to 11) G[ω], H[ω], a[j-1, k], d[j-1, k] are 

respectively the low pass filter, the high pass filter, the 

approximation coefficients and the detail coefficients. 

The reconstruction of the signals is done by Eq. (12): 
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Discrete Cosine Transform (DCT) 

The DCT is a transformation close to the Discrete 

Fourier Transform (DFT). The projection nucleus is a 

cosine and gives real coefficients, unlike the DFT, whose 

nucleus is a complex exponential and which gives 

complex coefficients. The most common variant of the 

Discrete Cosine Transform is the DCT Type-II, often 

simply referred to as the “DCT”. Its inverse, which 

corresponds to type-III is often simply called "IDCT".  

A discrete cosine transformation expresses a finite 

sequence of data points in terms of a sum of cosine 

oscillating functions at different frequencies. These direct 

and inverse transformations are defined respectively by Eqs. 

(13) and (14) (Wheidima et al., 2016): 
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where, x(n) is sample n. 

The advantage of this transformation is that this 
transformation has a fast calculation algorithm and 
allows to obtain real coefficients. 

The method presented in this article has been 
implemented on a real vibratory signal. These are 
records of the vibration monitoring of a ball bearing. The 
reference for this ball bearing is SKF7309B. The 
acquisition system consists of a portable collector, 
VIBROTEST 60 and an accelerometer. The signals were 
acquired with a sampling frequency of 2 kHz. The 
acquisition device model uses a 12-bit Analog-to-Digital 
Converter for scanning acquired data. The vibration 
parameter chosen for this work is the amplitude variation.  

To ensure compressibility of these data, we can 
calculate the autocorrelation coefficient. This coefficient 
is defined by the relation (16): 
 

    *

n n k

n
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In this formula *,n n kx x 
 and m are respectively sample 

n, sample n shifted by k samples and the average of 

samples calculate on the original signal. The k-order 

autocorrelation coefficient is simply the Pearson 

coefficient calculated between a series and itself offset 

by k elements. It represents the cross-correlation of a signal 

by itself. The autocorrelation makes it possible to detect 

regularities, repeated profiles in a signal. The value of the 

correlation coefficient is between -1 and +1. For the data 

processed in this study, the value of this coefficient is equal 

to 0.2529. This value indicates that the studied signal is 

weakly correlated. In these conditions, simple coding is 

therefore not appropriate for the compression of this data. 

So to compress this signal we will use the space change. 

DCT has better ability to bleach and compact data. The lazy 

wavelet allows a separation of tasks. This task separation 

reduces the number of data to be manipulated for a task. 

Each task processes half of the original data. 

Results 

After compressing/decompressing these signals using 
the lazy wavelet followed by DCT, we obtained the 
results which are compared with DCT and WHT 
algorithms and are recorded in Table 1. The results of the 
compression/decompression of the vibration data by the 
algorithm that we propose are presented in Fig. 2. 
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Discussion 

The results in Table 1 present the qualitative and 

quantitative differences between the reconstructed 

signals by the methods object of comparison and those 

of the proposed method. The variation amplitudes of 

the used signals vary between 1 and 2 micrometers. 

The Mean Square Errors (MSE) are for the three 

methods in the nanometric order and therefore 

negligible. Moreover, this precision is difficult to 

achieve in mechanical engineering. The algorithm 

based on the DCT and the proposed method better 

conserve the signal energy respectively 42.88 and 

43.32. The PRD of the three methods is equal. This 

equality is linked to the fact that the MSE is very 

small and of the Nanometric order. The mean 

frequency distortion of the three methods is very near 

to zero (0). The results presented in Fig. 4 are those of 

the proposed method. The capabilities of this method 

are appreciated by the compression parameters whose 

values are: SNR = 43.32 dB, MSE = 1.66E-05, MFD 

= 0.1% and CR = 95.43%. The reconstruction error of 

the proposed method is a constant value and almost 

equal zero. This confirms from an objective point of 

view the good quality of the reconstructed data. The 

method offers a high compression ratio. Much of this 

improvement is achieved by reducing the spectral 

redundancy of samples using DCT. Indeed, the DCT has 

good representational parsimony and a great power of 

data bleaching. Using the Lazy wavelet separates the 

original signal into two signals half the size of the 

original signal. Parallel processing of two halves of the 

original signal reduces the computational load of the 

algorithm. This is another advantage of this algorithm 

which combines the Lazy wavelet and the DCT. 

 
Table 1: Comparison of algorithms 

Algorithme MSE (m) SNR (dB) PRD (%) MFD (%) CR (%) 

DCT 9.2E-06 42.88 2.18 0.00 43.32 

WHT 23E-04 18.99 2.18 0.05 71.94 

Proposed method  1.66E-05 43.32 2.18 0.10 95.43 

 

 

 

Fig. 4: Compared representation of signal: Original, reconstructed and error 
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Conclusion 

In this article, we presented a method for 

compressing/decompressing vibration data. From the 

Table 1, the proposed method gives very good results 

both qualitatively and quantitatively. The near-zero mean 

square error is a particularity of this algorithm based on 

the compression by transform methods. Despite the 

absence of refined quantization (1.E-02), this error is 

null. The size of the quantification step limits the number 

of bits to be transmitted, thus influencing the 

computational complexity of the algorithm. Thus, we 

can say that our algorithm is of low computational 

complexity (for a sample of 256 points). The results 

obtained by this algorithm are encouraging with regard to 

the objective and subjective criteria (SNR, MSE, MFD, CR 

and visual observation). The compression ratios of this 

algorithm are high (95.43%). However, reference should 

also be made to the opinion of the mechanical engineer who 

specializes in rotating machinery maintenance. Optimizing 

storage space and improving the transmission speeds of 

vibration data can be a means of improving the results of 

vibration analysis in industrial maintenance. 
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