
 

 

 © 2021 Krzysztof Murawski and Alexandre de Macêdo Wahrhaftig. This open access article is distributed under a 

Creative Commons Attribution (CC-BY) 4.0 license. 

American Journal of Engineering and Applied Sciences 

 

 

 

Original Research Paper  

Stability, Stress and Strain Analysis of Very Slender Pinned 

Thin-Walled Box Columns according to FEM, Euler and TSTh 
 

1*Krzysztof Murawski and 2Alexandre de Macêdo Wahrhaftig 

 
1Independent Researcher, Poland  
2Department of Construction and Structures (DCE), Polytechnic School, Federal University of Bahia (UFBA), 

Rua Aristides Novís, 02, 5 Andar, Federação, Salvador – BA, Brazil, CEP: 40210-910 

 
Article history 

Received: 21-03-2021 

Revised: 16-04-2021 

Accepted: 22-04-2021 

 

Corresponding Author: 

Krzysztof Murawski 

Independent Researcher, 

Poland 

Email: k.murawski@interia.pl 

Abstract: In this study, a Finite Element Method (FEM) analysis is 

presented for the loss of stability in elastic states of very slender pinned 

without friction box-section thin-walled column axially compressed. From 

the FEM buckling linear stress analyses are determined the compressing 

critical forces for 36 cases, presented in tables and as the surface functions 

in dependence on the slenderness ratio and cross-section. Also are 

presented graphs obtained from the FEM post-buckling linear stress 

analysis for the elastic central line, slope, deflection and states of the 

stresses and strains of the box-section column 202812500 mm made of 

steel, by the assumption that a maximal deflection equals the half of a side 

dimension. The obtained from the FEM computing function and surface 

graphs are compared and then discussed with graphs corresponding to 

Euler’s and Technical Stability Theory (TSTh) results. Finally are 

compared graphs of the stresses and strains of box-section thin-walled 

column 202812500 obtained from FEM and TSTh, but under 

compressing critical force determined according to TSTh. 
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Introduction 

The question of stability of structures has a very wide 

way of meaning and is meant in many ways.  

The problem of the stability is searched and 

analyzed with a focus on many other relevant aspects, 

like buckling of columns, rods, beams, boxes, arches, 

plates, panels, shells, membranes, cones, pales, poles, 

pillars, pipes, tubes, tanks and silos, as well as stability 

of connections, joints or of wooden, plywood, bamboo, 

bones, auxetic, composite, rubber, foam and laminate, 

sandwich, layered and Functionally Graded Material 

(FGM) structures, nanostructures, structures under 

their own weight or seismic load …  and many others. 

When is considered the application of thin-walled 

elements in load-bearing structures, accordingly, the first 

issue to analyze is their load capacity to sustain axial 

loads, i.e., their stability and susceptibility to potential 

buckling collapse mechanisms. In the case of very 

slender, thin-walled columns, this refers to the problem of 

stability in elastic states.  

Stability Analysis According to Euler  

The basic theory of slender rods losing stability in elastic 

states, as known, has been originally formulated by (Euler, 

1744; 1759). He first introduced the concept of critical load 

Pcr and presented, according to his theory, the differential 

equation of an elastic deflected central line: 

 
2

2
,cr

d y
EJ P y

dx
   (1) 

 

Where: 

E: The Young’s modulus of elasticity of the column 

J: Moment of inertia of the cross-section area 

y: Distance from the undeformed central line from the 

y-axis 

 

He had assumed a displacement y(x) of the column 

axis as a part of a sine curve: 
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Where: 

n: The coefficient of the sine curve part and depends on 

boundaries (n = 1 for a pinned column, n = 2 for a 

column fixed at one end, n = 1/2 for a column fixed by 

a pinned end and a vertically slide for the second end, 

n = 0.7 for a column with a pinned end and a pinned 

vertical slide at the second end) 

L: length of the column 

 

and he has obtained the formula for a critical stress cr of 

an axially compressed column by force as follows: 

 

.
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Where: 

A: The transverse cross-section area of the column 

: Slenderness ratio of the column, i.e., the ratio of the 

length of a column and the least radius of gyration of 

its cross section 

 

The problem of the stability was later searched and 

analyzed further with a focus on many other relevant 

aspects for various engineering applications, like 

buckling of columns composed of various 

constructional materials (Gupta et al., 2001; Oleiwi et al., 

2014; Schnabl et al., 2013; Kalamar et al., 2016; 

Thermou et al., 2018; Zhou et al., 2017; Ye et al., 2018; 

Osmani and Meftah, 2018; Wang et al., 2018; 

Naderpour et al., 2019; Qi et al., 2019), as well as 

beams (Ascione and Grimaldi, 1983; Di Sarno and 

Manfredi, 2012; Li et al., 2015; Ozbasaran et al.,   

2015; Monsalve-Cano and Aristizábal-Ochoa, 2016;        

Nguyen et al., 2018; Toufik et al., 2018) or nanobeams 

(Rahmani et al., 2017; Mohammadi et al., 2019). 

Single-layer graphene sheets have been examined in 

(Genoese et al., 2019), while polymer-confined concrete 

columns have been discussed in (Liang et al., 2012) and 

hyperelastic tubes are analyzed by (Liu, 2018).  

Many other research contributions have been then 

related to the stability issues of a multitude of load-

bearing systems and members can be found in the 

literature, including plates (Sabouri‐Ghomi et al., 2008; 

Rao and Ra, 2009; Xu et al., 2013; Moradi-Dastjerdi and 

Malek-Mohammadi, 2017; Riahi et al., 2018; Vu et al., 

2019) and nanoplates (Malikan et al., 2018), bracing systems 

(Rahnavard et al., 2018), tubes (Nouri et al., 2015;   

Mozafari et al., 2018; Ahmed et al., 2017; Sadath et al., 

2017; Sun et al., 2018), frames (Marante et al., 2012; 

Slimani et al., 2018), pipes (Lolov and Lilkova-Markova, 

2005; Melissianos et al., 2017; Moustabchir et al., 

2018; Psyrras et al., 2019), or Functionally Graded 

Material (FGM) structures (Moita et al., 2018;       

Singh and Harsha, 2019), etc. 

Literature Review 

The problem of the stability of columns was later 

searched and analyzed further with a focus on many other 

relevant aspects for various engineering applications.  
Yiotis et al. (1982) presented a solution methodology 

for investigating the stability of rectangular box-shaped 
structures subjected to transverse uniformly distributed 
compressive loading. This investigation was concerned 
with the two-dimensional behavior of box-shaped 
structures of finite length which required an analysis of 
four interconnected plates.  

Abdel-Lateef et al. (2001) presented the elastic 

stability of a column with variable cross-section subjected 

to distributed and concentrated axial load.  

Seyranian and Privalova (2003) dealt with the 

optimization and post-buckling behavior of columns 

elastically supported at both ends.  

Milašinović et al. (2003) dealt with the buckling 

problem of steel columns using by Rheological-

Dynamical Analogy (RDA).  

Alvarenga and Silveira (2006) presented a study about 

the steel plane frames (portals) and the numerical 

formulation based on the finite element model of a 

Bernoulli-Euler beam-column member using the called 

“slice technique”. 

D’Aniello et al. (2006) executed two full-scale 

experimental tests on the lateral load-displacement 

response of a restrained column structure seismically 

retrofitted by buckling restrained braces which were first 

summarized and then compared to numerical modeling. 

Lolov and Lilkova-Markova (2006) dealt with the 

dynamic stability of a curved pipe bent in the arc of a 

circle on hinge supports at the ends. The methods of the 

numerical solution of the dynamic stability of a pipe in its 

plane were developed. 

Fraldi et al. (2008) aimed at deriving assessment and 

design formulae for determining the response and the 

ultimate compressive strength of circular concrete 

columns confined by Fiber Reinforced Polymers. 

Sanchez and Corte´s Salas (2008) searched 

deformation of steel straight pipes with internal 

pressure under axial compression and bending load by 

seismic action. 

Wahrhaftig et al. (2008) evaluated a buckling 

critical load of bars subjected to their self-weight. 

Wahrhaftig et al. (2016) executed a calculation of the 

natural frequency of vibration and the stability 

verification of a slender column including the reducing 

effects of stiffness both of axial force and creep. 

Wahrhaftig et al. (2019) executed an analytical 

determination of the vibration frequencies and 

buckling loads of slender reinforced concrete towers. 

Wahrhaftig et al. (2020a) evaluated a limit state of stress 

and strain of free-fixed columns with variable geometry. 

Wahrhaftig et al. (2020b) did an evaluation of 
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mathematical solutions for the determination of 

buckling of columns under self-weight. Wahrhaftig 

(2020c) did a time-dependent analysis of slender, 

tapered reinforced concrete columns. Wahrhaftig et al. 

(2021) made a stress assessment in reinforcement for 

columns with concrete creep.  

Ismail (2011) evaluated the dynamical behavior and 

stability of pipes conveying fluid. 

Abed et al. (2013) presented finite-element analysis to 

study the axial load capacity of pretwisted steel bars of 

rectangular cross sections. 

Andreev and Tsybin (2015) gave the solution to the 

problem of the stability of a compressed rod with a 

variable cross-section.  

Kambe et al. (2013) developed the sandwich panel 

with plywood and steel member for a new structural 

member. Then, they studied the compressive performance 

of that whole member. 

Hedayati et al. (2015) executed a critical buckling load 

analysis of a truck chassis with an arc-length method and the 

effect of replacing conventional steel with stainless steel in a 

critical point of the truck chassis.  

Al-Kamal (2016) presented the possible collapse 

mechanisms initiated by a precast flexural member 

dropping on a lower member.  

Jakab et al. (2016) focused on load-bearing glass 

columns and also on the design, the load-bearing capacity 

and the stability issues of fins. In Fig. 4 they presented the 

graph of strains at mid-length of a slender glass column 

measured by strain gouges similarly like in Fig. 4a in the 

book of (Murawski, 2011a) and in Fig. 4 in the paper of 

(Murawski and Kłos, 2007) and in the doctor’s thesis of 

(Murawski, 1999) as well as in Rys. 2 in the paper of 

(Murawski, 1992). They described this as: “…Fig. 4 

indicates the loading force vs. strains on the glass 

surface. At the beginning both outer surfaces of the glass 

column is in compression after that, the compression 

starts to decrease at one outer glass surface and tensile 

stresses develop. The buckling process starts during this 

phenomenon”, i.e., is according to the Technical 

Stability Theory (TSTh).  

Kalamar et al. (2016) executed an experimental 

investigation for the structural performance assessment of 

square hollow glass columns. 

Li et al. (2016) presented a novel scrimber composite. 

The attempts were made through theoretical analysis to 

predict the buckling stress of the column specimens under 

both elastic and inelastic buckling. In Fig. 9e they 

presented the graph of strains at mid-length of a slender 

column and measured by strain gouges similarly like in 

Fig. 4a in the book of (Murawski, 2011a) and in Fig. 4 in 

the paper of (Murawski and Kłos, 2007) and in the 

doctor’s thesis of (Murawski, 1999) as well as in Rys.2 in 

the paper of (Murawski, 1992). 

Łukowicz et al. (2016) dealt with cold-formed steel 

sections as extensively affected the modern steel 

construction industry.  

Megahed (2016) dealt with an experimental and 

theoretical analysis of concrete-encased cold-formed steel 

composite column. 

Abbas and Awazli (2017) developed a numerical 

model in a three-dimensional nonlinear finite element and 

then validated it against experimental results reported in 

the literature, to investigate the behavior of 

conventionally RC columns subjected to axial load and 

lateral reversal cyclic loading.  

Ammash (2017) dealt with shape optimization of 

innovated cold-formed steel columns under uniaxial 

compressive loading.  

Atteya et al. (2017) dealt with an axial load capacity 

and the stiffness of a rectangular Hollow Structural 

Section (HSS) of the steel tube. In Fig. 19 they presented 

the graphs of strains at mid-length measured by strain 

gouges similarly like in Fig. 4a in the book of (Murawski, 

2011a) and in Fig. 4 in the paper of (Murawski and Kłos, 

2007) and in the doctor’s thesis of (Murawski, 1999) as 

well as in Rys.2 in the study of (Murawski, 1992). Those 

graphs showed the way of losing stability in accordance 

with the Technical Stability Theory. 

Baru (2017) dealt with buckling, as the most 

prominent failure mode of steel column stability as well 

as the structural stability of steel structures.  

Bedon and Amadio (2017) did a unified approach for 

the buckling verification of structural glass elements. 

Bedon and Amadio (2018) made a buckling analysis and 

design proposal for 2-side supported double Insulated 

Glass Units (IGUs) in compression. 

Brasil and Wahrhaftig (2017) did an experimental 

evaluation of the effect of geometric nonlinearities on 

structural resonances. 

Johnson et al. (2017) reported the results of a 

numerical and theoretical study of buckling in elastic 

columns containing a line of holes.  

Oliveira et al. (2017) studied the shear effect on the 

buckling of columns embedded in an elastic medium, 

evidencing the interaction of the column with the 

foundation. 

Abdel-Karim et al. (2018) proposed a model for the 

strength analysis of High-Strength Concrete (HSC) 

columns subjected to eccentric loading.  

Abdulazeez et al. (2019) presented a numerical study 

on the behavior of Hollow-Core Fiber reinforced 

polymer-Concrete-Steel (HC-FCS) columns under 

combined axial compression and lateral loadings. 

Isleem et al. (2018) presented results of experimental 

tests on 28 larger-sized rectangular plain and reinforced 

concrete columns confined with carbon fiber-reinforced 

polymer wraps. 
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Razdolsky (2018) focused on elastic stability analysis 

of battened columns and laced columns with crosswise, 

fir-shaped and serpentine lattices.  

Slimani et al. (2018) dealt with the concept of the 

effective length factor of columns representing an important 

parameter with regard to the elastic buckling analysis. 

Thumrongvut and Tiwjantuk (2018) analysed 

strength and axial behavior of cellular lightweight 

concrete-filled steel rectangular tube columns under 

axial compression. 

Anuntasena et al. (2019) presented the 3D finite 

element analysis of the concrete-encased steel columns 

subjected to concentric or eccentric loadings.  

Ivanov (2019a) did a theoretical study of small 

vibrations of two rigid bodies with damping and next 

Ivanov (2019b) analyzed vibrations of a shaft caused by 

inertial excitations. 
Kudryavtsev (2019) presented the study of behavior of 

axially loaded columns that consisted of two flanges and 
a thin triangularly corrugated web, connected by 
automatic welding.  

Nazarimofrad and Shokrgozar (2019) dealt with a 
seismic performance of steel braced frames with self-
centering buckling-restrained brace utilizing superelastic 
shape memory alloys. 

Qi et al. (2019) dealt with the innovative pultruded 

fiber reinforced polymer. Axial compression tests with 

both ends pinned were employed to investigate the 

columns under concentric load. The courses of the values 

of the longitudinal strains in Fig. 10 correspond to the 

graph in Fig. 4 in the paper of (Murawski and Kłos, 2007) 

and in Fig. 4a of (Murawski, 2011a) - what confirms 

qualitatively the correctness of the presented Technical 

Stability Theory.  

Roy et al. (2019) dealt with a built-up box-section 

popular for column members in cold-formed steel. The 

authors presented an experimental investigation on an 

axial capacity. Tests were conducted for different values 

of slenderness.  

Zhou et al. (2019) introduced the effective length 

factor and imperfection factor to the current stability 

factor formula to calculate the ultimate load of the lattice 

boom accurately.  

Abedini et al. (2020) focused on investigating blast 

load parameters to design reinforced concretes columns to 

withstand blast detonation. 

Ahiwale et al. (2020) tested the twelve concrete-filled 

tubular columns under axial compression. The behaviour 

of CFT columns has been studied in terms of axial load-

carrying capacity, deflection, and buckling effects and 

compared the behaviour with numerical results 

determined using Eurocode 4 and AISC 360-10. 

Alomarah et al. (2020) presented a combined 

experimental and numerical investigation of the out-of-

plane and in-plane performances of an auxetic 

structure, re-entrant chiral auxetic, under quasi-static 

uniaxial compression. 

Avci-Karatas (2020) considered the need for 

suitable analysis and design of mid-rise reinforced 

concrete buildings in hilly regions subjected to 

earthquake and wind. 

Doan et al. (2020) provided an investigation based on 

a numerical study of the effects of the section dimensions, 

thickness ratio and slenderness ratio on the critical 

buckling load of a thin-walled composite strut under 

uniaxial compression. 

Goroshko et al. (2020) proposed a method of 

preventing the loss of Euler stability by thin rods.  

Kiss (2020a) investigated the planar stability of fixed-

fixed shallow circular arches. Later Kiss (2020b) aimed to 

find the buckling loads for pinned-rotationally restrained 

shallow circular arches in terms of the rotational end 

stiffness, geometry and material distribution. 

Naseri et al. (2020) presented an experimental study 

into the buckling behaviour of glass fabric-reinforced 

polymer cylindrical shells subjected to axial 

compression load. 

Qays and Al-Zuhairi (2020) dealt with a structural 

performance of slender columns with cross and square-

shaped under compression load. 

Rajkannu and Jayachandran (2020) presented the 

details of an experimental and numerical study on the 

effect of warping on the flexural-torsional buckling 

behavior of axially loaded cold-formed steel lipped 

channel members.  

Saberi et al. (2020) studied the cooperation of steel 

and concrete in composite columns.  

Saingam et al. (2020) dealt with composite behavior 

in buildings retrofitted using buckling-restrained braces 

with elastic steel frames. 
Zucco et al. (2020) tested a 750×640×240 mm 

variable-stiffness unitized integrated-stiffener out-of-
autoclave thermoplastic composite wing-box for a 
combined shear-bending-torsion induced buckling 
load. The experimental test results of the wing-box 
were also compared with the predictions made by a 
numerical study performed. 

Mehrabi et al. (2021) dealt with a seismic response 
prediction of fiber-reinforced concrete columns 
rectangular columns using intelligent fuzzy‑based 
hybrid metaheuristic techniques. 

Stability Analysis According to TSTh 

This research study herein discussed also Technical 
Stability Theory (TSTh) method of analysis for the 
column stability in elastic states that the stress and strain 
state in a critical transverse cross-section (after losing 
stability and before losing its carrying capacity) appears as 
a result of a sum of pure compression phenomena and 
bending effects (Fig. 1 and also Murawski, 1992; 2002; 
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2003a; 2003b; 2003c; 2003d; 2004a; 2004b; 2004c; 2004d; 
2005; 2007; 2011b; 2017a; 2017b; 2018; 2020b).  

The method is thus developed on a basic simplification 
for very slender columns, that is the beginning of the load-
carrying capacity lost (i.e., the maximum achieved value of 
force, on a force P-shortening L graph) in an elastic state 
follows the exceedance of the force line from a critical 
transverse cross-section.  

According to the TSTh the fibre extension  at the 
distance y from the undeformed central line and the 
corresponding stress n were in fact given by (Fig. 1): 
 

 
,

y y   


  

    
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
 (4) 

 

,n g c

y P
E

A
  


        (5) 

 
Where: 

: The radius of the curved central line 

: Angle of the central line slope in relation to the force 

line 

y: Defined in Eq. (1) 

n: Normal stress 

g: Bending stress 

c: Compressive stress 

E: Defined in Eq. (1) 

P: Imposed axial force 

A: Defined in Eq. (3) 

 

Due to the force equilibrium, it is: 

 

   ,g c

y P
dP dA E dA

A
 



 
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 
  (6) 

 
moreover, unlike Euler, it was assumed that the 

displacement of the column axis was determined by taking 

into account the conditions of the small deformation theory, 

as a function of the curvature radius, that is: 
 

2

2

1
,

d y

dx
   (7)  

 
and the reference boundary conditions: dy/dx = 0 for x = 

L/2 and y = 0 for x = 0. 

The governing differential equations for the curved 

central line d2y/dx2 and its slope dy/dx, as well as the 

equation of the central line y(x) for a pinned without 

friction axially compressed column, were like Eqs. (59), 

(60), (61) in (Murawski, 2011c), or Eqs. (2.7), (2.8), 

(2.9) in (Murawski, 2018). 
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central line - 


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dx
The slope of the curved central line -
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The force line 

 
 
Fig. 1: Stresses and strains in the critical transverse cross-section of a pinned box-section column axially compressed by force 

according to TSTh 
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From the assumption that the loss of carrying 

capacity follows the force line exceeding the critical 

transverse cross-section (yx=L/2 = ycr), moreover, the 

critical compressive stress cr for axially compressed 

columns under the force through ball-and-socket joints 

was like Eq. (65) in (Murawski, 2011c), or Eq. (2.13) in 

(Murawski, 2018).  

In the paper (Murawski, 2020c), according to the 

TSTh as a theoretical example, was analyzed the 

rectangular column made of steel with dimensions: The 

shorter median side a = 20 mm, longer median side b = 28 

mm, thickness t = 1 mm, length L = 2500 mm and 

slenderness ratio  = 314.8. From the stability analysis 

were obtained the graphs of the elastic line y(x), its slope 

dy/dx, the function yL/2(P) and compressive critical 

stresses cr. From the stress and strain analysis were 

obtained the graphs of the shell stress and strain states.  

The same case is also computed in this study using the 

Finite Element Method and Euler’s theory. 

Finite Element Method (FEM)  

According to (Wikipedia, 2021), the FEM is a 

method for solving differential equations arising in 

mathematical modeling. It is a general numerical method 

for solving partial differential equations in two or three 

space variables. To solve a problem, the FEM subdivides 

a large system into smaller, simpler parts that are called 

finite elements. This is achieved by a particular space 

discretization in the space dimensions, which is 

implemented by the construction of a mesh of the object: 

The numerical domain for the solution, which has a 

finite number of points. The FEM formulation of a 

boundary value problem finally results in a system of 

algebraic equations. The method approximates the 

unknown function over the domain. The simple 

equations that model these finite elements are then 

assembled into a larger system of equations that models 

the entire problem. The FEM then uses variational 

methods from the calculus of variations to approximate 

a solution by minimizing an associated error function. 

Finite Element Analysis (FEA)  

According to (Algor®, 2001), the FEA is a 

computerized method for predicting how a real-world 

object will react to forces, heat, vibration, etc., in terms 

of whether it will break, wear out, or work the way it 

was designed. 

The FEA works by breaking a real object down into 

a large number (1000 to 100,000 s or more) of 

elements, such as little cubes. The behavior of each 

little element, which is regular in shape, is readily 

predicted by set mathematical equations. The computer 

then adds up all of the individual behaviors to predict 

the behavior of the actual object. 

FEA Theory 

Hooke (1678) set down the basis for modern finite 

element stress analysis with Hooke's Law. Simply, an 

elastic body stretches (strain) in proportion to the force 

(stress) on it. Mathematically: 

 

,P k x    (8)  

 

Where: 

k: The proportional constant 

x: Distance of stretching 

 

Hooke proved the equation by using weights to stretch 

wires hanging from the ceiling. Each element has 

corners, i.e., nodes. Every node will move because all 

materials have some elasticity. That movement would be 

described by Eq. (8) for that element except that other 

elements are in the way or are tending to hold it back. As 

the force is transmitted through the first element, it 

spreads out to other nodes.  

According to (Algor®, 2001) in the FEA occurs a step 

called element stiffness formulation. The k is created for 

the relationship between every node on each element. 

Thus, every node is connected to every other node on each 

element by a spring. After the analysis, a step known as 

processing is done, i.e., a value for each x and P is 

determined for each node by the Eq. (8) and x and P are 

vectors as each has a value and a direction. 

In the final step, which is called post-processing, the 

stresses are determined by knowing the P at each node and 

the geometry of each element. 

A node is a coordinate location in space where the 

Degrees Of Freedom (DOF) are defined. The DOF for this 

point represent the possible movement of this point due to 

the loading of the structure. The DOF also represents 

which forces and moments are transferred from one 

element to the next. Also, results of an FEA (deflections 

and stresses) are usually given at the nodes. 

In the real world, a point can move in 6 different 

directions, translation in Tx, Ty and Tz and rotation about 

Rx, Ry and Rz. In the FEA, a node may be limited in the 

calculated motions for a variety of reasons. For example, 

there is no need to calculate the out-of-plane translation 

on a 2-D element; it would not be a 2-D element if its 

nodes were allowed to move out of a plane. 

The DOF of a node (which is based on the element 

type) also relates what types of forces and restraints are 

transmitted through the node to the element. A force 

(axial or shear) is equivalent to a DOF translation. A 

moment is equivalent to a DOF rotational. Thus, to 

transfer a moment about a certain axis, the node must 
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have that DOF. If a node does not have that rotational 

DOF, then applying a moment to the node will have no 

effect on the analysis. Likewise, restraining that node 

with a rotational boundary condition will have no effect; 

the node does not "know" how to transmit the moment. 

An element is the basic building block of the FEA. 

There are several basic types of elements. Which type of 

element for the FEA is used depends on the type of object 

that is to be modeled for the FEA and the type of analysis 

that is going to be performed. 

An element is a mathematical relation that defines 

how the degrees of freedom of a node related to the 

next. These elements can be lines (beams), areas (2-D 

or 3-D plates), or solids (bricks). It also relates to how 

the deflections create stress. 
Buckling is a geometric instability due to 

compression: Common in thin-walled cases and slender 
structural members. 

Linear Critical Buckling (LCB) 

A thin-walled column pressed down by a gradually 

increased force, at some point will suddenly squash. This 

sudden phenomenon of scrunching is known as buckling. 

In the normal use of most products, buckling can be 

catastrophic if it occurs. The failure is not one of stress, 

but of geometric stability. Once the geometry of the part 

starts to deform, it can no longer support even a fraction 

of the force initially applied. 

The worst part about buckling for engineers is that 

buckling usually occurs at relatively low-stress values 

compared to what the material can withstand. So they 

have to make a separate check to see if a product or part 

thereof is okay with respect to buckling. 

Buckling almost always involves compression. In civil 

engineering, buckling is to be avoided when designing 

support columns, load bearing walls and sections of 

bridges which may flex under load. In mechanical 

engineering, designs involving thin parts in flexible 

structures like airplanes and automobiles are susceptible 

to buckling. Even if the stress is very low, buckling of 

local areas can cause the whole structure to collapse by a 

rapid progression of propagated buckling. 

For nonlinear situations, buckling can be determined 

as part of nonlinear stress analysis. 

The (Algor®, 2001) requires determining of the element 

formulation, i.e., to select by an user what type of 

formulation is used when calculating the shape functions for 

the stiffness matrix. There are formulations as follows: 

 

 Veubeke - uses the theory by B. Fraeijs de 

Veubeke for plate formulation for displaced and 

equilibrium models 

 Reduced shear - uses the Constant Linear Strain 

Triangle (CLST) with reduced shear integration 

and Hsieh, Clough and Tocher (HCT) plate 

bending element theories 
 Linear strain - uses the Constant Linear Strain 

Triangle (CLST) without reduced shear integration 
and Hsieh, Clough and Tocher (HCT) plate bending 
element theories 

 Constant strain - uses the Constant Strain Triangle 

(CST) and Hsieh, Clough and Tocher (HCT) plate 

bending element theories 

 

FEM Model 

For the FEM the stability analysis was used the 

computer program Algor® (2001). The Linear Critical 

Buckling Load analysis was applied. The column was 

modelled as made of steel R35 (Murawski 2003a, 2004b, 

2017a, 2017b, 2020a, 2020b, 2020c).  

The model (Fig. 2 and 3) of every box-section 

column with different lengths L was built from the 

plate elements with four nodes in 140 levels with 16 

nodes what caused certain numerical instabilities 

because of the changing the element 

height/side/thickness ratio. The square plate elements 

would be ideal for every box-section column. 

The material of the model elements was defined as 

isotropic. The thickness t of the analyzed columns was 

0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 mm (Table 1).  

The mass density of the steel R35 was: 8 000 kg/m3. 

The value of the elasticity modulus was E = 166 600 MPa 

like in the works (Murawski 2003a; 2004b; 2017a; 2017b; 

2020a; 2020b; 2020c).  

The assumed Poisson’s ratio was v = 0.3.  

The model was built as a column with dimensions: 

a-b-L and t (Table 1).  

The column was loaded with the force of 1 N.  

The force compressing by disks, made of steel with 

20 mm of thickness, was applied to the central node of 

the upper disk. The influence of them on the surface 

graphs of the n and n was reduced using the option: 

Hide elements. 

This node had degrees of freedom: Tz, Rx, whereas the 

bottom disk has: Rx. 

FEM Stability Analysis 

In the program extensions in the own question of the 

FEM with the tolerance of convergence were normalized. 

For the computing, the value predefined by the program 

was applied: 0.00001.  

The maximum number of iterations predefined by the 

program was 32. For the sake of verifying the results 

obtained from the computing for available in ALGOR ® 

Element Formulation the obtained results were compared: 

 

 Veubeke: 1823.57 N 

 Reduced shear: 1846.93 N 
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 Linear strain: 1849.06 N  Constant strain: 1846.93 N 
 

  

     
 

Fig. 2: FEM mesh model of the disks and box-section column: Elements and the way of loading. The ends are in the enlargements 
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Fig. 3: FEM shell model of the disks and box-section column: elements and the way of loading. The ends are in the enlargements 
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Fig. 4: Deformed FEM model of the box-section column with the ends in the enlargements 
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Fig. 5: Surface graphs of the displacements of the pinned box-section column with dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 

2500 mm under axially compressing load, according to the FEM post-buckling linear stress analysis, by the assumption that a 

maximal deflection equals the half of a side dimension (a/2 = 10 mm), like in the TSTh, where the exit of a force line from a 

critical transverse section follows a loss of the stability 

 Displacement 

 0.01 
0.00857 
0.00714 
0.00572 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6: Evolution of (a) elastic line y(x), (b) elastic line slope dy/dx and (c) function yL(P) for the compressed pinned box-section steel 

column with dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm, according to the results obtained from the FEM 

computing by the assumption that a maximal deflection equals the half of a side dimension (a/2 = 10 mm), like in the TSTh, 

where the exit of a force line from a critical transverse section follows a loss of the stability 
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(a) 

 

 
(b) 

 
Fig. 7: Surface functions of critical compressive stresses: (a) cr

FEM (, A, a/b = 0.714, t/b = 0.0357), (b) cr
FEM (t, L/t, a/t = 20, b/t = 

28) for pinned without friction box-section columns made of steel and axially compressed by force, according to the results 

obtained from the FEM buckling linear stress computing 
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Table 1: Dimensions a-b-L, t, slenderness ratio  and cross-section area A of the columns used for computing 

 a-b-L [mm]  a/b = 0.714, t/b = 0.0357 

  ---------------------------------------------------------------------------------------------------------------------------------------------- 

 t [mm] =  0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 4-5.6-309.4 8-11.2-618.8 12-16.8-928.2 16-22.4-1237.7 20-28-1547.1 24-33.6-1856.5 

 234,814 4-5.6-372.9 8-11.2-745.9 12-16.8-1118.8 16-22.4-1491.8 20-28-1864.7 24-33.6-2237.7 

 274,814 4-5.6-436.5 8-11.2-872.9 12-16.8-1309.4 16-22.4-1745.9 20-28-2182.4 24-33.6-2618.8 

 314,814 4-5.6-500.0 8-11.2-1000.0 12-16.8-1500.0 16-22.4-2000.0 20-28-2500.0 24-33.6-3000.0 

 354,814 4-5.6-563.5 8-11.2-1127.1 12-16.8-1690.6 16-22.4-2254.2 20-28-2817.7 24-33.6-3381.2 

 394,814 4-5.6-627.1 8-11.2-1254.1 12-16.8-1881.2 16-22.4-2508.2 20-28-3135.3 24-33.6-3762.4 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 
Table 2: Critical compressive forces Pcr

FEM obtained from the FEM computing 

 Pcr
FEM [N] a/b = 0.714, t/b = 0.0357 

  ------------------------------------------------------------------------------------------------------------------------------ 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 190,20 760,79 1 711,87 3 042,85 4 754,53 6 846,85 

 234,814 131,04 524,01 1 179,19 2 096,11 3 275,34 4 716,36 

 274,814 95,68 382,79 861,26 1 531,07 2 392,24 3 445,13 

 314,814 72,94 291,76 656,48 1 167,08 1 823,57 2 625,99 

 354,814 57,44 229,71 516,91 918,89 1 435,81 2 067,67 

 394,814 46,38 185,57 417,53 742,31 1 159,82 1 670,14 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 
Table 3: Critical compressive stresses cr

FEM obtained from the FEM computing 

 cr
FEM [MPa] a/b = 0.714, t/b = 0.0357 

  ------------------------------------------------------------------------------------------------------------------------- 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 9,91 19,81 29,72 39,62 49,53 59,43 

 234,814 6,82 13,65 20,47 27,29 34,12 40,94 

 274,814 4,98 9,97 14,95 19,94 24,92 29,91 

 314,814 3,80 7,60 11,40 15,20 19,00 22,80 

 354,814 2,99 5,98 8,97 11,96 14,96 17,95 

 394,814 2,42 4,83 7,25 9,67 12,08 14,50 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 

As the formula of the applied elements, i.e. the type of the 

formulation used for calculating the shape functions for the 

stiffness matrix, was used the default Element Formulation: 

Veubeke, which gave the lowest values.  

The results as the graphs of the Deformed FEM model 

(Fig. 4), displacements (Fig. 5), elastic line y(x) (Fig. 6a), 

elastic line slope dy/dx (Fig. 6b) and function yL(P) (Fig. 

6c) were obtained.  

There were calculated 36 samples using the FEM 

(Table 1) taking under account the slenderness ratio , 

transverse critical transverse section A and thickness t. 

The results, i.e., the critical compressive forces Pcr
FEM, 

were obtained from the FEM computing as the buckling 

load multipliers (Table 2).  

The critical compressive stresses cr
FEM obtained from 

the FEM computing are presented in Table 3 and as the 

surface function in dependence on the slenderness ratio  

and transverse critical cross-section A in Fig. 7a - 

cr
FEM(, A, a/b = 0.714, t/b = 0.0357), as well as in the 

dependence on the thickness t and L/t ratio in Fig. 7b - 

cr
FEM(t, L/t, a/t = 20, b/t = 28). 

FEM Stress and Strain Analysis  

The buckled column with the elastic line y(x) like in 

(Fig. 6a and 8), i.e., according to the TSTh (the loss of 

stability of the columns follows the exceedance of the 

force line from a critical cross-section) was next 

analyzed using the Linear Static Stresses Analysis. As 

a theoretical example, the graphs of the FEM stresses and 

strains are presented in Figs. 9-13 for a box-section 

column made of steel R35 with the Young’s modulus E 

= 166 600 MPa and nominal dimensions a = 20 mm, b = 

28 mm and t = 1 mm and length L = 2500 mm ( = 314.8 

the slenderness, when the limiting slenderness el-lt = 

102.7) and the column is compressed by ball-and-socket 

joints without friction. The same column was searched 

according to TSTh in the paper of (Murawski, 2020c). 

Figure 9-11 show the surface graphs of the stresses n and 

strains n, obtained from the FEM post-buckling linear 

stress analysis. Figure 12-13 show the graphs of the FEM 

values of the n, y(x, y), n, y(x, y) and L, a(x, y) for x 

= 0 ÷ L and y = ±a/2, ±a/4, 0.0 in the longitudinal and 

transverse cross-sections. 
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Fig. 8: Deformed FEM shell model and the undeformed FEM mesh model for the post-buckling linear stress analysis of the pinned box-

section column while the force line is getting out the critical transverse cross-section, like in the TSTh, where the exit of a force 

line from a critical transverse section follows a loss of the stability. The middle part of the column is shown in enlargements 
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               n   [Pa]  

            

         
 
Fig. 9: Surface graphs of the n and n obtained from the post-buckling linear stress FEM analysis of the box-section column axially 

compressed by force through ball-and-socket without friction, with the dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 

mm made of steel R35 while the force line is getting out the critical cross-section. View on the concave wall. The top, middle 

and bottom parts of the column are shown in the enlargements 
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         n   [Pa] 

       
 

   

 
Fig. 10: Surface graphs of the n and n obtained from the post-buckling linear stress FEM analysis of the pinned box-section column 

with the dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm while the force line is getting out the critical transverse 

section. View on the convex wall. The top, middle and bottom parts of the column are shown in the enlargements 
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    n   [Pa] 

                      

        
 
Fig. 11: Surface graphs of normal stresses n and strains n obtained from the post-buckling linear stress FEM analysis of the pinned 

box-section column with the dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm while the force line is getting out 

the critical cross-section. The side view. The top, middle and bottom parts of the column are shown in enlargements 
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(a) 

 

 
(b) 

 
Fig. 12: Values obtained from the FEM post-buckling linear stress analysis (by the assumption that a maximal deflection equals the 

half of a side dimension, a/2 = 10 mm, like in the TSTh, where the exit of a force line from a critical cross-section follows a 

loss of the (a) stability) of the stresses n(x, y), strains  n(x, y) and elongations L(x, y) for x= 0÷L and y = ±a/2, ±a/4,0.0 in 

the axially loaded, pinned box-section column made of steel with dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 

mm made of steel R35 in the longitudinal (a) and transverse (b) cross-section for x = L/2 = 1250 mm 
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(a) 

 

 
(b) 

 
Fig. 13: Values obtained from the FEM post-buckling linear stress analysis (by the assumption that a maximal deflection equals the 

half of a side dimension, a/2 = 10 mm, like in the TSTh, where the exit of a force line from a critical cross-section follows a 

loss of the stability) of the stresses y(x, y), strains y(x, y) and elongations a(x,y) for x = 0÷L and y = ±a/2,±a/4,0.0 in the 

axially loaded, pinned box-section column made of steel with dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm 

made of steel R35 in the longitudinal (a) and transverse (b) cross-section for x = L/2 = 1250 mm 
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Discussion 

Comparison of the FEM’s and Euler’s Results 

Figure 14a shows the comparison of the evolutions of 

function y(x), Fig. 14b - elastic line slope dy/dx and Fig. 14c 

- function yL(P), according to the FEM and to Euler by the 

assumption that a maximal deflection equals the half of a side 

dimension (a/2 = 10 mm), like in the TSTh, where the exit of 

a force line from a critical transverse section follows a loss 

of the stability.  

The maximal departures between functions y(x) equal: 

max = 0.0073 mm and max = 0.00073%, between elastic 

line slopes dy/dx equal: max = 0.029 deg and max = 

1.286% and between functions yL(P) equal: max = 230.86 

N and max = 12.66%.  

In order to assess the FEM results they were 

compared with those obtained from Euler’s Eq. (3) - 

presented in Table 4 and 5 and the differences are 

presented in Table 6.  

The departures between the FEM critical compressive 

stresses (Table 3) and the Euler’s (Table 5) equal to values 

from -27.2 to 336.6%.  

Figure 15a shows the surface graphs of the critical 

compressive stresses cr
Euler(, A, a/b = 0.714, t/b = 

0.0357) and Fig. 15b cr
Euler(t, L/t, a/t = 20,b/t = 28) 

according to Euler.  

Comparison of the FEM’s and TSTh’s Results  

Figure 16a presents the comparison of the evolutions 

of the function y(x), Fig. 16b - elastic line slope dy/dx 

and Fig. 16c - function yL(P), for the compressed pinned 

box-section steel column with dimensions: a = 20 mm, 

b = 28 mm, t = 1 mm, L = 2500 mm, according to the 

FEM and to TSTh.  

 
Table 4: Critical compressive forces Pcr

Euler obtained from the Euler’s Eq. (3) 

 Pcr
Euler [N]  a/b = 0.714, t/b = 0.0357 

  ------------------------------------------------------------------------------------------------------------------- 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 831,8 1 663,7 2 495,5 3 327,3 4 159,2 4 991,0 

 234,814 572,6 1 145,1 1 717,7 2 290,3 2 862,8 3 435,4 

 274,814 418,0 836,0 1 254,1 1 672,1 2 090,1 2 508,1 

 314,814 318,5 637,1 955,6 1 274,2 1 592,7 1 911,3 

 354,814 250,8 501,5 752,3 1 003,1 1 253,8 1 504,6 

 394,814 202,5 405,1 607,6 810,1 1 012,7 1 215,2 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 
Table 5: Critical compressive stresses cr

Euler obtained from the Euler’s Eq. (3) 

 cr
Euler [MPa]  a/b = 0.714, t/b = 0.0357 

  -------------------------------------------------------------------------------------------------------------------------- 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 43,325 43,325 43,325 43,325 43,325 43,325 

 234,814 29,821 29,821 29,821 29,821 29,821 29,821 

 274,814 21,772 21,772 21,772 21,772 21,772 21,772 

 314,814 16,591 16,591 16,591 16,591 16,591 16,591 

 354,814 13,061 13,061 13,061 13,061 13,061 13,061 

 394,814 10,548 10,548 10,548 10,548 10,548 10,548 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 
Table 6: Departures  [%] of the Euler’s critical loads from the FEM results 

FEMEuler
cr

/ [%] =   a/b = 0.714, t/b = 0.0357 

%100



FEM
cr

FEM
cr

Euler
cr




 -------------------------------------------------------------------------------------------------------------------- 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 337,4 118,7 45,8 9,3 -12,5 -27,1 

 234,814 337,0 118,5 45,7 9,3 -12,6 -27,2 

 274,814 336,9 118,4 45,6 9,2 -12,6 -27,2 

 314,814 336,7 118,4 45,6 9,2 -12,7 -27,2 

 354,814 336,6 118,3 45,5 9,2 -12,7 -27,2 

 394,814 336,6 118,3 45,5 9,1 -12,7 -27,2 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 14: Comparison of the evolutions of (a) elastic line y(x), (b) elastic line slope dy/dx and (c) function yL(P) for the compressed 

pinned box-section steel column with dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm made of steel R35, 

according to the results obtained from the FEM buckling linear stress computing and Euler’s formulas by the assumption that 

a maximal deflection equals the half of a side dimension (a/2 = 10 mm), like in the TSTh, where the exit of a force line from 

a critical cross-section follows a loss of the stability 
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(a) 

 

 
(b) 

 
Fig. 15: Stresses Surface functions of critical compressive stresses: (a) cr

Euler(, A, a/b = 0.714, t/b = 0.0357), (b) cr
Euler(t, L/t, a/t = 

20, b/t = 28) for pinned without friction box-section columns made of steel R35 and axially compressed by force through, 

according to the results obtained from the Euler’s formula 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 16: Comparison of the evolutions of (a) elastic line y(x), (b) elastic line slope dy/dx and (c) function yL(P) for the compressed 

pinned box-section steel column with dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm made of steel R35, 

according to the results obtained from the FEM buckling linear stress computing and TSTh by the assumption that a maximal 

deflection equals the half of a side dimension (a/2 = 10 mm) and the exit of a force line from a critical cross-section follows 

a loss of the stability 
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The maximal departures between functions y(x) 

equal: max = 0.567 mm and max = 0.567%, between 

elastic line slopes dy/dx equal: max = 0.581 deg and 

max = 20.18% and between functions yL(P) equal: max 

= 1481.58 N and max = 433.22%. 

In order to assess the FEM results they were compared 

with those obtained from the TSTh - presented in Table 7 

and 8 and the differences are presented in Table 9.  

The departures between the FEM critical compressive 

stresses (Table 3) and the TSTh stresses - Table 7 and 

Table 8 equal to values from -85.0 to 45.1% (Table 9).  

Figure 17a shows the surface graphs of the critical 

stresses crN
TSTh(, A, a/b = 0.714, t/b = 0.0357) and Fig. 

17b crN
TSTh(t, L/t, a/t = 20, b/t = 28) according to the TSTh. 

Figure 18 shows the graphs of the FEM values and 

the TSTh (by the assumption that a maximal deflection 

equals the half of a side dimension, a/2 = 10 mm, where 

the exit of a force line from a critical transverse section 

follows a loss of the stability) of the n(x, y), n(x, y) 

and L(x, y) for x = 0÷L and y = ±a/2, ±a/4,0.0 in the 

longitudinal (Fig. 18a) and transverse section (Fig. 18b) 

for x = L/2 = 1250 mm in the axially loaded, pinned box-

section column made of steel with dimensions: a = 20 

mm, b = 28 mm, t = 1 mm, L = 2500 mm. 

Figure 19 shows the graphs of the FEM values and the 

TSTh of the y(x, y), y(x, y) and 2a(x, y) for the same 

column. The maximal departures between stresses equal: 

max = 36.679 MPa and max = 398.26%. 

 
Table 7: Critical compressive forces PTSTh

cr obtained from the TSTh 

  TSTh

crP [N] a/b = 0.714, t/b = 0.0357 

  ------------------------------------------------------------------------------------------------------------------ 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 275,90 446,95 603,37 751,18 893,07 1 030,52 

 234,814 189,91 307,65 415,31 517,05 614,72 709,33 

 274,814 138,65 224,61 303,21 377,49 448,80 517,87 

 314,814 105,65 171,16 231,06 287,66 341,99 394,63 

 354,814 83,17 134,74 181,90 226,46 269,23 310,67 

 394,814 67,17 108,82 146,91 182,89 217,44 250,91 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 

Table 8 Critical compressive stresses TSTh
cr obtained from the TSTh 

 TSTh

cr  [MPa] a/b = 0.714, t/b = 0.0357 
  -------------------------------------------------------------------------------------------------------------- 

 t [mm] =  0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 14,37 11,64 10,48 9,78 9,30 8,95 

 234,814 9,89 8,01 7,21 6,73 6,40 6,16 

 274,814 7,22 5,85 5,26 4,92 4,67 4,50 

 314,814 5,50 4,46 4,01 3,75 3,56 3,43 

 354,814 4,33 3,51 3,16 2,95 2,80 2,70 

 394,814 3,50 2,83 2,55 2,38 2,27 2,18 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 

Table 9: Departures [%] of the TSTh critical loads from the FEM results 

FEMTSTh

cr

/   [%] =  a/b = 0.714, t/b = 0.0357 

%100



FEM
cr

FEM
cr

TSTh
cr




 -------------------------------------------------------------------------------------------------  

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 45,1 -41,3 -64,8 -75,3 -81,2 -84,9 

 234,814 44,9 -41,3 -64,8 -75,3 -81,2 -85,0 

 274,814 44,9 -41,3 -64,8 -75,3 -81,2 -85,0 

 314,814 44,9 -41,3 -64,8 -75,4 -81,2 -85,0 

 354,814 44,8 -41,3 -64,8 -75,4 -81,2 -85,0 

 394,814 44,8 -41,4 -64,8 -75,4 -81,3 -85,0 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 
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(a) 

 

 
(b) 

 
Fig. 17: Surface functions of critical compressive stresses: (a) cr

Euler(, A, a/b = 0.714, t/b = 0.0357), (b) cr
Euler(t, L/t, a/t = 20, b/t = 

28) for pinned without friction box-section columns made of steel R35 and axially compressed by force, according to the 

results obtained from the TSTh 
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(a) 

 

 
(b) 

 
Fig. 18: Comparison of the values obtained from the FEM post-buckling linear stress analysis and the TSTh (by the assumption that a 

maximal deflection equals the half of a side dimension, a/2 = 10 mm, where the exit of a force line from a critical cross-section 

follows a loss of the stability) of the n(x, y), n(x, y) and L(x, y) for x = 0÷L and y= ±a/2, ±a/4,0.0 in the axially loaded, 

pinned box-section column made of steel with dimensions: a= 20 mm, b= 28 mm, t= 1 mm, L= 2500 mm made of steel R35 

in the longitudinal (a) and transverse (b) cross-section for x= L/2= 1250 mm 
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(a) 

 

 
(b) 

 
Fig. 19: Comparison of the values obtained from the FEM post-buckling linear stress analysis and the TSTh (by the assumption that a 

maximal deflection equals the half of a side dimension, a/2 = 10 mm, where the exit of a force line from a critical cross-section 

follows a loss of the stability) of the y(x, y), y(x, y) and a(x, y) for x = 0÷L and y = ±a/2, ±a/4,0.0 in the axially loaded, 

pinned box-section column made of steel with dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm made of steel 

R35 in the longitudinal (a) and transverse (b) cross-section for x = L/2 = 1250 mm 
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Figure 18 and 19 show that the courses of the normal 

stresses n
FEM(x, y), strains n

FEM(x, y) and extensions 

LFEM(x, y) are not symmetrical in relation to the layer with 

the geometrical axis (y = 0). In this layer, the stress n
FEM(x, 

0) = 19.020 MPa is numerically equal to the pure critical 

stresses cr
FEM( = 314,814, a/b = 0.714, t/b = 0.0357, t = 

1.0) = 19.000 MPa. 

Because in the internal fibers on the concave side 

the values are negative, i.e., have the minus signs, so 

fibers are compressed and because of that they are 

shortened. On the opposite convex side, the values are 

positive, i.e., they have the plus signs, so the fibers are 

tensed and because of that, they are extended. 

The courses of the y
FEM(x, y), y

FEM(x, y) and 

2aFEM(x, y), also are not symmetrical in relation to the 

layer with geometrical axis (y = 0).  

The values are bigger on the concave side but are 

positive, i.e., they have the plus signs, i.e., the fibers are 

tensed and extended in the transverse direction.  

The fibers on the opposite convex side are negative 

and they have the minus signs, so the fibers are 

compressed and shortened. The values are bigger on the 

concave side.  

The normal stresses n
FEM(x, y) are in the range: 

6.638÷-45.940 MPa and y
FEM(x, y): -1.991÷13.782 MPa. 

The strains n
FEM(x, y) are in the range: 0.0000398÷        

-0.0002758 and y
FEM(x, y): -0.0000120÷0.0000826.  

The extensions LFEM(x, y) are in the range: 

0.0996098÷-0.6893758 mm and 2aFEM(x, y): -0.00002406 

÷0.00016527 mm. 

The courses of the TSTh stresses, strains and 

extensions are similar to the FEM values. In the layer with 

geometrical axis (y = 0), the stress n
TSTh(x,0) = 3.560 

MPa is equal to the pure critical compressive stresses 

cr
TSTh( = 314,814, a/b = 0.714, t/b = 0.0357, t = 1.0) = 

3.560 MPa.  

The normal stresses n
TSTh(x,y) are in the range: 

2.087÷-9,211 MPa and y
TSTh(x,y): -0,626÷2.763 MPa.  

The strains n
TSTh(x,y) are in the range: 0.000013÷          

-0.000055 and y
TSTh(x,y): -0.0000038÷0.0000166.  

The extensions LTSTh(x, y) are in the range: 

0.0313118÷-0.1382273 mm and 2aTSTh(x, y): -

0.0000075 ÷ 0.0000332 mm. 

Comparison of the FEM’s Results under Load 

Determined from TSTh (Pcr= 341.99 N) and the 

TSTh’s Results  

In order to estimate the values obtained from the 

FEM computing under load determined from TSTh (Pcr 

= 341.99 N) the results were compared with those 

obtained from the TSTh.  

Figure 20-22 show the surface graphs of the n and 

n obtained from the post-buckling linear stress FEM 

analysis under load determined from TSTh (Pcr = 

341.99 N) of the box-section column pinned at both 

ends with the dimensions a = 20 mm, b = 28 mm, t = 1 

mm, L = 2500 mm while the force line is leaving the 

critical cross-section. 

Figure 23 shows the graphs of the FEM values under 

load determined from TSTh (Pcr= 341.99 N) and the 

TSTh (by the assumption that the maximal deflection 

equals the half of a side dimension, a/2 = 10 mm, where 

the exit of the force line from a critical cross-section 

follows a loss of the stability) of the n(x, y), n(x, y) and 

L(x, y) for x = 0÷L and y = ±a/2, ±a/4,0.0 in the 

longitudinal (Fig. 23a) and transverse section (Fig. 23b) 

for x = L/2 = 1250 mm in the pinned box-section column 

with dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 

2500 mm made of steel, axially loaded.  

Figure 23 shows that the courses of the n
FEM(x,y), 

n
FEM(x,y) and LFEM(x,y) are not symmetrical in relation 

to the layer with geometrical axis (y= 0). In this layer, the 

stress n
FEM(Pcr=341.99N,x,0) = 3.564 MPa is numerically 

equal to the pure critical stresses cr
FEM( = 314,814, a/b 

= 0.714,t/b = 0.0357, t = 1.0) = 3.560 MPa.  

Figure 24 shows the graphs of the FEM values under 

load determined from TSTh (Pcr = 341.99 N) and the 

TSTh of the y(x, y), y(x, y) and 2a(x, y) for the same 

column. The maximal departures between stresses equal: 

max = 0.605 MPa and max = 6.6%.  

Figure 23 and 24 show that the stresses n
FEM_Pcr = 

341.99N(x,y) are in the range: 1.245÷-8.606 MPa and 

y
FEM_Pcr=341.99N(x, y): -0.376÷2.582 MPa. The strains 

n
FEM_Pcr=341.99N(x, y) are in the range: 0.0000075÷-0.0000517 

and y
FEM_Pcr=341.99N(x,y): -0.0000022÷0.0000155.  

The extensions LFEM_Pcr=341.99N(x, y) are in the range: 

0.0186825÷-0.1291417 mm and 2aFEM_Pcr=341.99N(x, y): 

-0.00000448÷0.00003099 mm.  

The courses of the TSTh stresses, strains and 

extensions are similar to the FEM values under load 

determined from TSTh (Pcr = 341.99 N).  

In the layer with geometrical axis (y = 0), the stress 

n
TSTh(x,0) = 3.560 MPa is equal to the pure critical 

stresses cr
TSTh( = 314, 814, a/b = 0.714, t/b = 0.0357, t 

= 1.0) = 3.560 MPa.  

The stresses n
TSTh(x, y) are in the range: 2.087÷-9,211 

MPa and y
TSTh(x, y): -0,626÷2.763 MPa.  

The strains n
TSTh(x,y) are in the range: 0.000013÷           

-0.000055 and y
TSTh(x,y): -0.0000038÷0.0000166.  

The extensions LTSTh(x,y) are in the range: 

0.0313118÷-0.1382273 mm and 2aTSTh(x,y): -0.0000075 

÷0.0000332 mm. 
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                n   [Pa] 

             

      
 
Fig. 20: Surface graphs of the n and n obtained from the post-buckling linear stress FEM analysis under load determined from TSTh 

(Pcr= 341.99 N) of the pinned box-section column, with the dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm made 
of steel R35, while the force line is leaving the critical cross-section. View on the concave wall. The top, middle and bottom 
parts of the column are shown in the enlargements 
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        n   [Pa] 

      

    

 
Fig. 21: Surface graphs of the n and n obtained from the post-buckling linear stress FEM analysis under load determined from TSTh 

(Pcr= 341.99 N) of the pinned box-section column, with the dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm made 
of steel R35, while the force line is getting out the critical cross-section. View on the convex wall. The top, middle and bottom 
parts of the column are shown in the enlargements 
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         n   [Pa] 

               

    
 

Fig. 22: Surface graphs of the n and n obtained from the post-buckling linear stress FEM analysis under load determined from TSTh 

(Pcr = 341.99 N) of the pinned box-section column, with the dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm 

made of steel R35, while the force line is getting out the critical cross-section. The side view. The top, middle and bottom 

parts of the column are shown in the enlargements 
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(a) 

 

 
(b) 

 
Fig. 23: Comparison of the values obtained from the FEM post-buckling linear stress analysis under load determined from TSTh (Pcr 

= 341.99 N) and the TSTh (by the assumption that a maximal deflection equals the half of a side dimension, a/2 = 10 mm, 

where the exit of a force line from a critical transverse section follows a loss of the stability) of the stresses n(x, y), strains 

n(x, y) and elongations L(x, y) for x = 0÷L and y = ±a/2, ±a/4,0.0 in the axially loaded, pinned box-section column made of 

steel R35 with dimensions a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm in the longitudinal (a) and transverse (b) cross-

section for x = L/2 = 1250 mm 
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Fig. 24: Comparison of the values obtained from the FEM post-buckling linear stress analysis under load determined from TSTh (Pcr 

= 341.99 N) and the TSTh (by the assumption that a maximal deflection equals the half of a side dimension, a/2 = 10 mm, 

where the exit of a force line from a critical cross-section follows a loss of the stability) of the y(x, y), y(x, y) and a(x, y) 

for x = 0÷L and y = ±a/2, ±a/4,0.0 in the axially loaded, pinned box-section column made of steel R35 with dimensions a = 

20 mm, b = 28 mm, t = 1 mm, L = 2500 mm in the longitudinal (a) and transverse (b) cross-section for x = L/2 = 1250 mm 
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(a) 

 

 
(b) 

 
Fig. 25: Surface functions of critical compressive stresses: (a) cr

TSTh-Ec_var (, A, a/b = 0.714, t/b = 0.0357), (b) cr
TSTh-Ec_var (t, L/t, a/t 

= 20, b/t = 28) for box-section columns made of steel R35 and axially compressed by force through ball-and-socket joints 

without friction, according to the results obtained from the TSTh with varying Ec 
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Table 10: Critical compressive forces P TSTh
cr_Ec_var obtained from the TSTh with varying Ec 

P TSTh
cr_Ec_var [N] a/b = 0.714, t/b = 0.0357 

  ---------------------------------------------------------------------------------------------------------------------- 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 37,43 157,21 342,61 588,86 893,07 1 253,20 
 234,814 25,76 108,21 235,83 405,33 614,72 862,61 
 274,814 18,81 79,00 172,17 295,92 448,80 629,77 
 314,814 14,33 60,20 131,20 225,50 341,99 479,90 
 354,814 11,28 47,39 103,29 177,52 269,23 377,80 
 394,814 9,11 38,28 83,42 143,37 217,44 305,12 
 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 Ec [MPa*e6] = 22 600 58 600 94 600 130 600 166 600 202 600 

 
Table 11: Critical compressive stresses TSTh

cr_Ec_var obtained from the TSTh with varying Ec 

TSTh
cr_Ec_var [MPa]  a/b = 0.714, t/b = 0.0357 

  -------------------------------------------------------------------------------------------------------------- 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 1,95 4,09 5,95 7,67 9,30 10,88 

 234,814 1,34 2,82 4,09 5,28 6,40 7,49 

 274,814 0,98 2,06 2,99 3,85 4,67 5,47 

 314,814 0,75 1,57 2,28 2,94 3,56 4,17 

 354,814 0,59 1,23 1,79 2,31 2,80 3,28 

 394,814 0,47 1,00 1,45 1,87 2,27 2,65 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 Ec [MPa*e6] = 22 600 58 600 94 600 130 600 166 600 202 600 

 

Table 12: Departures  [%] of the TSTh-Ec_var critical loads from the FEM results 

FEMEcTSTh
cr

/ var__  [%] = a/b = 0.714, t/b = 0.0357 

%100
var__





FEM
cr

FEM
cr

EcTSTh
cr




 ---------------------------------------------------------------------------------------------------------- 

 t [mm] = 0.2 0.4 0.6 0.8 1.0 1.2 

: 194,814 -80,3 -79,3 -80,0 -80,6 -81,2 -81,7 

 234,814 -80,3 -79,3 -80,0 -80,7 -81,2 -81,7 

 274,814 -80,3 -79,4 -80,0 -80,7 -81,2 -81,7 

 314,814 -80,4 -79,4 -80,0 -80,7 -81,2 -81,7 

 354,814 -80,4 -79,4 -80,0 -80,7 -81,2 -81,7 

 394,814 -80,4 -79,4 -80,0 -80,7 -81,3 -81,7 

 A [mm2] = 19.20 38.40 57.60 76.80 96.00 115.20 

 

Comparison of FEM’s and TSTH’s Results with 

Varying Ec 

As it was found from the experimental researches and 

was presented in the paper (Murawski 2020a, Fig. 25) the 

compress modulus Ec is changing with slenderness ratio  

and critical transverse cross-section A.  

In order to find similar results obtained from the 

FEM computing to the results from the TSTh were 

taken under consideration the results with varying Ec - 

presented in Table 10 and 11 – and they were 

compared.  

The differences are presented in Table 12.  

The relative departures between critical compressive 

stresses obtained from FEM (Table 3) and the TSTh with 

varying Ec - Table 10 and 11 equal to values from -81.7 to 

-79.3% (Table 12).  

 Figure 25a shows the surface graph of the critical 

compressive stresses cr
TSTh-Ec_var(, A, a/b = 0.714, t/b = 

0.0357) and Fig. 25b shows the cr
TSTh-Ec_var(t, L/t, a/t = 

20, b/t = 28) according to the TSTh with varying Ec.  

So it is seen that shapes of the surface functions in Fig. 

7 and Fig. 25 are similar, however, they are different with 

values: cr
FEM(, A, a/b = 0.714, t/b = 0.0357) and 

cr
FEM(t, L/t, a/t = 20, b/t = 28) have the values in the 

range: 0÷60 MPa, but cr
TSTh_Ec_var(, A, a/b = 0.714, t/b 

= 0.0357) and cr
TSTh-Ec_var(t, L/t, a/t = 20, b/t = 28) have 

the values in the range: 0÷11 MPa. 

Conclusion 

In the paper, there are discussed three different 

methods for determining the critical compressive load of 

the pinned box-section thin-walled column: FEM, Euler’s 
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and TSTh. Based on the presented results the following 

important remarks can be concluded: 

 

1. The evolutions of the function y(x) and elastic line 

slope dy/dx, according to the FEM and to Euler (by 

the assumption that a maximal deflection equals the 

half of a side dimension, like in the TSTh, where the 

exit of a force line from a critical cross-section 

follows a loss of the stability) are almost the same 

2. The maximal departures between functions yL(P), 

according to the FEM and to Euler, equal: max = 

230.86 N and max= 12.66% but still are small 

3. The evolutions of the function y(x) and elastic line 

slope dy/dx according to the FEM and to TSTh are 

clearly different, but functions yL(P) are strongly 

different and the maximal relative departures 

between them are max = 0.0567% for the functions 

y(x), max = 20.18% for the elastic line slope dy/dx and 

max = 433.22% for the functions yL(P) 

4. The surface function of critical compressive stresses 

according to Euler is not varying with transverse 

cross-section area A unlike the surface function 

according to the FEM and to TSTh 

5. The relative departures of the Euler’s critical loads 

from the FEM critical loads are in the searched cases 

in the range: -27.2÷337.4% 

6. The relative departures of the TSTh critical loads 

from the FEM critical loads are in the searched cases 

in the range: -85.0÷45.1% 

7. There is no possibility to determine the values of the 

stresses and strains in the column shell directly from 

Euler’s theory 

8. The state of the stresses and strains according to the 

FEM and to TSTh is similar, i.e., the shapes of those 

functions are similar 

9. The maximal relative departure of the TSTh stresses 

and strains from the FEM stresses and strains in the 

searched case is very big and equals: 398.26% 

10. The maximal relative departure of the TSTh 

stresses and strains from the FEM stresses and 

strains under the load obtained from the TSTh 

(Pcr= 341.99 N) in the searched case is very small 

and equals: 6.6% 

11. The relative departures of the TSTh with varying Ec 

critical loads from the FEM critical loads are in 

searched cases in the range: -79.4÷81.7% 

12. The large maximal relative departures between the 

Euler/TSTh and FEM results are caused probably by 

simplifications of the theories, especially the oldest 

Euler’s theory seems to be the most simplified 

13. the surface function of critical compressive stresses 

according to the FEM is very similar to the surface 

function of the critical compressive stresses 

according to the TSTh with varying Ec, however, the 

values of the TSTh are about 5 times smaller 
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