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Abstract: The building sector accounts for more than 70% of the total 

electricity use. Chillers consume more than 50% of electrical energy during 

seasonal periods of building use. With the growth of the building sector and 

climate change, it's essential to develop energy-efficient HVAC systems that 

optimize the ever-increasing energy demand. This study aims to develop an 

energy consumption prediction model for air-cooled chillers using machine 

learning algorithms. This is done by developing different static and dynamic 

data-driven regressive and neural network models and comparing the accuracy 

of their prediction to identify the most accurate modeling algorithm using 3 main 

inputs chilled water return temperature, outside drybulb temperature, and cooling 

load. The proposed model structure was then optimized in terms of the number 

of neurons, epochs, time delays as well as the number of input variables using 

a genetic algorithm. Training and testing were done using real data obtained 

from a fully instrumented 4-ton air-cooled chiller. Results of the study show 

that the optimized artificial neural network model can predict energy 

consumption with a high level of accuracy compared to conventional 

modeling techniques. The development of highly accurate self-tuning models 

can be a powerful tool to use for other applications such as fault detection 

and diagnosis, assessment, and system optimization. Further studies are 

necessary to evaluate the effectiveness of using deep learning algorithms 

with more hidden layers and cross-validation techniques. 

 

Keywords: Building Energy Consumption, Chiller Energy Modeling, Machine 

Learning in HVAC, Regression Modeling, Hyperparameter Optimization 

 

Introduction 

Energy consumption is on the rise and building systems 

are considered one of the main contributors to total CO2 

emission (EPA; Katipamula and Brambley, 2005). Energy 

consumption end use by buildings has also been on the rise 

globally (Pérez-Lombard et al., 2008). Various studies 

focused on improving energy efficiency by end use 

(Zolfaghari et al., 2022; Zolfaghari and Jones, 2022) 

HVAC systems and particularly chillers are the main 

electricity consumers. The result of a study done by 

Fasiuddin and Budaiwi (2011) is that proper system selection 

and operation of the HVAC system in buildings can provide 

up to 25% in energy savings (Fasiuddin and Budaiwi, 2011). 

Based on a survey conducted by the department of energy, 

more than 12000 chillers are operating inefficiently which 

translates to more than 30% in additional energy use. As an 

example, a dirty condenser coil of an air-cooled chiller can 

reduce efficiency by 15%. It is of high significance to 

develop energy management methods that help with a better 

understanding of HVAC systems and ensure efficient 

operation of chillers. Various studies have been conducted to 

improve the efficiency of the HVAC system by using 

statistical and dynamic energy predictive models, advanced 

control algorithms, and optimization techniques 

(Zhang et al., 2013; Zeng et al., 2015; Kusiak et al., 2011; 

Harish and Kumar, 2016; Okochi and Yao, 2016). 

Air-cooled chillers are more widely used for smaller-

scale residential and commercial buildings as they require 

less square footage in the buildings compared to chilled 

water plants which translate to fewer components and 

ultimately lower initial cost. This study aims to develop 

and optimize a modeling algorithm that can predict the 

energy consumption of this type of chiller. A brief 

overview of different modeling approaches is followed. 
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Energy models can be generally classified as I) physical 

models and II) data-driven models. Physical models, which 

are based on the principle of heat transfer, estimate energy 

performance at building, system, and component levels. 

There exist many software’s to develop energy models by 

solving physical heat transfer equations (Crawley et al., 

2008). Data-driven methods, on the other hand, map 

historical energy performance data to external variables such 

as temperature and humidity, among others. Data-driven 

models can be further categorized as statistical and machine 

learning models, of which the most common are artificial 

neural networks and support vector machines. Research 

published in the last decade suggests that the aforementioned 

machine learning-based energy models produce more 

accurate predictions compared to the counterpart engineering 

and statistical methods. 

Analytical Modeling Approach 

     Physics-based models are used to simulate and develop 

analytical models. Analytical models are mostly used to 

predict the energy consumption during the design phase of 

buildings' HVAC systems and can be used after the equipment 

is installed and running. It is important to note that these 

detailed physics-based models, due to their non-linearity and a 

high degree of complexity make them expensive to implement 

(Wang and Ma, 2008). An example of an analytical approach 

is the development of a simulation model for cooling coils by 

Yu et al. (2005); the model development of a transient 

absorption chiller by Kohlenbach and Ziegler (2008); 

Bendapudi et al. (2005); Zhang et al. (2009).  

Data-Driven Modeling Approach  

Unlike the analytical approach, data-driven algorithms 

are developed using real data collected from an operating 

machine. Relationships between different variables also 

known as inputs and output then identified. Artificial neural 

network algorithms are widely used to predict the power 

consumption of building energy systems (Günay, 2016; 

Castelli et al., 2015; Tahmasebi et al., 2019ab). Comparison 

between different modeling algorithms in terms of accuracy 

and performance was done in different studies. Kaytez et al. 

(2015) compared different algorithms including regression 

analysis, support vector machine, and artificial neural 

network, and concluded that both ANN and support vector 

machine algorithms can predict energy consumption with 

high accuracy (Kaytez et al., 2015). Deng et al. (2018), 

compared different machine learning models with linear 

regression models to predict building energy performance 

(EUI) and concluded machine learning models are 

marginally more accurate by having 10-15% lower 

prediction error while linear regression models outperformed 

machine learning models in predicting plug loads. It was also 

deduced that the Support Vector Machines (SVM) algorithm 

is a powerful tool to predict energy consumption alongside 

ANN models. He et al. (2014) studied the use of 

intelligence neural network algorithms to optimize the 

performance of HVAC systems and compare different data-

driven models. Seong et al. (2017), used a time series, neural 

network model, to predict a building energy consumption 

and concluded that this machine learning model has an as 

better performance compared to the analytical modeling 

approach. Another study done by Jeong and Chae (2017) 

assessed the importance of input variable selection in 

improving the accuracy of predictive models. This study also 

compared four different machine learning algorithms and 

reported ANN as the superior model. Another study done by 

Tahmasebi used ANN to model and detect and diagnose 

faults in a water-cooled chiller (Tahmasebi et al., 2019ab). 

Azadeh et al. (2008) studied ANN, and in a study 

referenced against industry data, the ANN model 

demonstrated superior results over conventional regression 

models (Azadeh et al., 2008). Srinivasan assessed multiple 

traditional models and ANN-based models in energy 

demand forecasting. He claimed that ANN models produced 

better results compared to time-series and regression models 

(Srinivasan, 2008). Aydinalp et al. (2002) applied ANN to 

model energy consumption in residential buildings. In 

comparison with previously developed engineering models, 

the ANN model had better performance (Aydinalp et al., 

2002). Jovanović et al. (2015) demonstrate the viability of 

ensemble neural networks for predicting energy 

consumption. They achieve better prediction results using 

the ensemble method versus a single neural network, 

indicating that ensemble methods prove useful for heating 

energy consumption predictions (Jovanović et al., 2015). 

Talib et al. (2020) studied the power prediction accuracy of 

ANN, support vector machine, and aggregated bootstrapping 

and concluded that these models are effective tools in energy 

prediction for HVAC components. 

Development of Energy Consumption Predictive Models 

Data Collection and Input Identification 

Data was collected from a 4 nominal ton air-cooled 

chiller from an HVAC lab at the University of Cincinnati. 

The chilled water system consists of one air-cooled chiller 

with two pumps. The chiller serves the VAV AHU coil and 

three fan coils located in zones. The HVAC system serves 

three 8 by 8 ft. well-insulated and controlled environmental 

zones. Following Fig. 1 and 2 provide a schematic of the 

layout of all equipment in the lab.  

The chiller was operating during the month of June and 

July when the outside temperature ranged roughly from 50-

95℉. Chiller specifications are presented in following Table 1.  
Different input variables were selected and recorded in 1 

min intervals while the chiller was running. These variables 
are Chilled water return temperature, chilled water supply 
temperature, outside drybulb temperature, outside wetbulb 
temperature, chilled water flow rate, cooling load, time of 
day, and type of day.  
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Fig. 1: HVAC system layout 

 
Table 1: Chiller specifications 

Type Cooling capacity  Entering temp Leaving temp Pressure drop Flow 

Air-cooled 44000 Btu/h 54℉ 42℉ 32 psi 8 gpm 

 

A dataset consisting of values for mentioned input variables 

was then created. To create a simple yet robust model, the 

correlation between each input variable and the power 

consumed by the chiller was evaluated. This was done by 

developing regressive and artificial neural network models. 

Input variables were then ranked based on the R-square value 

calculated by developed models. Input variables that had the 

highest correlation coefficient were then selected to be used 

in the model development phase and other input variables 

were omitted. Input variables with the highest correlation 

coefficient that were selected are Chilled water return 

temperature, outside drybulb temperature, and cooling load. 

Figure 3 shows a schematic of the selected inputs and output. 

Model Development and Optimization 

To evaluate the accuracy and performance, different 

machine learning algorithms were used. The accuracy and 

performance of each model are recorded and compared. The 

modeling algorithm that has the best performance would be 

further optimized to have the highest prediction accuracy. 

Each model in the model category has different sub-model 

algorithms that will be explained below. 

Regression Modeling 

Different regressive-based modeling techniques were 

used. They vary from simple linear regression to more 

complex variation of linear regression (stepwise, robust), 

decision tree regression (fine, medium, coarse), Support 

Vector Machine regression models (linear, quadratic, cubic) 

Ensemble modeling including bagged tree and boosted trees 

as well as the Gaussian Process regression (squared 

exponential, rational quadratic, exponential). 

Artificial Neural Network 

Artificial neural networks are computational models that 

are inspired by natural human brain neurons. A high number 

of processing units work together in a connected fashion to 

process information and generate results.  
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Fig. 2: HVAC lab equipment 

 

 
 
Fig. 3: Air-cooled chiller input and output variables 

 

 
 
Fig. 4: Model structure optimizer 

 

A neural network contains the following 3 layers:  

The input layer (the raw information that feeds into the 

network), the hidden layer (determines the activity of each 

hidden unit and the weights of the connections between 

the input and the hidden units), and, Output layer (depends 

on the activity of the hidden units and the weights between 

the hidden and output units). 

3 different subsets of neural network modeling are used 

to test and train the datasets. They are the 1-simple artificial 

neural network, 2-autoregressive neural network, and 3- 

recurrent neural network. Each of these methods uses a 

different computational algorithm that makes it suitable to 

use for modeling different components of the HVAC 

system. To compare the performance and accuracy of 

different models, R-squared value, MSE, RMSE, and COV 

for each model were calculated. These parameters are 

defined by the following equations: 
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N in the above formulas is the number of data points, Ŷi 

is the predicted value by the proposed model, Yi is the data 

used for calibration and Y is the arithmetic mean of N. 

Choosing Best Performing Models 

By comparing the performance of each modeling 

algorithm, models were ranked from best performance 

and accuracy to least accurate. Best models then were 

chosen and further optimized to have improved 

predictive performance. The optimizing model 

structure was done differently for regression-based 

modeling and artificial neural network models. 

Optimizing Model Structure 

In regression-based models, model parameter tuning was 

done by optimizing numeric parameters, changing kernel 

function, the number of inputs selected and changing the 

validation scheme from no validation to holdout 

validation and cross-validation with different folds (k). 

For K number of folds, the algorithm divides the data 

into K disjoint sets and trains the model by using out-of-

fold data points and accesses model performance using 

in-fold data. This process protects against overfitting by 

evaluating the accuracy of each partitioned dataset. 

In artificial neural network models, model structure 

optimization was done by: Tuning the input variables, 

adjusting the ratio of data used for training and testing, 

changing the number of neurons for the training and testing 

phase, changing several epochs, and changing the time delay 

value. Figure 4 illustrates the integration between the data-

based model and the model parameter optimizer tool. This 

integration starts with using a typical machine learning 

model to predict the energy consumption of the chiller and to 

tune model parameters. This is followed by the second level 

of the optimization process to determine the optimal model 

structure. In practice, the optimizer engine automatically 

trains and test the model with different variation of the 
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number of neurons, time delays, and epochs using a genetic 

algorithm and generate the best model structure as an output 

while minimizing the error in model output prediction. A 

genetic algorithm is an optimization method based on 

the theory of natural selection and has been used in 

various studies to minimize energy consumption 

(Reynolds et al., 2018; Arabali et al., 2012; Nassif, 

2014), This automated process is imitated in a step-by-

step analysis format in this article. 

Results and Discussion 

The following sections present and evaluate model 

prediction accuracy based on performance comparison 

results and hyperparameter optimization for best-

performing models. 

Comparing Different Regressive and Neural 

Network Models 

Various regression-based and ANN models, specified 

were developed and compared to identify the best 

performing models. Results provided in Table 2 identify 

some of the best-performing models among all models 

developed. 

Based on performance results, it can be concluded that 

both regression-based models, as well as ANN models, can 

predict the energy consumption of air-cooled chiller with 

good accuracy but some have higher accuracy and 

performance. Rational quadratic Gaussian regression 

algorithm had the best accuracy and performance among 

regression-based modeling algorithms while artificial neural 

network models, specifically, autoregressive neural 

networks have the best performance and accuracy in 

predicting the energy consumption of the chiller.  

Model Structure Optimization of Best 

Performing Model 

Auto-Regressive Neural Network (ARNN) algorithm als 

known as the NARX model which is a time series forecasting 

model is the best performing algorithm. ARNN algorithm 

process overview is brought in Fig. 5 below. 

Figure 6 presents the actual and predicted energy 

consumption for training and testing sets. Dataset was 

equally divided for the training and testing period. 

The following sections evaluate the effect of different 

hyperparameter optimization techniques on the accuracy and 

performance of the model.   

The implication of using Different Ratios for Testing   

and Training Period 

The amount of data used for training and testing was 

changed to evaluate prediction accuracy. For the first 

scenario, 50% of the dataset was used to train the model 

and the remaining 50% was used to test the model. This 

ratio then changed to 60% for training and 40% for 

testing. The amount of data for training then subsequently 

changed to 70, 80, and 90%. RMSE, COV, and coefficient 

of determination for both the training and testing period 

were calculated and presented in Table 3. 
It can be noted that the performance and accuracy of the 

ARNN algorithm increase as the ratio of data used for 
training increases. Best performance and COV is when 80% 
of data is used to train the model and 20% is used for testing. 
This trend reverses as the ratio of the dataset used for testing 
decreases from 20 to 10%. Therefore it can be concluded that 
the optimal ratio for training and testing this algorithm is 
around 80% for training and 20% for testing. R2 values for 
both training as well as testing period remained consistent 
and was not considerably affected by changing the amount 
of data used for training and testing. 

The Implication of using a Different Number of Epochs 

Epoch in machine learning is a hyperparameter that 

indicates the number of times that the machine learning 

algorithm works through the entire training portion of the 

dataset. The number of epochs can vary from 1 to1000 and 

larger. This is to make sure that the learning algorithm runs 

through the training dataset enough times until the model 

prediction error is minimized. However, a larger number of 

epochs translates to a longer computation time. A different 

number of epochs should be tested for different datasets until 

the best epoch performance is identified. Plotting model 

errors for different numbers of epochs to identify learning 

curves can be beneficial to diagnose whether the model has 

overlearned, learned, or is sufficiently balanced. In this study, 

a different number of epochs were used for the ARNN 

model. Several epochs ranged from 1-1000 and the 

computational time required for the machine was recorded. 

It was noticed that implementing a large number of epochs 

did not yield the best result, although, it took a significantly 

longer time for the software to compute the error. To achieve 

minimal model error and minimize complexity and 

computational time, it was noted that for this dataset, a 

minimal error can be achieved when a few epochs are used. 

Table 4 provides numerical values for RMSE during the 

training and testing period as well as coefficient of variance 

for 3, 6, 9, and 12 epochs. It also contains the same values for 

the optimal number of epochs. 

 

 
 
Fig. 5: Flowchart of Auto-Regressive Neural Network model 
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Fig. 6: Actual vs simulated for training and testing period 
 
The Implication of Changing the Number of Neurons 

for the Testing and Training Period 

A different number of neurons was used to train and test 
the best-performing ARNN model. Neurons compute the 
weighted average of their input. This sum then is fed through 
a nonlinear activation function. The number of neurons 
varied from 1-20; evaluating the performance of the model 
for each number. For the training period, it was observed that 
the performance of the model consistently increased as the 
number of neurons increased. Best training performance 
was achieved when N = 19. RMSE for the best number 
of the neuron was 0.0039.  Figure 7 and 8 illustrates the 
performance according to the different numbers of 
neurons used for the training phase. 

For a testing period, the same number of neurons, ranging 
from 1-20 was used to test the accuracy of the ARNN model. 
No significant pattern was noticed between the increasing 

number of neurons and model performance. Performance 
haphazardly varied from 0.0023 to 0.0027. The best model 
performance for the testing period was achieved when the 
number of neurons was 6. As an increasing number of 
neurons can ultimately prolong the computational time, it is 
essential that changing this hyperparameter is carefully 

considered individually as well as simultaneously with other 
hyperprameters such as the number of epochs, time delay, 
and percentage of the dataset used for training and testing. 

The implication of Changing Number of Time Delays 

To further analyze the effect of changing 
hyperparameters on the accuracy and effectiveness of the 
model, adjusting the time delay parameter of the ARNN 
model is important. Time delay in non-linear time series 
neural networks concerns the delay in time that the model 
is going to use before predicting the value. Time delay 
values selected for this study ranged from 1 to 3. To 
examine the effect of varying time delays alongside using 
different neurons, the algorithm was programmed to 
implement a different number of neurons (1-12) for each 
tested time delay.  Figure 9 shows the performance of the 

training and testing period for a different number of time 
delays and several neurons. 

 

 
 
Fig. 7: Performance training period for different numbers of 

neurons 
 

 
 
Fig. 8: Performance testing period for different numbers of 

neurons 
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Fig. 9: Model performance for different numbers of neurons and time delays for training and testing period 
 
Table 2: Performance and accuracy of best performing models 

Modeling algorithm R2 MSE RMSE 

Stepwise regression 0.89 0.055 0.2350 

SVM 0.97 0.015 0.1220 

Gaussian regression 0.98 0.012 0.1090 

Ensemble Baggedtree 0.97 0.014 0.1180 

Fine tree 0.97 0.016 0.1280 

ANN 0.96 0.001 0.0430 

ARNN 0.98 1.7 × 10E-6 0.0042 

 
Table 3: Performance, COV, and R^2 value for a different proportion of dataset for training and testing 

Configuration RMSE test COV R^2 train R^2 test 

50% training 0.0042 0.0136 0.995 0.994 

50% testing  

60% training 0.0031 0.0157 0.994 0.995 

40% testing  

70% training 0.0033 0.0154 0.994 0.995 

30% testing  

80% training 0.0025 0.0123 0.994 0.993 

20% testing  

90% training 0.0034 0.0150 0.995 0.995 

10% testing  

 
Table 4: Model performance for different numbers of epochs 

Configuration RMSE testing RMSE training COV 

Epoch = 3 0.0129 0.0068 0.0280 

Epoch = 6 0.0364 0.0130 0.0470 

Epoch = 9 0.0374 0.0069 0.0325 

Epoch = 12 0.0048 0.0047 0.0171 

Optimal epoch 0.0024 0.0042 0.0127 

 

It is noted that during the training period, performance 

improved as the number of neurons increased which is in 

agreement with the observation. It is also noted that the 

model performs better in the training period when the time 

delay is more than 1. Best performance is achieved when 

the highest number of implemented neurons (N = 12) and 

time delay (TD = 3) were used. 

For the testing period, however, changing the number 

of neurons did not make a significant change in 

performance. It is evident that implementing a higher value 

of Time Delay (TD = 3) results in better and more 

consistent performance. The best performance for the 

testing period was achieved when N = 11 and TD = 2. 

Conclusion 

This research was conducted to find and tune the best 

dynamic model to capture the energy consumption 
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behavior of an air-cooled chiller. Different machine 

learning algorithms were used to develop various 

computational models. The performance of these models 

then was calculated and compared to find the most 

accurate modeling algorithm. A different range of 

modeling algorithms was used. Regression-based 

modeling algorithms were implemented and tested against 

artificial neural network models. 

The result of model performance and accuracy 
comparison concluded that ANN models have better 
prediction ability compared to regression-based models 
which are in alignment with the results of other studies 
provided in the background section. ARNN in particular 
outperformed other neural network variations. 

Concerning optimizing the performance of the most 
accurate modeling algorithm, different model structure 
optimization approaches were used. Initially, the number of 
inputs was optimized in a way that model achieved a better 
performance while minimizing computational time. 

The effect of changing the ratio of the dataset used for 
testing and training was also examined. Results indicate that 
increasing the ratio of data used for training can increase the 
performance of the model. It was noted that the ratio of data 
used for training varied from 50 to 90%. The best 
performance was achieved when 80% of data was used to 
train the data and 20% for testing. This result confirms that a 
larger dataset used for training can yield better performance. 
However, models should be individually optimized as each 
model can behave uniquely due to their varying dynamics. 

The effect of changing the number of neurons on the 
performance of the ARNN model was also evaluated. The 
number of neurons was changed from 1-20 and model 
performance was captured and recorded for both the training 
and testing period. It was concluded that increasing the 
number of neurons improved the performance of the training 
portion of the dataset but had no significant effect on the 
performance of the model during the testing period. This 
pattern can also vary drastically based on the complexity and 
dynamic of each dataset. 

Concerning optimizing the time delay used in the time 
series neural network, a different number of neurons were 
introduced to the model and various time delay (1-3) was 
used to capture the performance of the model. It was noted 
that an increasing number of time delays in general improved 
the performance of the model. During the training period, the 
best performance was achieved when the highest number of 
time delays and neurons were used. For the testing period, 
however; the highest number of time delays made 
performance values better and less haphazard. 

It was concluded that an autoregressive artificial 
neural network that has an optimized number of inputs 
and uses around 80% of data for training and 20% for 
testing with 11 epochs and a time delay of 3 has the 
highest accuracy of 99.9%. This study can be expanded 
by implementing other data-driven modeling techniques 
such as deep learning algorithms with more hidden layers 
and cross-validation methods. 
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