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Abstract: Intrusion detection is an important research topic in information 

systems and cyber security. Both a defender and an attacker detect and learn 

about each other during an intrusion process. The defender can expel the 

attacker as soon as the attacker is detected or wait and observe to know more 

about the attacker for the detection and prevention of other attacks in the 

future. An optimal decision is often required in this situation. Data analytics 

is conducted to achieve an optimal decision for the cyber security of an 

information system based on a Markov Decision Process (MDP) model in 

this study. The state of the information system is completely observable in 

the model. The model is validated using various algorithms that include 

policy iteration, value iteration, and Q-learning. Data analytics over a finite 

planning horizon and an infinite planning horizon is conducted, respectively. 

The expected total cost for each state is analyzed at various parameters of the 

transition probability and various parameters of the transition cost.  

 

Keywords: Cyber Security, Information System, Markov Decision Process, 

Data Analytics, Q-Learning 

 

Introduction  

Intrusion detection and response is a basic component 

of network security. Intrusion Detection Systems (IDS) 

are significant elements for critical infrastructure security 

(Kiennert et al., 2019). Detection and prevention of 

attacks are generally more important than actions after 

attacks (Srujana et al., 2022). It is often a challenge to 

extract quality information for identifying exploited, 

infected, or vulnerable assets and taking suitable actions 

because cyber security observations over a network need 

to be extracted from big data that are frequently uncertain, 

noisy, and incomplete. A collaborative approach has been 

developed that integrates logistic regression, a partially 

observable Markov decision process, and online data 

analytics on temporal causality and dependency 

relationships of observations for identifying and 

controlling infection (Cam, 2017). The development of a 

security model for the dynamic defense of networks has 

been presented; it modeled interactions between exploits 

and security conditions (Miehling et al., 2017). 

There are also challenges in monitoring insiders' 

behaviors. For example, collecting and analyzing massive 

logs are challenges for log auditing systems. The hidden 

Markov chain was introduced in a log auditing system for 

recording behaviors of users in the chain of time series; an 

improved hidden Markov model was proposed to 

construct a dynamic transformation of network behaviors. 

The accuracy of the algorithm based on the improved 

model has been increased and the performance of the 

overall audit system has been improved (Liu et al., 2018). 

The combination of intrusion detection and continuous 

user authentication is an effective method of improving 

security performance in high-security mobile ad hoc 

networks (MANETs). A distributed optimal scheme for 

the combination of intrusion detection and user 

authentication has been developed (Bu et al., 2011). 

Intrusion detection was modeled as sensors to identify the 

system security state while multi-modal biometrics were 

utilized for authentication. The whole system was formulated 

as a Partially Observed Markov Decision Process (POMDP); 

hidden Markov model scheduling algorithms that are based 

on the dynamic programming method were used to derive an 

optimal scheme (Liu et al., 2009). An issue of mobile data 

offloading with an architecture of mobile cloud computing 

was studied. Mobile data were delivered by Wi-Fi or cellular 

and Device-to-Device (D2D) communication networks in 

the study. Part of cellular data traffic was offloaded through 

the D2D network and WiFi. The issue of data offloading was 

formulated as an MDP with a finite horizon. The issue was 

solved at a minimal total cost using a hybrid offloading 

algorithm (Liu et al., 2017). 
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A game-theoretic method deals with both a defender’s 

and an attacker’s behaviors in the analytics of security. It 

also provides a high-level direction for the overall 

optimization of IDS and the optimization lies in three 

aspects: IDS configuration, defense resource allocation, 

and countermeasure selection (Kiennert et al., 2019). An 

approach to automatic intrusion response, called the 

response and recovery engine, has been proposed based 

on the strategy of a game-theoretic response. Optimal 

actions of network-level response were decided through a 

game-theoretic optimization process in which the RRE 

tried to maximize its benefits (Zonouz et al., 2013). Both 

the defender and the attacker are learning about each 

other. The defender can expel the attacker as soon as the 

attacker is detected or wait to know more about the attacker. 

The more knowledge the defender achieves, the easier the 

defender to prevent the attacker now or in the future. The 

knowledge of a defender can be the attacker’s objectives, 

attack methods, estimated technical level of the attacker, etc., 

(Bao and Musacchio, 2009). An optimal decision or action is 

often required in the intrusion process that indicates whether 

to expel the attacker and when to expel it. 

The objective of this research is to conduct data analytics 

and achieve optimal decisions for the cyber security of an 

information system based on an MDP model, validate the 

model by comparing analytics results obtained using various 

algorithms and predict analytics results using various 

parameters of the transition probability and the transition 

reward or the transition cost. The R language and its 

functions are used to help data analytics.  

Materials and Methods 

Markov Decision Process and Algorithms 

An MDP is well-defined using a tuple <S, A, P, R, > 

(Mohri et al., 2012; Alsheikh et al., 2015; Chen et al., 2016): 

S is the set of states; A refers to the set of actions; P represents 

the matrix of the transition probability that expresses a 

transition from the state s to the state s'(s  S, s'  S) after the 

action a (a  A); R refers to the immediate reward due to the 

action a; and  (0 <  < 1) is the discounted factor of the 

reward. Solving an MDP is often the process of finding 

optimal actions or an optimal policy to minimize the 

expected total cost or maximize the expected total reward. 

Policy Iteration (PI), Value Iteration (VI), and Q-

learning are often utilized to find an optimal policy for an 

MDP. Analytics results based on the algorithms of the 

three methods are often remarkably different or there is a 

convergence problem during iterations if the created MDP 

model is not practical due to unsuitable model parameters 

or an incorrect model structure. Thus, the three methods 

are employed in this research; results are compared to 

verify whether the MDP model is valid or not. 

PI tries to find a better policy compared to the previous 

one. The iterative process of policy evaluation and policy 

improvement is stopped until two continuous policy 

iterations result in the same policy, indicating that an 

optimal policy is achieved. The policy iteration is 

described in Algorithm 1 (Otterlo and Wiering, 2012; 

Sutton and Barto, 2018). P(s, a, s') is the transition 

probability. R(s, a, s') is the immediate reward due to a 

transition from state s to state s' after action a. V(s) and V(s') 

are the expected total reward of s and s', respectively. (s) is 

an optimal policy of s. V(s) is calculated using the equation: 

( )
'

( ) max ( , ( ), ') ( , ( ), ') ( ') .a s
V s P s s s R s s s V s  = +   is the 

value difference between two successive iterative steps.  

is the tolerance (a very small positive number). 

 

Algorithm 1: Policy iteration 

1 Initial policy 

 Choose an initial policy arbitrarily for all s  S 

 V(s)R and (s) A 

2 PI (policy evaluation) 

 Repeat 

   0 

 For each s  S 

 vV(s) 

 '
( ) max ( , ( ), ')( ( , ( ), ')a s

V s P s s s R s s s     

 ( '))V s+
 

 ( )max , ( )V s v   −  

 Until  <  

3 Policy improvement routine 

 For each state s 

  '
( ) ( ( , , ') ( ( , , ')a s
s argmax P s a s R s a s    

 ( ')))V S+
 

4 Stopping rule 

 If a policy is stable, then stop; else go to step 2 

 

The optimal policy of the MDP can also be achieved 

based on VI (Otterlo and Wiering, 2012; Zanini, 2014). VI 

of each state uses the following equation to compute 

( )
'

( ): ( ) max ( , ( ), ') ( , ( ), ') ( ') .a s
V s V s P s s s R s s s V s  = +  A 

stopping criterion for VI is employed to assess the 

convergence during iterations. The criterion is: The 

value difference  between two successive steps of 

iterations is less than the tolerance . Algorithm 2 

shows the value iteration process. 

Q-learning (Liu et al., 2017; Zanini, 2014) allows an 

agent to learn a Q-value function that is an optimal action-

value function. It can be employed to solve a discounted 

MDP. Specifically, it is used to compute the expected total 

reward (or cost) and find the optimal policy in this study. It 

can be used to perform data analytics and simulation of an 

MDP with the discounted value of  over an infinite planning 

horizon if the number of iterations to perform is large 

enough. A Q-learning algorithm is shown in Algorithm 3. 
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Q(s, a) is the action-value function.   (0, 1) is the learning 

rate and it is often chosen to be decreased appropriately, e.g., 

1/ ( 2)n = +  (n is the iteration step number or the epoch 

number). The iterative process and the Q-learning update 

continue until the final step of the episode. The best action at 

state s is chosen according to the optimal policy (s). 
 

Algorithm 2: Value iteration 

1 Initialization 

 Select V(s) arbitrarily (e.g., V(s) = 0 for all s  S) 

2 Value iteration process 

 Repeat 

    0 

  For each s  S 

  v  V(s) 

 '
( ) max ( , ( ), ')( ( , ( ), ')a s

V s P s s s R s s s    
 +V(s')) 

   max (, |V(s)-v|) 

 until  <  

3 Output the optimal policy & the maximal V(s). 

 

Algorithm 3: Q-learning 

1 Initialization 

 Initialize Q(s, a) arbitrarily (e.g., Q(s, a) = 0, s  

S, a  A) 

2 Iterative process and Q-learning update 

 Repeat 

  For each s  S 

 '
( , ) ( , , ')( ( , , ') ( '))

s
Q s a P s a s R s a s V S +  

  Q-learning update is as follows: 

 ( , ) (1 ) ( , ) [ ( , , ')Q s a Q s a R s a s  − +   

  
max ( ', )]

a
Q s a+

 
 until the final step of the episode. 

3 Output the optimal policy & the maximal V(s). 

 

An MDP Model of an Information System and the 

Structure of the Model 

The information system has the following states: State 

1—no attacker is connected to the system; state 2—an 

attacker is connected to the system, but it has not been 

detected, and state 3—the attacker is detected. The defender 

needs to make a decision: Wait (no action) or expel. After 

an expelling action, the system will return to state 1. 

We have created an MDP model of the information 

system. The state transitions of the three states of the two 

decisions are shown in Fig. 1. 

State Transitions and Rewards 

A transition between states in the MDP of the 

information system depends upon the decision and there 

are two main probabilities p
12

 and p
23

. p
12

 is the 

probability of a transition from state 1 (no attacker's 

connection) to state 2 (connected). p
23

 is the probability of 

a transition from state 2 to state 3 (detected). There is not 

any transition from state 1 to state 3 directly; there is not 

any transition from state 3 to state 2. The transition 

probability from state 3 to state 1 is 0 for decision 1; it is 

1 for decision 2. The probability matrix of the state 

transition P
d
 and the reward matrix R

d
 for the two 

decisions are expressed as follows: 

 

1) P
d
 and R

d
 for decision 1 are: 

 

12 12

23 23

1 0

0 1

0 0 1

d

p p

P p p

− 
 

= −
 
  

 (1) 

 

12

22 23

33

12

22 23

33

0 0

0

0 0

0 0

0

0 0

d

r

R r r

r

c

c c

c

 
 

=  
 
 

 
 

=  
 
 

 (2) 

 

where, r
12

, r
22

, r
23

, and r
33

 represent a reward (a negative 

value of a cost in this study) due to a transition from one 

state to another one, respectively. c
12

 is the cost due to the 

transition from state 1 to state 2 and c
23

 is the cost from 

state 2 to state 3; c
22

 and c
33

 are costs due to self-

transitions. 0 indicates zero cost for a self-transition or no-

state transition (Fig. 1). 

 

2) P
d
 and R

d
 for decision 2 are: 

 

12 12

23 23

1 0

0 1

1 0 0

d

p p

P p p

− 
 

= −
 
  

 (3) 

 

12

22 23

31

12

22 23

31

0 0

0

0 0

0 0

0

0 0

d

r

R r r

r

c

c c

c

 
 

=  
 
 

 −
 

= − − 
 − 

 (4) 

 

where, c
31

 is the cost due to a transition from state 3 to 

state 1. 
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(a) 

 

 
(b) 

 
Fig. 1: State transitions of two decisions: (a) decision 1 (wait) 

and (b) decision 2 (expel) 
 

Results  

Data Analytics over a Finite Planning Horizon 

Let p
12

 = 0.2, p
23

 = 0.3, c
12

 = 1, c
22

 = 3, c
23

 = 2.5, c
33

 = 

4, c
31

 = 2. Substitute the data into Eq. (1)-(4), and the 

values of P
d
 and R

d
 for various decisions can be computed. 

P
d
 and R

d
 for decision 1 are: 

 

0.8 0.2 0

0 0.7 0.3

0 0 1

dP

 
 

=
 
    

 

0 1 0

0 3 2.5

0 0 4

dR

− 
 

= − −
 
 −   

 
P

d
 and R

d
 for decision 2 are: 

0.8 0.2 0

0 0.7 0.3

1 0 0

dP

 
 

=
 
  

 

 

0 1 0

0 3 2.5

2 0 0

dR

− 
 

= − −
 
 −   

 

Expected total costs of the states are calculated 

using the VI algorithm over a 6-step horizon with and 

without a discount, respectively. The rewards (the 

negative values of the costs in this study) at the end of 

the horizon are set to zero for states for the beginning 

of the backward recursion of the value iteration. 

Computation results are shown in Tables 1 and 2. 

C1(n), C2(n), and C3(n) are the expected total cost of 

state 1, state 2, and state 3 at step n, respectively. The 

calculated optimal policy is d (1, 1, 2), indicating that 

decision 1, decision 1, and decision 2 are made on state 

1, state 2, and state 3, respectively. The data analytics 

in this study is finished using R language. 

Data Analytics over an Infinite Planning Horizon  

The above data (p
12

 = 0.2, p
23

 = 0.3, c
12

 = 1, c
22

 = 3, c
23

 

= 2.5, c
33

 = 4, c
31

 = 2) are utilized too in the analytics of 

the information system with  = 0.9 over an infinite 

planning horizon. PI and VI are used in the data analytics 

and the obtained optimal policies in both two methods are 

d (1, 1, 2). A comparison of the expected total costs of the 

two methods and Q-learning is shown in Table 3 to verify 

whether the MDP model in this study is valid or not.  

 
Table 1: Expected total costs of three states obtained using a VI 

algorithm over a 6-step planning horizon (no discount, 

 = 1) 

Epoch n C1(n) C2(n) C3(n) 

0 5.934 11.618 6.603 

1 4.603 10.258 5.291 

2 3.291  8.854 4.033 

3 2.033  7.322 2.930 

4 0.930  5.445 2.200 

5 0.200  2.850 2.000 

6 0.000  0.000 0.000 

 
Table 2: Expected total costs of three states calculated using the 

VI algorithm over a 6-step planning horizon (the 

discount  = 0.9) 

Epoch n C1(n) C2(n) C3(n) 

0 4.314 9.547 5.176 

1 3.529 8.744 4.401 

2 2.667 7.823 3.575 

3 1.750 6.705 2.771 

4 0.857 5.186 2.180 

5 0.200 2.850 2.000 

6 0.000 0.000 0.000 
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Gauss-Seidel’s algorithm is employed in VI for an 

improved convergence speed. In Q-learning, the learning 

rate  is set to 1/ 2n + in this study; n is the number of 

iterations to perform. The results of PI and VI are almost 

the same and they are close to the results of Q-learning, 

which indicates that the parameters of the MDP are 

suitable and the MDP model is valid. 

Analytics of the Information System with Various 

Parameters of the Transition Probability 

Analytics over an infinite horizon with various 

parameters of the state transition probability p
12

 and p
23

 is 

performed based on policy iteration. The following data 

are utilized in the analytics: c
12 = 1, c

22 = 3, c
23 = 2.5, c

33 = 

4, c
31 = 2,  = 0.9 and p

23 = 0.3. Expected total cost C = 

(C1, C2, C3) for the three states at various p
12

 (0.1, 0.2, 

0.3, 0.4, and 0.5) is analyzed and the result is shown in Fig. 

2. All the values of C1, C2 and C3 are increased and C1 

and C3 become very close with the increase of p
12

. 

Let c
12

 = 1, c
22

 = 3, c
23

 = 2.5, c
33

 = 4, c
31

 = 2,  = 0.9 and 

p
12

 = 0.2. Expected total cost C = (C1, C2, C3) at various p
23

 

(0.1, 0.2, 0.3, 0.4, and 0.5) is shown in Fig. 3. All the values 

of C1, C2, and C3 are increased and the difference between 

C1 and C3 becomes larger with the increase of p
23

. 

Analytics of the Information System with Various 

Parameters of the Transition Cost 

Let   = c
22

/c
12

, 𝜇 = c
23

/c
12

 and 𝜑 = c
31

/c
12

. Analytics 

over an infinite planning horizon with various parameters 

of the transition cost is performed based on policy 

iteration. The following data are used: p
12

 = 0.2, p
23

 = 0.3, 

c
12

 = 1, c
23

 = 2.5, c
33

 = 4, c
31

 = 2 and  = 0.9. Expected 

total cost C = (C1, C2, C3) at various  (1.0, 1.5, 2.0, 2.5, 

and 3.0) is shown in Fig. 4. The greater the value of , the 

larger the value of expected total cost C. 

Let p
12

 = 0.2, p
23

 = 0.3, c
12

 = 1, c
22

 = 3, c
33

 = 4, c
31

 = 2 

and  = 0.9. Expected total cost C = (C1, C2, C3) at 

various s (2.0, 2.5, 3.0, 3.5, and 4.0) is shown in Fig. 5 

which illustrates a similar trend to Fig. 4. 
 

 
 
Fig. 2: Expected total cost C (C1, C2, C3) of three states at 

various p12   

 
 
Fig. 3: Expected total cost C (C1, C2, C3) of three states at 

various p23 

 

 
 
Fig. 4: Expected total cost C (C1, C2, C3) of three states at 

various  

 

 
 
Fig. 5: Expected total cost C (C1, C2, C3) of three states at 

various  
 

 

 
Fig. 6: Expected total cost C (C1, C2, C3) at various  
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Table 3: Expected total costs of three states over an infinite planning horizon in the information system based on various 

methods ( = 0.9) 

Methods C1 C2 C3 

PI 11.4300 16.6689 12.2870 

VI 

(Gauss-Seidel’s algorithm) 11.4299 16.6688 12.2869 

Q-learning (n = 90000) 11.5869 16.5012 12.4182 

Q-learning (n = 95000) 11.5025 16.5658    12.3215a 

 
Let p

12
 = 0.2, p

23
 = 0.3, c

12
 = 1, c

22
 = 3, c

23
 = 2.5, c

33
 = 

4,  = 0.9. Expected total cost C = (C1, C2, C3) at various 

 (2, 3, 4, 5, and 6) is shown in Fig. 6. Each value of 

expected total cost C is increased with the increase of . 

C3 is close to C1 in the beginning, but it gradually 

becomes close to C2 when  increases. 

Discussion 

Compared with Bao and Musacchio’s published 
research and results, it is easier and more convenient to 
employ the methods in this study, perform data analytics 
and obtain desirable results using R language and its 
functions. It is easier to investigate the effects of various 
parameters on the expected total cost C (C1, C2, C3); 
therefore, the parameters are more controllable. 

There are limitations to this study. Firstly, the state of 
the information system is completely observable in the 
created MDP model in this research. But in many real 
applications, some evidence may be deterministic while 
others may not be completely observable. This partially 
observable status leads to the uncertainty of the system state. 
For example, no evidence of an attack in the information 
system may mean two possible situations: (1) No attacker is 
connected to the system; (2) an attacker is not detected due 
to the limited capability of the defender and the system.  

Secondly, five parameters are used to describe 

transition costs in the paper. They are: c
12

, c
22

, c
23

, c
31

 and 

c
33

. We will try to reduce the number of parameters, which 

will further simplify the MDP model. This is our ongoing 

research as well as future work. 

Thirdly, a defender and an attacker try to learn more 

about each other during an intrusion process. The 

knowledge of the attacker regarding the defender and the 

information system is often increased with time during the 

intrusion process. The knowledge of the defender 

regarding the attacker helps to detect and expel the 

attacker in time, which will finally improve the 

cybersecurity of the information system. The evolution of 

their knowledge indicates the process of learning that is a 

dynamic process. The five parameters for transition costs 

and two main probabilities p
12

 and p
23

 are used in the 

paper to describe the learning process and the 

intrusion/prevention process. It is better to create an 

intelligent model with the capability of reinforcing 

knowledge representations and the function of 

quantifying the dynamic learning process. 

Conclusion 

Intrusion detection and intrusion prevention are very 

important components of the cybersecurity of an 

information system. The intrusion detection process is 

often a learning process that both a defender and an 

attacker detect and learn about each other. An optimal 

decision deals with whether to expel the attack and 

when to expel it to achieve a minimum of the expected 

total cost for each state of the information system. Data 

analytics for the cybersecurity of the information 

system has been completed based on the created MDP 

model using R language and its functions. The results 

of PI and VI (with Gauss-Seidel's algorithm) are almost 

the same and they are very close to the results of Q-

learning (with various iteration step numbers). This 

demonstrates the validity of the model and the 

effectiveness of methods and algorithms in this 

research for achieving an optimal policy that minimizes 

the expected total cost. The algorithms are effective 

and efficient in the analytics over a finite planning 

horizon or an infinite horizon (for a discounted MDP) 

at various transition probabilities and transition costs. 

Future topics include (1) analytics of the 

information system based on a partially observable 

Markov decision process (POMDP); (2) the reduction 

of the parameters of transition costs to further simplify 

the MDP model; and (3) further research on the 

knowledge evolution of the attack and the defender to 

create an intelligent model with the capability of 

reinforced knowledge representations and the function 

of quantifying the dynamic learning process. 
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