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Abstract: The paper presents in detail a method of calculating the
forces acting on a 2T9R type robot. To determine the reactions (forces
in the kinematic couples), one must first determine the inertial forces in
the mechanism to which one or more useful loads of the robot can be
added. The torsor of the inertia forces is calculated with the help of the
masses of the machine elements and the accelerations from the centers
of mass of the mechanism elements, so the positions, velocities, and
accelerations acting on it will be determined, i.e., its complete
kinematics. The calculation method applied by a Math Cad program
intelligently uses data entry through the If Log logic function so that the
calculations can be automated. So, the effective automation of the
calculation program is done exclusively through the If Log functions
originally used in the paper.
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Introduction

Robots have always fascinated us, but today we use
them massively, in almost all industrial areas,
especially where they work hard, repetitive and tiring,
in  toxic, chemical, radioactive environments,
underwater, in the cosmos, in dangerous
environments, on mined lands, in hard-to-reach areas,
etc. It can be said once again that, just as software and
microchips have helped us to quickly write various
useful programs and implement them directly, so
robotics has made our daily work much easier. Thanks
to robots, automation is almost perfect today, product
quality is very high, the manufacturing price has
dropped a lot, you can work in continuous fire, people
have escaped hard work, tiring, repetitive, in toxic
environments and now can treat other problems more
important, such as design, scientific research, to work
only 5 days a week with high income and, in the
future, due to the massive implementation of
increasingly modern robots with increased capabilities,
man will reach the work week only 4 days.

An even greater increase is expected in the number of
specialized robots implemented in large factories and
factories around the world.

Due to the massive use of industrial robots, the
diversification in this field has gained high levels. For
this reason, we want to study in this study a new robot
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model, 2T9R, extremely complex in movements, useful
in any type of work, and a versatile robot, which can
weld, cut, process different parts, assemble them, or
manipulate them from one working strip to another and
in the same way, he can also paint the different machined
components before their assembly. The robot has various
advantages due to its complex mode arranged since the
design and will be able to easily adapt to any type of
automated manufacturing cell. For this reason and
because it is an original one and has not been studied
before, we want that in this study we review its study
completely with the determination of all the forces that
act it and that appear within it, the one that it also
requires a complete kinematic calculation (Anderson,
1997; CEUP, 2018; Garcia, 2020; Rana, 2020; Garfo et al.,
2020; Kumar and Sreenivasulu, 2019; Mishra and
Sarawagi, 2020; Welabo and Tesfamariamr, 2020;
Antonescu and Petrescu, 1985; 1989; Antonescu et al.,
1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000g;
2000b; 2001; Aversa et al., 2017a; 2017b; 2017c; 2017d;
2016a; 2016b; 2016¢; 2016d; Ayiei, 2020; Brewer, 1991;
Chilukuri et al., 2019; Cao et al., 2013; Dong et al., 2013;
Saheed et al., 2019; Riman, 2019; Matthews and Yi,
2019; Dwivedi et al., 2019a; 2019b; Eremia, 2020;
Franklin, 1930; Hanrahan, 2014; He et al., 2013; Hertel,
2017; Komakula, 2019; Langston, 2015; 2016; Lee, 2013;
Lin et al., 2013; Liu et al., 2013; Padula and Perdereau,
2013; Perumaal and Jawahar, 2013; Petrescu, 2011;
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2012; 2019a-v; 2020a-g; Petrescu and Petrescu, 2019a-f;
1995a-b; 1997a-c; 2000a-b; 2002a-b; 2003; 2005a-€;
2011a-c; 2012a-b; 2013a-e; 2014a-h; 2016a-c; 2020;
Petrescu et al., 2007; 2009; 2016; 2017a-ak; 2018a-w;
2020; Petrescu and Calautit, 2016a-b; Dekkata and Yi, 2019;
Fahim et al., 2019; El Hassouni et al., 2019; Riman, 2018;
Nacy and Nayif, 2018; Kortam et al., 2018; Welch and
Mondal, 2019; Eissa et al., 2019; Younes et al., 2019;
Svensson et al., 2004; Rahman, 2018; Richmond, 2013;
Kisabo et al., 2019a; 2019b; Kisabo and Adebimpe, 2019;
Kosambe, 2019a-d; Sharma and Kosambe, 2020; Oni and
Jha, 2019; Chaudhary and Kumar, 2019; de Lima et al.,
2019; Babu et al., 2019; 2020; de Mota Siqueira et al.,
2020; Tumino, 2020; Mishra, 2020a; 2020b;
Brischetto and Torre, 2020; Vladescu, 2020).

Materials and Methods

The present study will start with a description of the
2T9R robot proposed to be analyzed, in terms of the
forces acting on it. The 2T9R mechanism (Fig. 1) has a
constructive model based on a bimobile kinematic chain
having three independent contours (Fig. 2a) obtained
from the bicontour chain of the 2T6R mechanism.

The direct structural model (Fig. 2b) consists of
two initial active modular groups GMAI (A, 1) and
GMAI (G, 8) which constitute the linear motors that
drive it, and two passive modular groups, one of the
types of the GMP2 triad (2, 3,4,6) and the other of the
GMP1 dyad type (5,7). The connection of the modular
groups for the direct model is shown in Fig. 3.

The direct structural model (Fig. 2b) and the
connection of the corresponding modular groups (Fig. 3)
are used to determine the reaction torsor in each
kinematic coupling using the kinetostatic principle.

To study the main plane mechanism of the 2T9R
robot, its kinematic elements, kinematic torques, and
positioning angles of the elements that also have rotation
are initially established (Fig. 4).

For the kinetostatic analysis (determination of the
forces in the mechanism) the centers of mass marked with
the letter T (Fig. 5) are positioned as follows: O = TS5 =
T4; B=T2 =T3; E = T6; F = T7. Their placement does
not influence the algorithm for calculating the components
of the reaction torsion in the kinematic torques.

It is considered a single external force RT acting
on the system neglecting other external forces (for
example-gravitational forces). This simplification
brings some peculiarities in the form of terms from
the calculation algorithm without restricting its
generality. The forces of weight are not recommended
to be introduced in the sizing calculations because
their influence is sometimes by addition and
sometimes by decrease it being therefore opposite and
having negative effects on the sizing of a mechanism.
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On the other hand, in large (large) robots, if they still
work fast (at high speeds), the inertial forces (internal
forces, which arise even in the mechanism due to its
masses) are considerable and much higher than those
weights that automatically become negligible.

Determination of Reactions in the Kinematic

Torques of the Triad (2,3,4,6)

The study of forces is always processed inversely to
the kinematic one, i.e., not from the motors to the final
effector element, but inversely, from the modular group
furthest from the motors to them. For this reason, the
force calculations start on the triad (2,3,4,6) from Fig. 6.

To determine the unknown forces, the reactions
(from the kinematic couplings), the following calculation
relations are written (from 2 ROx is made explicit,
from 3 RAX, which is introduced in relation 1 and |
am obtained and in relation 4 and Il is obtained, where
I and Il represent two linear equations with two
unknowns that make up a linear system that can be
solved immediately by Kramer I11):
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Fig. 3: Electronic or wiring diagram (block diagram) of the
mechanism

Fig. 1: The mechanism 2T9R

(XTk. YTk)

Fig. 4: Determining the kinematic elements, the kinematic
torques, and the angles that position the elements that
also have a rotation

Cupla activa

Fig. 5: Positioning the centers of mass T of all the elements of
Fig. 2: Structural scheme of the mechanism the mechanism
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Y12=Ray

Yoa=Roy

Ys6=REey

iy
FT

X56=REx

RT

Fig. 6: The forces on the triad (2,3,4,6). The known forces are shown in blue; the reactions (unknown forces in the kinematic

couplings) are drawn in green

From (5) results relation (V) which determines Rex
and from (6) results in the expression (VI) which
generates Rey:
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With (IV) on determines Rox Si Rax:

_ ML+R<§-(XO—XC)

R
- (YO_YC) av)
R* = M;+RX'(XA_XB)
" (yA_yB)

Re =—(Rs + Ry + Fis + %) V)
RY =—(Ry+RI+F%+FY+R;) (V1)

Can now write the next equations (7-15):

Y RO =0=R: =X, =—(R3) = Xy =—X5 =R} (7
S FEY=0=R =Y, =—(R})= Y=Yy =R (8)
D EP =0=Ry =X, =—(RU+ R )= Xy ==X, 9)
S FP=0=R =Y, =—(RI+FY) =Y =Y, (10)

D FP =0=Ry = X =—(RE+ ) = Xgy =Xy (11)
S FEO=0=RI=Y=—(RE+FS+R )= Y=Y (12)
X =—=Xos =—R;Y,0 ==Y, =R (13)
Xy ==Xy, = —RY,, =Y, =—R! (14)

Xos =—Xg =RV =Yg =—R¢ (15)
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To perform the triad calculations (2,3,4,6) it is
necessary to present briefly the expressions by which the
known inertial forces, inside the mechanism, due to the
masses of the component elements (16-20) are
determined by calculations:

Mjg = —JT4 &y = _‘]C(JA) &y (16)
Fri: =-m,-X;
Fley = —mz : yB (17)
M) =-39 ¢,
R =M%
FTLy =-m;- Vg =
Mé = —JS) ° 53
R, =R + R =—(m,+m,)- %
R F 4R = e m) 5, 4
MM M98, 390
P =M, %
FTIEy =-mg- Ve 0
Mg ==3¢ &,

Determination of Reactions in the Kinematic
Couplings of the Dyad (5,7)

Dyad 5.7 has the following charges (Fig. 7), where
the already known forces are shown in blue and the
unknown ones in green, i.e.,, the reactions in the
kinematic torques of the dyad, which will be determined.

Can write the relations 21-22:

ZMS‘S):O (21)
M;+M;_Ré'(yG_YD)_Ré'(Xo_XG)+FTIX7'(YO_YF)_FTiyv'(Xo_XF)
7X55'(yE7y0)+Y65'(XE7XO)=O

>M{P=0 22)
M; -R§ '(YG _yF)+Ré '(XG _XF):O

From relation (22) one explicitly reaction Rg, (24)
which is introduced in relation (21) obtaining directly the
value Rex (23) and then Rey (24):

R A e e 1)

(yo’ya)‘(xe’:r)*(yr;’yF)'(Xe’Xo)

R: =
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X

RG(YG_YF)_M;

RY = o) =Y, =-Y,, =—R! (24)
Now, one write the relations (25-30):
S EP=0=R =Xy, =—(RE+ R ) = X ==X, (25)
S FEP=0=R! =Y, =—(RA+RY) =Y, =Y, (26)
D FP =0=Xg5 =—(Xgs + Xo5) =RE+RE (27)
DR =0=Yp =—(Yes + Yy ) = R+ RY (28)
X =—R% ==X =—(RE+RY) (29)
Y,, =—R" =-Y,. = —(R! +RY) (30)

The torsor of the inertial forces on dyad 5,7 is
determined by the relations (31-32):

Mi=—30 5, (31)
FTI: =-m, - X
FTI7y =-m; -y, (32)
Ml =-3"¢,

Determination of the Reactions in the Kinematic
Torques of the Motor Element 8 and Calculation of
the Driving Force Fm8

Figure 8 shows all the forces acting on the linear motor
element 8, in the rotation torque G (between elements 8
and 7) and the translation torque T8 (between elements 8
and 0) materialized by the guideline between the motor
piston 8 and its axis of vertical symmetry coinciding with
the guide 0, considering as the point of actuation of the
forces 08 the center of mass T8. The forces in the torque are
the x-axis and y-axis projections of the already known R78
reaction (thus shown in dark blue). Also known as the
torsion of the inertial forces on element 8, represented here
only by an inertial force along the guide axis y (its action is
concentrated in the center of mass T8), there is no
movement on the x-axis acceleration and automatic and
force inertial on this x-axis is canceled and the inertial
moment is also canceled permanently because there is no
rotational motion, the angular and automatic acceleration
and the inertial moment being canceled.

The driving force that moves the linear motor element 8
also acts in the center of mass. Practically except for the
reaction in coupling G all other forces act on the center of
mass T8. Relationships can be written (33-36):
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FTiBy =-my- Y (33)

ZFX(B) =0 :>X78 + N08 =0= N08 = _x78 = NUB = Ré (34)

SE® =0=F, + Y+ FY =0= Fy =Y, - FY = F,, =R, - F (39)

ZMT(SS) :0:>M087X78.(y(37yTg):OZ>M08:RGX '(yTB *ye) (36)

It is specified here that if the points G and T8
coincide the moment M08 is canceled together with the

phase shift ((yTB ~¥s)= 0) .

The procedure is then repeated for engine 1 (Fig. 9,
relations 37-40).

Determination of the Reactions in the Kinematic
Torques of the Motor Element 1 and Calculation of
the Driving Force Fm1

F‘rily =-m-y, (37)

ZFX(D :03x21+N01=O:> N01:_X21:> N01:R:\ (38)

SFO=0=F, +Y, +FY 0= F, =Y, - F = F,, =R, - F (39)
ZMT(? 203M01*X21'(VA*VT1):03 Mo, =R} '(YT1 7yA) (40)

It is specified that if points A and T1 coincide the
moment MO1 is canceled together with the phase

ahife (%5 79)=0)

Remarks: Any torque introduces a reaction that
decomposes along the coordinate axes (in the plane) into
two components along the x and y axes, while each
translation torque introduces a reaction perpendicular to
the torque guide axis and a moment.

Any reaction in any pair is easily determined by
having the modulus (size) given by the radical in the sum
of the squares of the two scalar components of the
reaction and its position (the direction of the vector
defining it) is given by an alpha angle measured from the
horizontal which passes through the origin of the
reaction (the respective coupling) and which has the
trigonometric functions described by the two-component
scalar and the vector of the respective reaction.

Determination of Robot Speeds and Accelerations

The kinematic calculation of the robot's speeds and
accelerations is done only by direct kinematics as it is
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operated in reality, while the positions can be
determined in two distinct situations, by direct
kinematics when we are interested in the normal
operation of the robot, finding the workspace. and the
trajectories described by the effector element (or other
component kinematic couplings), or by using inverse
kinematics when the positions that the final element
(effector) must occupy successively are already
imposed and the successive positions of the driving
elements must be determined, for this robot the linear
motors 1 and 8.

Determination of Robot Speeds and Accelerations
to the Dyad 5,7

As stated, only direct kinematics is used to determine
speeds and accelerations, so the calculations from dyad
5.7 are started (Fig. 10).

Write the calculation relationships in the system (41):

The scalar coordinates, velocities, and accelerations
of points G and O are known, with the help of which,
using the equations of the two circles formed, the scalar
coordinates of point F are determined. Then easily
determine the angles FI5 and FI7 with their derivatives,
5,5, 07,E7.

(XG’XF)ZJr(yG’YF)Z=iz32()(0’XF)'(XG’XF)+2(ys’yF)'(YG’YF)=O
(XF7X0)2+(yF7yO)2: fz;xo:YO:OQZXF‘XFJFZYF'VFQYF :7X;XF
3

X, = (YG_VF)'yF'YG ’0)7ZYG_YF:€:yc_yp_ah(xa_)'(p)
(Xefo)‘ny(ye’YF)'xF Xe ~Xe Xs ~Xe
_(ys_yp)'xp'ye 2(05:&:85:%:_0)5‘5(»:
X =% ) Ye = (Yo = Y& ) Xe Xe Xe
(YG_YF).yFAYG+(yG_yF)AYFAYG-F(YG_yF)AyF‘yG _
(XG’XF)'YF’(YG’YF)'XF
XF[(XG_XF)'YF_(YG_YF)'XF‘*'(XG_XF)'YF _(YG_yF)'XF]
(%6 =% ) Ye = (Yo = ¥ )%
X =V ¥ K
Ye
Xg =€-C0S¢, = X, = —€-SiNg, - 0, = X, =—-C0S¢ - @’ —e-Sing, - &

(41)

YF:(

Re =

Ve =

Ve =€-SiNg = Y =€-C0S¢, - 0 = Y =—€-Sindy -l +e-CoSd - &

Determination of Speeds and Accelerations in the
Triad 2,3,4,6

In figure 11 you can see the positions with the sizes
characteristic of triads 2,3,4,6 starting from which the
relations of positions, speeds, and accelerations are written.

Position relations being considered already solved
and all known position values (solved separately by
direct or inverse kinematics as required), derived
directly twice and thus obtaining triad speeds and
accelerations (2,3,4,6), Eq. (42-52):
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X =d-cosg, %, =—d-sing, - @, [X; =X, —a-CoS¢, [Xy =X, +a-sing, w,
{yc:d<sin¢4{yc:d~cos¢4~w,, {ya:y,\—avsingéz{y'ﬁ:)’/A—a~cos‘.¢2~m2

Xe = Xg +bCosg, (X, =% —bsing,w, [-dsing,w, = X, +asing,w, —bsin g, (42)
{yc =Yg +bsin¢3{yC =Yg +bcos¢3w3{d COS ¢, = Y, —acosg,w, +hcosgm,
Xp = Xg —CCOS¢; [ Xy = Xg +CSING@, X =X, + gCOS¢; X = X, — gSin gy
{yn:yafcsin%{ynzy'rccos%wa{yg:yD+gsin¢s{y'E:S/D+QCOS¢5%
{XA—XE+a~sin¢2<a)z+c~sin¢3~wa:g<sin¢5»w5

Ya—Ye —@-COS@, - @, —C-COS¢, - 0, =—Q - COS ¢y - (0,

{—d -sing, - @, = X, +a-sing, - w, —b-sing, - o, | -cosg,

Ya—Ye —@-COS@, - @, —C-COS@, - w3 = —Q - COS s - @, | -SiN gy
(1):X,-C0Sg, + Y, -sing, +a-m, -sin(¢,—4,) +b- e, sin(4, - ¢4,)=0
(1) 2 (X4 — X )COS s + (Vo — Ve )SiNg, +aw, sin (¢, — ) + oy sin (¢, — ¢, ) = 0

{)‘(A—)'(E +a-sing,-w, +c-sing, -, = g -sing; - w, | -cos @,

(%, =X )cOSd +(V, — Ve )sing; + aw,sin (¢, — 4, ) + caysin (¢, — ;) =0
(1) [c-sin(g, - 4)1(N) - [-b-sin(¢, - 4)] = @, (44)
(1) [sin(¢, = g)1(11) - [-sin(¢, — g)] = @
o= b[(%, = X¢ )cos g, + (Y4 = Ve )singIsin (4, — 4, ) + c(X, o5 g, + Y, sin,)sin (4, — ;)
‘ a-[c-sin(g, —¢)-sin(¢s — ) + b-sin(, — ¢y ) -sin(, — 4,)]
[(%s = % )cosds + (Y = Ve )singy1sin (¢, — ¢, ) + (X, COS g, + Y, sing,)sin (¢ — ¢,)

{)‘(A-cos@+yA-sinq},,+a-ru2-sin(¢2—¢4)+b-az3-sin(¢4—¢3):0

@, = - - . -
[c-sin(g, - ¢,)-sin(¢, —4,) +b-sin(g, - ¢, ) -sin(4, - 4,)]
o = Yo =X, — 8- @, -COS(d, — ) +b- @, - COS(¢, — 4,)
e d
o = X% + Ve —Ya+2a- @, COS(¢s — ) +C- ;- COS(¢s — )
) =
9

{)‘(C =—dsin ¢,,a)4{)’<a =X, +asing,o, {XD =X, +Csing,o, {)‘(T =X, +hsing,a,
Yo =dcosgw, (Vg = Ya—ac0sga, (Vo =Yg ~CCOSEa; | Yr = Vo —heosga,

&, [acsing, — 4,)sin(d, — ) + absin(d, — d,)sin(g, — )] =

— 0, [accOS(d, — 4,)sin(ds — §)(@, - 0,) + acsin(g, — ) cos(d, ~#) (@) +  (45)
abcos(d, — 4,)SiN(d, — ), — ;) + absin(g, - 4,)c0s(d, — 4, @) +

[(%, %) 05 + (Xe — X,)Singy, + (5, — e )Sinds + (3, — Ve )05, osin(d, — ) +

[(%, — %) COSdh + (3, — V) SindIbCOS(d, — 4,)(@, — @,) + (%, O3 + §,,5in , —

X,SiN 60, + 0080, )CSIN(, — ) + (%, COS, + Y, 5in g, )CCos(ds — ) (@, — ;)

&, -[bsin(g, — ¢,)sin(g, — 4,) + csin(g, — ¢,)sin(¢, — 4,)] =

= w; -[bcos(g, — 4,)sin(d; — ¢,)(@, — @,) + bsin(¢; — 4,) cos(¢, — é)(w, — a5) +
CCOS(¢3 - ¢5)Sin(¢2 - ¢4)(a)3 - a}e) + CSin(¢a - ¢3)COS(¢4 - ¢2)(a)4 - a)z)] +
(RoCOSG, + ¥, SiNg, — X, SiN g0, + Y, COS $,00,) sin(s — ;) +

(XA COS¢4 + YA sin ¢4)COS(¢5 7¢2)(we - wz) + Sin(¢z 7¢4) '[(X-A - XE)COS% +
(Va = Ve)sing, + (ke — Xa)sin gy + (V5 — Ve ) COS g1 +

[(XA - XE)COS¢E + (YA - YE)Sin¢e]‘COS(¢z *@)(0}2 7(‘)4)

(46)

& -d=

= (¥, +asin g,o’ —acosg,s, —bsin g,o? +bcosge,)cosg, 47
(y,, — acos ,m, +bcosg,w,)sin g,, —sin g, (X, +acos g’ +asin g,e, —
bcosg,e? —bsinge,) — (X, + asin g,m, —bsin g,,) cos ¢,o,

. 48
= (X, — X +aC0S,ef +asing,e, +CCOSGw’ +Csinde,)sing, + ( )

(X, — Xe +asin g, +Csin g,e,) CoS g, + COS gy (Y — ¥, —asin g’ +
acos¢,e, — CSiN g’ +CCoSge,) — (Ve — Y, +aCOS @, +CCOS @, )SiN dco,

(49)

X, =-d-cosg, @ —d-sing, - &,
Yo =—d -sing, - +d-cosg, -,
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{XB =X, +a-Ccos¢, @ +a-sing, -z,

i =, +a-sing, -’ —a-cosg, - &,

Ko =Xz +0-COSghy -l +Q-Sing, - &
G . 2
Yo =Ve +0-sing; - —g-COSg - &,

% =X, +h-cosg, -l +h-sing, - &,

=
d-cosg, @, =Yy,—a-cosg, w,+b-cosg,-w,|-sing, (43) {YT =yD+h-Sin¢6-a)§—h~COS¢6~€e

Y87=Ray

Ysr=Rey /05=R0y

F=T7

x
FT7

Fig. 7: Forces of the dyad 5-7

AY78:—RGy

(50)

(51)

(52)

Y65=-Rey

X65=-REx

X78=-Rax

Fms

Fig. 8: Forces acting on the engine element 8
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AYz1:-RAy

X21=-RAx

Fm1

Fig. 9: Forces acting on the engine element 1

Go

Fig. 10: Direct kinematics on dyad 5.7: Speeds and
accelerations

Fig. 11: Kinematics of the triad 2,3,4,6

Results and Discussion

Table 1 gives the input data, more precisely the
known lengths of the mechanism (In the calculation
program used these lengths represent the constant
geometric parameters).

The point T located on the effector 6 (Fig. 1, 4-5)
describes a rectangular trajectory (Fig. 12). Its
characteristics are shown in Table 2.

The trajectory of the point T in Fig. 12 is described
by the relationships in Table 3.

The coordinates represent the input parameters for
the algorithm of the inverse positional model in Table 3.

Going through the connection of the modular groups
for the inverse structural model (Fig. 2b, 3) the algorithm
presented in Tables 2-3 allows the successive calculation
of the dependent parameters (Fig. 4), as follows:

o for the dyad RRR (5,6) -®5k (XTk, YTk), ®6k
(XTKk, YTk) can be seen in Fig. 13 [deg], as ®50k
(XTk, YTk), @60k (XTK, YTK)

o for the dyad RRR (3,4) -®3k (XTk, YTk), ®4k
(XTk, YTK) can be seen in the Fig. 14 [deg], as
®30k (XTk, YTk), @40k (XTK, YTK)

e for dyad RRT (1,2) -Yak (XTk, YTk) and @2k
(XTk, YTK) seen in Fig. 15, where

o P2k(XTk,YTk) in [deg] is ®20k(XTk,YTk)

o for dyad RRT (8,7) -YGk (XTk, YTk) and ®7k
(XTk, YTK) seen in Fig. 16, where

o  ®7k (XTk, YTK) in [deg] is @70k (XTK, YTK)

It is considered a single external force (technological
resistance) RTk that acts on the system neglecting other
external forces (for example-gravitational forces) and the
system of inertial forces. This simplification brings some
peculiarities in the form of terms from the calculation
algorithm without restricting its generality.

The external force RTk (Fig. 17) is considered constant
on the initial and horizontal portion of the trajectory of the
point T (Fig. 12) and is described by the relation (53):

RTk := if (k <10,20,0) (53)

Using the connection of the modular groups for the
direct structural model (Fig. 3) the passive module GMP2
(2,3,4,6), a 6R triad (Fig. 5, 6, 18) is analyzed in the first
stage, for which elaborated algorithm, relations (1-20).

Applying the calculation algorithm (1-20) for the
GMP2 triad (2,3,4,6) is determined reaction torsion
components, as follows:

e In the kinematic torque of E — X56k, Y56k from
Fig. 19

e In kinematic rotation couple from the point A —
X12 k, Y12 k from Fig. 20
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e In the kinematic rotation couple from the point B —

304022 320
X23 k=-X32k, Y23 k=-Y32k a0
e In the kinematic rotation couple from the point C —
X43 k =-X34 Kk, YA3 k=-Y34 k 292 : ' !
¢ In the kinematic rotation couple from the point D — 278 — VR S E—
X63 k =-X36 k, Y63 k=-Y36 k 264
e In the kinematic rotation couple from the point O — 40k
X04 k, Y04 k from Fig. 21 3 250
k
15 222 DL i B
15 37 IR
1.25 i 208 -‘_,-' ! ! -/ &
1 { ,o’-d e
075 194 Fn - — - . . - . -
| 180
xT 05 198.232 0 3 6 9 12 15 18 21 24 27 30
025 { 0 k 30
ka 0
-0.25 1 Fig. 14: Variation of angles FI3 and Fl4 considered in [deg]
05 - depending on the independent parameter k
-0.75 _/—\
09 1
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YTFARNE 0.79
866 o3 o
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0.777 0.76 MR IR IO O ' - S S -
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09 0.9 It 13 15
1 XTki XTFRAME
Fig. 12: The trajectory of the T-point, the end effector 105.33
124022 149
126 = . P =y )
112 -§~ — e !
~~'-‘
I W X ' $20k
4) K 84 —
660k
56 :
42 | | ] | | |
28 96.714 o6l |
14 . . . ! . . . . ! 0 3 6 9 12 15 18 21 24 27 30
0 k 30
18232 0536 g 12 15 18 21 24 27 30
0 K 30

Fig. 15: The variation of the parameter YA and the angle FI2
considered in [deg] depending on the independent

Fig. 13: Variation of angles FI5 and FI6 considered in [deg]
parameter k

depending on the independent parameter k
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Fig. 16: Variation of parameter YG and angle FI7
considered in [deg] depending on the independent
parameter k
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Fig. 17: The external force RTk is considered constant on the
initial and horizontal portion of the trajectory of the
point T
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Fig. 18: Passive module GMP2 (2,3,4,6), the triad 6R

6
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Y56¢
—e
3
o
0 |
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0 X56, X56rrame 20.596
6 |
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~
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Y56rRAMEM
0 15 30
0 k, FRAME 30
30
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—— 15
X 65\
G“ﬁ \u
Y56rram
0
0 15 30
0 k, FRAME 30

Fig. 19: Reaction torque in the kinematic rotation coupling of
E — X56 k, Y56 k on the GMP 2 modular group
(2,3,4,6), triad type 6 R
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Y12
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Y 12rarME P
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15

30
30

K,FrAME

Fig. 20: Reaction torque in the kinematic torque of A — X12
k, Y12 k on the GMP 2 modular group (2,3,4,6), 6 R
triad type

The next module in the modular group connection of
the direct structural model (Fig. 7) is GMP1 (7.5) shown
in Fig. 22 a, b, an RRR dyad for which the kinetostatic
model is rendered by the relations (21-32).

In this calculation stage it is determined:

e In the kinematic torque from E — X87 k, Y87 k
from Fig. 23

e In the kinematic rotation couple from the point O —
X05k, Y05k from Fig. 24

In the following steps, the initial active modular groups
GMAI (G, 8) and GMAI (A, 1) are shown in Fig. 25 &, b.

The components (NO8 k, T08 k) of the active
translation coupling G are shown in Fig. 26 and for the
active coupling of A (NO1k, T01k) in Fig. 27.

69

This bimobile 2T9R mechanism (Fig. 1) can be used by
the simultaneous action of active translation torques in A and
G point T having a chosen trajectory and law of motion. If
one of these active couplings is locked, the mechanism
remains with only one degree of mobility. The connections of
the modular groups are given in both cases: Respectively, for
G blocked and for A blocked in Fig. 28 a, b.

Applying the calculation modules, it is possible to
study the behavior of the mechanism with a degree of
mobility in the mentioned situations. Thus, if the active
coupling G is blocked, the variation of the dependent
parameters of the resulting mechanism is studied, with a
degree of mobility (Fig. 29) for the extreme blocking
positions ®50 minimum and ®50 maximum.

94.627
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—— 50 1
Y04rram
P .-. .:..'
0 0
-60 -30 0
-51.27X04rrAME
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GOE
0
0 15 30
100;
00.97
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———a 0

XO04rrAME
EEIL
i - {

100

15
K,FrAME

30
30

oo

Fig. 21: Reaction torsion in the kinematic torque of O — X04
k, Y04 k on the GMP 2 modular group (2,3,4,6), triad
type 6R
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Fig. 22: Reaction torsor on the GMP1 dyad modular group (7.5)
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Fig. 23: Reaction torsor in kinematic coupling E, — X87 Kk,
Y87 k, on the GMP 1 dyad modular group (7.5)
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Fig. 24: Reaction torsor in kinematic coupling O, — X05 Kk,
Y05 k, from the GMP 1 dyad modular group (7.5)
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Fig. 25: The reaction torsor of the initial active modular groups
GMAI (G, 8) aand GMAI (A, 1) b
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Fig. 26: Reaction torsor from the initial active modular group
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Fig. 27: Reaction torsor from the initial active modular group
GMAI (A1)

Triada 6R(2,3,4,6)
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| 0= platforma | | ( = platforma |
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Fig. 28: The connections of the modular groups for the two
distinct situations when G is blocked and the case
when A is blocked, respectively

Fig. 29: The case in which the active coupling G is blocked
when studying the variation of the dependent
parameters of the resulting mechanism, with a degree
of mobility for the extreme locking positions ® 50
minimum and ® 50 maximum

Table 1: Constant geometric parameters

XA 0.1 ET 1.35
XG -0.15 OF 0.15
AB 1.15 FG 0.45
CD 0.88 TD 0.90
OE 0.88 BD 0.70
ocC 0.45 BC 0.18
ED 0.45

Table 2: Initial parameters of the T point trajectory

Initial parameters of the T point TO (1.5, -0.9)
The step of moving the T point horizontally - v -0.05
The step of moving the T point vertically - vl ~ 0.05

Table 3: The input parameters

Point T XTk =if [k <10, XT0 + kv, if [10< k<

coordinates 15, XT0+ 10v, iff 15<k <25, XT0 +10v- (k-15)v,XT0]]1]
YTk=if [k <10, YTO, if[10<k<I5,YTO +(k- 10)v1,
if [15< k <25, YTO + 5v1, YT0 +5vi- (k — 25)v]]]
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Conclusion

The kinematic and Kinetostatic modeling of a
2T9R robotic mechanism is generally quite difficult
and lucrative, but it has the advantages of obtaining a
well-developed theoretical model that can be used in
practice to design or use such robots, extremely
interesting and useful, which has increased
maneuverability, a large workspace, a correct and fast
dynamics of movement, without vibrations or noises,
the mechatronic module presented can be designed
and built-in various ways depending on the
requirements and objectives of the workplace in
which it will be implemented.

The paper presented the inverse and direct
kinematic models, the kinetostatic (forces) model that
is always studied inversely, together with the related
calculation relations.

In the results and discussions section, the diagrams
obtained by calculation using the Math Cad 2000
program were presented.
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