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Abstract: In order to calculate the equivalent torsional-warping stiffness of 

the Reinforced Concrete (RC) cores that have thin-walled open cross-section, 

a new analytical methodology, which combines the Vlasov torsion theory 

with the Bernoulli bending theory, is presented herein. As the basis of the 

calculations, we use the principal elastic reference system of the core from this 

we consider that is known. Furthermore, we consider that the principal start point 

of the open cross-section, the core's exact sectorial coordinates, as well as, the 

warping moment of inertia of the core are all known, also. Moreover, the two 

above-mentioned theories (Vlasov and Bernoulli) are together combining and in 

the end, the equivalent torsional-warping stiffness of the core has resulted. This 

torsional-warping stiffness of the core is very useful in the right simulation of a 

building that consists of frames, walls, and cores. The present methodology is 

presented via two special numerical cases of RC cores for illustrative purposes. 

The present article gives a documented solution in the simulation of the cores and 

proposes to use an ideal-equivalent column that has to be located on the elastic 

center of the core. This equivalent column must be provided with a diagonal, 

lateral-stiffness matrix that represents the properties of the real core and thus this 

lateral-stiffness matrix of the core is proposed. Finally, in order to check the 

reliability of the results of various analysis software, the proposed procedure can 

be used as a benchmark analysis method of cores. 

 

Keywords: Cores, Warping Stiffness, Principal Elastic Reference System, Start 

Point of Thin-Walled Open Cross-Section, Vlasov Torsion Theory, Sectorial 

Coordinates, Warping Moment of Inertia, Bi-moment Normal Stresses 

 

Introduction 

The core is a structural element with a thin-walled open 

cross-section that starts from the base of multi-story 

Reinforced Concrete (RC) buildings and reaches the top of 

them. Furthermore, cores are one of the most common 

structural members that are used in multi-story buildings and 

especially are used very often either in low buildings, either 

tall buildings (at the lift location and staircase position) such 

as skyscrapers, towers, or special chimneys. A core is 

consisting of non-same-planed surface disks, which are 

connected at their edges. Hence, arise a prismatic surface 

structure or structure member, in which each-one disk 

operates in a mixed way, since, on the one hand, be loaded 

into its plane with seismic or wind lateral loadings, and on 

the other hand, also, it is loaded with significant torsional 

moments about the vertical axis, which come from the floor 

rotational vibrations about the vertical axis of the building. In 

addition, at floor levels, cores are connected with the floor 

diaphragms, which ensures the same rotation angle about the 

vertical axis (into each diaphragm). The cross-section of the 

core possesses its local elastic center (or local shear center) 

that does not coincide with the geometric center of the thin-

walled cross-sections, but this is located in another position, 

which is far away from its geometric center. As a result of 

this peculiarity, cores have strong three-dimensional (spatial) 

behavior and significantly affect the torsional-translational 

behavior of the building that is loading with wind loadings or 

seismic excitations. The local elastic center of a core (as it is 

a structural member) significantly affects the location of the 

real or fictitious elastic center of the asymmetric multi-story 

buildings (Terzi and Athanatopoulou, 2021; 2023). It is well-

known that the Saint-Venant Torsion is an absolutely 

different phenomenon from the Vlasov torsion theory 

(Vlasov, 2020). Indeed, the first torsion is a pure torsion that 

causes shear stresses on the open cross-section, only. This 

phenomenon is studied by analysis of a finite element model 

using six degrees of freedom per joint. On the contrary, the 

second torsion is a torsion-warping phenomenon that causes 

normal stresses on the same open cross-section thanks to 



Triantafyllos Konstantinos Makarios / American Journal of Engineering and Applied Sciences 2023, 16 (2): 44.55 

DOI: 10.3844/ajeassp.2023.44.55 

 

45 

bi-moments. Vlasov has confronted this phenomenon by 

inserting into calculations a more, the seventh, degree of 

freedom (something that does not exist in the classic 

software of the finite element method), where this degree 

of freedom represents the change (in elevation) of the 

rotation angle of the cross-section around the vertical axis 

(Vlasov, 2020). Moreover, for this reason, it is well-

known that in such structures, the finite element method 

gives approximate results, because the torsion-warping 

phenomenon is ignored by this method. 

The above-mentioned points have preoccupied the 

international scientific community in the past (and in the 

present). In the recent work (Makarios and Athanatopoulou, 

2022) there is rich international literature about this matter, 

but the issue of the core simulation remains almost 

unresolved. In order to simulate the cores of the buildings (in 

the right way), the present article proposes the idea that must 

define an ideal-equivalent (to the core) column, that will be 

located on the local elastic center of the core. Next, we 

provide this equivalent column with the equivalent torsion 

stiffness, considering the torsion-warping resistance of the 

core. It is worth noting that the right evaluation of the core 

torsion stiffness affects the calculation of the 

response/behavior of the total building. As the suitable key 

of the present procedure, we use the recent technique, that 

permits the exact calculation (Makarios and Athanatopoulou, 

2022) of the principal elastic reference system of the core, the 

principal Start Point of the cross-section, the exact values of 

the sectorial coordinates of the open cross-section of the 

examined core, as well as, the warping moment of inertia. 

Materials 

Reinforced Concrete (RC) or steel or aluminum or 

each other material that can be considered as homogenous 

and isotropic material is using for cores. 

Methodology 

A new exact technique for the calculation of the 

following properties has been published in another work 

(Makarios and Athanatopoulou, 2022): 

 

a) Of local principal elastic reference system K(I, II, III) 

of a core 

b) of the principal start point Mo(xo, yo) of the cross-section 

c) Of diagrams of the coordinate functions  s  and 

 s  of the thin-walled open section relative to the 

gravity reference system G z  

d) Of the diagram of the exact sectorial coordinates 

 s  with respect to the pole K (that is the elastic 

center of the cross-section) and based on the principal 

start point 𝑀𝑜 of the thin-walled open cross-section, and 

e) of the warping moment of inertia 𝐼𝜔 

 

For this reason, we consider that all these above-

mentioned properties of the core are known. However, we 

worth noting that, in order to calculate the above-mentioned 

properties, the following steps must be applied: 

 

i) Calculation of the location of the center of gravity, G, 

and the orientation of the principal axes   and   of 

the thin-walled open cross-section 

ii) Calculation of the principal moments of inertia I and 

I of the thin-walled open cross-section about the 

principal axes   and   passing through the gravity 

center G of the cross-section of the core 

iii) Calculation of diagrams of coordinate functions  s  

and  s  of the thin-walled open section relative to 

the gravity reference system G z  

iv) Calculation of the location of the local elastic center 

K (which is the local stiffness center) of the thin-

walled open section, using the repetitive 

mathematical procedure that has been proposed at 

work (Makarios and Athanatopoulou, 2022) 

v) Calculation of the location of the principal start point 

 ,o o oM x y  of the thin-walled open section as well as 

of the sectorial coordinates (s) with respect to the 

pole K and based on the principal start point 
oM  of 

the thin-walled open cross-section 

vi) Calculation of the numerical value of the warping 

moment of inertia (or warping constant) I, of the thin-

walled open section, according to Vlasov torsion theory 

 

In the present article, the following steps are 

proposed to evaluate the equivalent torsional-warping 

stiffness of the core: 

 

(1) An enforced rotation angle
III  around the elastic 

center K is applied at all cores. The Equations are 

written at two end-legs of the core, always, and the 

final equivalent torsional-warping stiffness 
,IIIk  of 

the core is the mean value of the torsional-warping 

stiffnesses of the two end-legs of the core 
(2) The horizontal displacement on the top of each 

examined leg, along the principal elastic I or II-axis, 
is formulated 

(3) The shear force on the top of the examined leg is 

formulated 

(4) The flexural moment at the base of the examined leg 

due to the above-mentioned shear force is formulated 

(5) The normal stresses z (0,i) on the cross-section at the 

base of the core are formulated according to both 

theories, the Vlasov torsion theory and the Bernoulli 

bending theory 
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(6) Combining the above-mentioned equations, the 

torsional-warping stiffness
,IIIk of the core is 

produced at first approximation. Afterward, a re-

calculation (second approximation) on the other end-leg 

of the core is needed. From these two approximative 

calculations, the mean value 
,IIIk is produced 

 

Torsional-Warping Stiffness of Core with Thin-Walled 

with Open Cross-Section Shaped ⊏. First Case 

We consider the core of Fig. 1, which is a structural 

member of a single-story RC building that has a height equal 

to four meters (𝐻 = 4.00 m). The core possesses a symmetry 

axis, the X-axis. Noting that this is a core of a staircase and, 

also, is fixed at its foundation, into the ground. 

The location of the gravity center G, is shown on the 

symmetry X-axis (Fig. 1). Hence, the 𝑋-axis constitutes 

simultaneously and the first principal direction of the 

cross-section, that is symbolized as -axis. The other, 

second principal direction is perpendicular to the first 

and is symbolized as axis  , while both principal axes 

have a common origin the gravity center G. The 

principal moments of inertia are I  and I of the thin-

walled open cross-section about the principal 

directions   and passing through the gravity center G 

of the cross-section, while the product moment of 

inertia I of the cross-section is zero. Therefore, after the 

calculations (where a simple way of calculation proposed by 

Makarios and Athanatopoulou (2022), the principal 

moments of inertia I I  have the following values:  

 

4 4 2 215.40159 , 6.12454I m I m a b     

 

Also, the area of the cross-section is 𝛢 = 3.72 m2. 

Next, in Fig. 2 the diagrams of coordinate functions 

 s  s and, relative to the principal gravity 

Cartesian reference system G z . Furthermore, the 

steps (i-vi) of the above-mentioned methodology have 

been applied, and after two repeats the final position of 

the local elastic center K has been calculated at a 

distance 1.60 m left of the core back, while has distance 

from the gravity center equal with 2.794 m, on the 

symmetry 𝑋-axis (Fig. 3). At the same Figure, we can 

see the location of the principal start point  ,o o oM x y  of 

the thin-walled open section as well as of the exact 

sectorial coordinates  s with respect to the pole K 

and based on the principal start point 
oM of the thin-

walled open cross-section. The 𝐼-axis, which has the 

origin of the elastic center K, is the principal elastic 

axis (that it coincides with the symmetry axis of the 

core), and the 𝐼𝐼-axis, which also has an origin of the 

elastic center K, is the second principal elastic axis 

(that it is parallel with the 𝜂-axis). The third principal 

elastic axis is vertical and through from the elastic 

center K, too. Hence, the three principal elastic axes I, 

II, and III create the local principal elastic reference 

system K(I, II, III) of the core. Finally, the numerical 

value of the warping moment of inertia I  has resulted 

(Makarios and Athanatopoulou, 2022): 

 
623.7496I m   

 

All the above-mentioned calculations (Fig. 1-3) are 

the necessary spadework that is based on the recent 

article (Makarios and Athanatopoulou, 2022). 

Afterward, from this point and below, we are following 

the steps according to the new present methodology. 

In order to calculate the torsional-warping stiffness 

,IIIk of the core, we consider that it is loaded at its top 

with an external torsional moment
tM , around the 

vertical principal elastic III-axis. Due to the torsional 

moment
tM , the thin-walled open cross-section of the 

core is rotated around its elastic center K per angle 𝜃𝛪𝛪𝛪. 

In Fig. 4 we can see the rotation angle 𝜃𝛪𝛪𝛪 of the core 

and the displacement diagrams due to the external 

torsional moment
tM  around 𝐼𝐼𝐼-axis of the Cartesian 

principal elastic reference system Κ(Ι, ΙΙ, ΙΙΙ), using the 

kinematic conditions of the cross-section (that behaves 

as diaphragm according to Vlasov Torsion Theory). 

Also, the bi-moment diagram BK along the height of the 

core is given in Fig. 5. 

 

 

 

Fig. 1: Geometry of the core with shape ⊏ (units in meters) 
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Fig. 2:  Diagrams of coordinate functions (𝑠) and (𝑠), relative to the principal gravity Cartesian reference system 𝐺𝜉𝜂𝑧 
 

 
 

Fig. 3:  The exact sectorial coordinates ω(s) with respect to the 

pole K and based on the principal start point Mo of the 

thin-walled open cross-section 

 

 
 
Fig. 4:  Angle 𝜃𝛪𝛪𝛪 of the core and the displacement diagrams due 

to external torsional moment Mt around 𝐼𝐼𝐼 – axis of the 

Cartesian principal elastic reference system Κ(Ι, ΙΙ, ΙΙΙ) 

 
 
Fig. 5: The bi-moment diagram BK of the core, due to torsional 

moment Mt 

 

(0)
(0, ) ( ) . , , ,K

z i

B
i s for i A B C D

I
    (1) 

 

Hence, the normal stresses z (0,i) that have been 

developed on the cross-section of the core-basis, and are 

parallel to the vertical III-axis, namely z = 0, due to bi-

moment BK(0), are given from the following relationship 

by the Vlasov torsion theory, (Vlasov, 2022; Makarios 

and Athanatopoulou, 2022), according to Fig. 6. 

Afterward, we can write the following basic equations: 

 

1) The core is rotated per angle III  around the elastic 

center K, while the angle is given, generally, by the 

following relationship: 
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Fig. 6: Diagram of normal stresses z(0,i) on the core basis 

cross-section due to the bi-moment BK 

 

,

t
III

III

M

k
   (2) 

 

 

Therefore, if we know the equivalent torsional-

warping stiffness
,IIIk  of the core (considering the 

torsional-warping phenomenon), then we calculate the 

angle
III . 

This phenomenon is called “bend_from_torsion” and 

is absolutely different from the classical pure torsion 

according to Saint-Venant torsion theory. Moreover, we 

consider that the core has fixed-foundation, while has 

height H = 4.00 m: 

 

2) We work at the principal Cartesian elastic reference 

system Κ(Ι, ΙΙ, ΙΙΙ) of Fig. 4 and using the kinematic 

conditions, the horizontal displacement  uc,i of the 

leg CD, along the principal elastic I-axis is given: 

 

 
, ,C I II C IIIu d      (3) 

 
Similarly, the horizontal displacement uB,I of the leg 

BA, along the principal elastic I-axis is equal: 
 

 , ,B I II B IIIu d     (4) 

 

3) Hence, the two shear forces QAB and QCD, which are 

developed at the top cross-section of the two legs AB 

and CD of the core, are given, respectively: 

 

,CD C I CDQ u k   (5) 

 

,AB B I ABQ u k   (6) 

where, 
ABk , 

CDk and are the lateral, translational stiffness 

(in kN/m) of the legs AB and CD of the core. It is worth 

noting that according to structural analysis, the lateral, 

translational stiffness of a cantilever, that has cross-

section e.l is given by the following relationship 

(considering both, the virtual work due to bend moments 

and the virtual work due to shear forces), Fig. 7: 

 

  
'

3

'

3

3 /
AB

S

E I
k

H E I H G A








   
 (7) 

 

where: 

 / 2 1 ,G E v v       the Poisson ratio 3 / 12I e l    

and As = 0.85(𝑒∙𝑙) with As as the effective shear area of the 

cross-section of the examined leg: 

 

4) The shear force 
ABQ  that is developed at the top of 

the leg AB gives at the base of the self-leg the flexural 

moment 
, ABM

: 

 

', AB ABM Q H    (8) 

 

Similarly, for the leg CD: 

 

',CD CDM Q H    (9) 

 

5) On the other hand, at the base cross-section  0z  , 

the normal stresses z (0,i) of the legs AB and CD due 

to the torsion-warping phenomenon according to 

Vlasov Torsion Theory are given in Fig. 6. However, 

the same normal stressesz (0,i) are connected with 

the flexural moment of the leg via the Bernoulli 

Bending Theory. Hence, for leg AB, at corner B (since 

examined always the corner that has the minimum 

magnitude of sectorial coordinate  A  or  B ), 

the equivalent flexural moment 
, ABM

 of this leg is 

given according to Bernoulli bending theory: 

 

   
 ' '

', ',' '

, ,

0
0,

K

AB Z AB B

B AB B AB

I IB
M B M

s I s

 

 



         (10) 

 

where, z (0,B) is taken from Fig. 6, the bi-moment BK(0) at 

the base (z = 0) of the core is BK(0) = Mt.H and '

,B ABS  is the 

distance between corner B and the neutral axis of leg AB from 

the diagram of sectorial coordinates  ,s Fig. 3. 

Summarized, we are written the following useful 

equations for the leg CD: 

 

, ,C I II C IIIu d     (11) 
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,CD CD C IQ k u   (12) 

 

'.CD CDM Q H    (13) 

 

,t III IIIM k    (14) 

 

 0K tB M H   (15) 

 

 
  '

', '

,

0K

CD C

C CD

IB
M

I s







     (16) 

 

Inserting Eqs.11-12 into Eq. 13 we get: 
 

', ,CD II C III CDM d k H       (17) 

 
Inserting Eq. 14 into Eq. 15 we get: 

 

  ,0K III IIIB k H     (18) 

 
Finally, by inserting Eqs. 17-18 into Eq. 16 we get: 

 

  ',

, '

,

III III

II C III CD C

C CD

Ik H
d k H

I s






 

 
         (19) 

 
The torsional-warping stiffness 

,IIIk  of the core is 

produced from Eq. 19 as the following relationship:  
 

 

'

, ,

,

'

II C C CD

III CD

C

d I s
k k

I







  
 

 
 (20) 

 
Afterward, inserting the values of the core parameters, 

and considering that the core material is concrete C30/37, 

thus E = 33 GPa, we get: 
 

    
'

33

'

3 141,239,896.88
1,356,667.85 /

4 40.1079523 /
CD

S

E I
k kN m

H E I H G A






  

   

 

 
1,356,667.85 /ABk kN m  

 
because: 

 
3

4
0.30 3.85

1.426666
12

I m


   

 
    2/ 2 1 33,000,000. / 2 1 0.15 14,347,826.09 /G E v kN m           

 
 

 14,347,826.09 0.85 0.30 3.85 14,085,978.26SG A kN       

 
23 3 33,000,000. 1.426666 40.107952E I kNm      

  

        33 / 141,239,896.88 4 / 14,634,782.61 40.107952SE I H G A m       

 

Hence, the torsional-warping stiffness 
,IIIk  is equal: 

 
'

, ,

,

. . 94.9984
. .(1,356,667.85) 24,025,900.89

( ). ' 5.364264

II C C CD

III CD

C

d I s
k k kNm

I




 

 
  

 

 

because: 

 

, , 1.60C CD B ABs s m     

 

      8

, , 2.35 237496 1.60 94.9984II C C CDd I s m            

 

 and:  

 

    63.76 1.426666 5.364264C I m         

 

Hence, if we use as a base the leg AB, then the 

torsional-warping stiffness is 
, 24,025,900.89IIIk kNm   

Hence, for symmetry reasons, if we use as a base the 

leg CD, then the torsional-warping stiffness is

, 24,025,900.89IIIk kNm  . 

The final, equivalent torsional-warping stiffness of 

this core is always a mean value of the two end legs of the 

core k, III = 24, 025, 900.89 kNm. 

It is worth noting that Eq. 20 gives the torsional-

warping stiffness
,IIIk  of this particular core that has shape 

⊏. For each core shape, a similar procedure must be re-

written with reference to the two lateral, principal 

translational stiffnesses kI and kII of the core, these are 

given as follows: 

I. Lateral Principal Translational Stiffness kI 

 

    33

3 606,329,460
5,162,051.95 /

4 53.45903 /
I

S

E I
k kN m

H E I H G A






  

   
 

 
where: 
 

46.12454I m   

 

    2/ 2 1 33,000,000 / 2 1 0.15 14,347,826.09 /G E kN m        

 
 . 14,347,826.09. 0.85.3.75 45,367,826.1sG A kN   

 
23 . 3.33,000,000.6.12454 606,329,460,E I kNm    

 

  33 . / . 606,329,460.4 / 45,367,826.1 53.4590sE I H G A m     

 

II. Lateral Principal Translational Stiffness kII  
 

  33

3 . 1,524,757,410.
7,683,908.6 /

4 134.435133 . . / .
II

s

E I
k kN m

H E I H G A




  


 

 

where: 

 
415.40159I m   
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    2. / 2 1 33,000,000. / 2 1 0.15 14,347,826.09 /G E kN m           
 

 

 14,347,826.09 0.85 3.72 45,367,826.1sG A kN      
 

23 3 33,000,000. 15.40159 1,524,757,410.E I kNm      
 

  33 / 1,524,757,410 4 / 45,367,826.1 134.43513sE I H G A m       
 

Hence, with reference to the Cartesian principal 

elastic reference system Κ(Ι, ΙΙ, ΙΙΙ) of the first mono-

symmetric core, the equivalent lateral stiffness matrix 

Kcore of it, is given: 
 

,

0 0 5,162,051.95 0 0

0 0 0 7,683,908.6 0

0 0 0 0 24,025,900.89

I

core II

III

k

k

k

   
   

     
     

 (21) 

 

Torsional-Warping Stiffness of the Asymmetric Core 

That Examined at (Makarios and Athanatopoulou, 

(2022) Second Case 

We consider the core of Fig. 8, which is a structural 

member of a single-story RC building that has a height 

equal to 5.5 meters (H = 5.50 m) and had been published 

(Makarios and Athanatopoulou, 2022). 

In this core does not exist symmetry axis. Noting that this 

is a core of a staircase and, also, is fixed at its foundation, into 

the ground. The location of the gravity center G, is shown in 

Fig. 8, while the orientation of the first principal directions of 

the cross-section, which is symbolized as 𝜉-axis is o = 

-40.00932°. The other, second principal direction is 

perpendicular to the first and is symbolized as the 𝜂−axis, 

while both principal axes have a common origin the gravity 

center G. The principal moments of inertia are I and I of the 

thin-walled open cross-section about the principal directions 

𝜉 and 𝜂 passing through the gravity center G of the cross-

section, while the product moment of inertia 𝛪𝜉𝜂 of the cross-

section is zero. Therefore, after the calculations, the principal 

moments of inertia 𝐼𝜉 and 𝐼𝜂 have the following values: 
 

4 44.27656 , 8.04292I m I m    
 

Moreover, the area of the cross-section is A = 3.33 m2. 

Furthermore, the steps (i-vi) of the above-mentioned 

methodology have been applied, and after two repeats the 

final position of the local elastic center K has been calculated 

in distance 𝛿𝜉 = -0.50319 m along -axis and 𝛿𝜂 = -2.76 m 

along 𝜂-axis, Fig. 9. At the same Fig. 10, we can see the 

location of the principal start point Mo (xo, yo) of the thin-

walled open section as well as of the exact sectorial 

coordinates ω(s) with respect to the pole K and based on the 

principal start point Mo of the thin-walled open cross-section. 

The 𝐼-axis, which has the origin of the elastic center K, is the 

principal elastic axis (that it is parallel with the 𝜉-axis of the 

core), and the 𝐼𝐼-axis, which also has the origin of the elastic 

center K, is the second principal elastic axis (that it is parallel 

with the 𝜂-axis). The third principal elastic axis is vertical 

and through from the elastic center K, too. Hence, the 

three principal elastic Axes I, II, and III create the local 

principal elastic reference system K(I, II, III) of the core. 

Finally, the numerical value of the warping moment of 

inertia I has resulted: 
 

616.39462I m   
 

All the above-mentioned calculations (Figs. 8-10) are 

the necessary spadework that is based on the recent article 

(Makarios and Athanatopoulou, 2022). Afterward, from 

this point and below, we are following the steps according 

to the new present methodology. 

In order to calculate the torsional-warping stiffness 𝑘𝜃, of 

the core, we consider that it is loaded at its top with an 

external torsional moment Mt, around the vertical principal 

elastic III-axis. Due to torsional moment Mt, the thin-walled 

open cross-section of the core is rotated around its Elastic 

Center K per angle 𝜃𝛪𝛪𝛪. In Fig. 11 we can see the rotation 

angle 𝜃𝛪𝛪𝛪 of the core and the displacement diagrams due to 

the external torsional moment Mt around 𝐼𝐼𝐼-axis of the 

Cartesian principal elastic reference system Κ(Ι, ΙΙ, ΙΙΙ), 

using the kinematic conditions of the cross-section (that 

behaves as diaphragm according to (Vlasov torsion theory). 

Afterward, we consider that this core is loaded at its top 

with an external static torsional moment. Also, the bi-

moment diagram 𝛣𝛫 along the height of the core is given in 

Fig. 5. Hence, the normal stresses (0,𝑖) that have been 

developed on the cross-section of the core-basis, and are 

parallel to vertical III-axis, namely z = 0, due to bi-moment 

(0), are given from the following relationship by the Vlasov 

torsion theory, (Vlasov, 2020; Makarios and 
Athanatopoulou, 2022), according to Fig. 11: 

 

 
 
Fig. 7: The cross-section of a leg of the core and the local 

principal elastic axes 𝜉′, 𝜂′ 
 

 
 
Fig. 8: Geometry of the core  
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 
(0)

0, ( ). , , , ,K
z

B
i s for i A B C D E

I
      (22) 

 
1) The core is rotated per angle 𝜃𝛪𝛪𝛪 around the elastic 

center K and this angle is given by the following 

general relationship: 
 

,

t
III

III

M

k
    (23) 

 

 
 
Fig. 9: The exact sectorial coordinates ω(s) with respect to the 

pole K and based on the principal start point Mo of the 

thin-walled open cross-section 
 

 
 
Fig. 10:  Angle 𝜃𝛪𝛪𝛪 of the core and the displacement diagrams 

due to external torsional moment Mt around III-axis 

of the Cartesian principal elastic reference system  

Κ(Ι, ΙΙ, ΙΙΙ) 

 

 
 

Fig. 11: Diagram of normal stresses z (0,i) on the core basis 

cross-section due to the bi-moment BK 

 
 
Fig. 12:  For 𝑖 = 1, 2, 3 … local gravity center of a random leg, the 

transformation of the two displacements 𝑢1,, and 𝑢1,𝐼 of leg 

AB along the two principal elastic axes I and II of a core in 

displacements along the local principal directions 𝜉′ and ' 

of the examined leg AB, due to angle III of the core, where

â is the orientation angle of this leg 
 

Therefore, if we know the torsional-warping stiffness 

k,III, of the core (considering the torsional-warping 

phenomenon), then we calculate the angle 𝜃𝛪𝛪𝛪. This 

phenomenon is called “bend_from_torsion” and is 

absolutely different from the classical pure torsion according 

to Saint-Venant torsion theory. Moreover, we consider that 

the core has fixed-foundation, while has height 𝐻 = 5.50 m. 

Here, we consider that point (1) is the local gravity 

center of the leg AB, has two horizontal displacements u1,I 

and u1,II, along the two principal elastic axes I and II of the 

core, Fig. 10. 
Next, using the local rotation matrix, we can transform 

these displacements in the local displacements along the 
local principal directions 𝜉′ and 𝜂′ of the examined cross-
section of leg AB as follows, where 𝑎̂ is the orientation angle 
of this leg, Fig. 12: 
 

, ' ,cos sin

sin cos, ' ,

i i I

i i II

u u

u u

  

 

       
    
       

 (24) 

 
2) We work at the principal elastic reference system 

Κ(Ι, ΙΙ, ΙΙΙ) of Fig. 10 and using the kinematic 

conditions, the horizontal displacement μ1,𝐼 of the 

local gravity center (1) of leg AB, along the principal 

elastic I-axis is given: 
 

,1 .II IIIu d    (25) 

 

And the horizontal displacement u1,II, of the local 

gravity center (1) of leg AB, along the principal elastic 

II-axis is equal: 
 

1, ,1 .II I IIIu d    (26) 

 

Therefore, the displacements u1,' and u1,' of the 

gravity center of the examined leg AB are given at the 

local principal axes 𝜉′ and 𝜂′ as:  
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1 ' ,1

1 ' ,1

,1 ,1

,1 ,1

, .cos sin

sin cos, .

. .cos . .sin

. . sin . . cos

II III

I III

II III I III

II III I III

u d

u d

d d

d d





 

  

   

   

       
     

       

   
 

  

 (27) 

 

3) Hence, the shear force Q1,', which is developed at the 

top cross-section of the leg AB of the core, is given: 
 

'
1, ' 1, ' 1,

Q k u


    (28) 

 
where, 𝑘1,𝜉′ is the translational stiffness (in kN/m) of the 

leg AB of the core. It is worth noting that according to 

Structural Analysis, the lateral, translational stiffness of a 

cantilever, that has cross-section e.l is given by the 

following relationship (considering both, the virtual work 

due to bend moments and the virtual work due to shear 

forces), Fig. 7: 

 

  
1 '

1 ' 3

1 '

3 ,
,

3 , . / s

E I
k

H E I H G A










  
 (29) 

 

where: 

 

   3

1, '/ 2 1 , Poisson Ration, . /12 0.58 .sG E I e l A e l       

 

4) The sheer force 𝑄1', that is developed at the top of 

the leg AB gives at the base of the self-leg the flexural 

moment 𝛭1,𝜂′: 

 

1, ' 1, 'M Q H    (30) 

 

5) On the other hand, at the base cross-section (z = 0), 

the normal stresses 𝜎𝑧(0,𝑖) of the examined leg AB 

due to torsion-warping phenomenon according to 

Vlasov Torsion Theory is given in Fig.11. 

However, the same normal stresses 𝜎z(0,𝑖) are 

connected with the flexural moment of the leg via 

the Bernoulli bending theory 
 

Hence, for the leg AB, at corner B (since examined 

always the corner that has the minimum magnitude of 

sectorial coordinate ω(A) or ω(B)), the equivalent flexural 

moment M1,𝜂′ of this leg is given according to Bernoulli 

Bending Theory: 
 

1, '

1, '

,

1, '

1, '

,

(0, ).
'

(0)
( ). .

'

z

B AB

K
B

B AB

I
M B

s

IB
M

I s















 

 

  (31) 

 
where, 𝜎𝑧 (0,𝛣) is taken from Fig. 11, the bi-moment 𝐵𝐾(0) 

at the base (z = 0) of the core is BK(0) = Mt.H and 𝑠'𝐵,𝐴𝐵  is 

the distance between corner B and neutral axis of leg AB from 

the diagram of sectorial coordinates ω(s), Fig. 10. 

Summarized, we have written the following useful 

equations for the leg AB: 

 

1, ' ,1 ,1cos sinII III I IIIu d d           (32) 

 

1 1 1, ' , ' , '
.Q k

  
  (33) 

 

1
1, ' , '

.M Q H 
  (34) 

 

,t III IIIM k    (35) 

 

(0)K tB M H    (36) 

 

1, '

1, '

,

(0)
( )

'

K
B

B AB

IB
M

I s







     (37) 

 

Inserting Eqs. 32-33 into Eq. 34 we get: 

 

 
1

',1 ,1 ,1,
' cos sinII III I IIIM k d d H 

                       (38) 

 

Inserting Eq. 35 into Eq. 36 we get: 

 

,(0)K III IIIB k H     (39) 

 

Finally, inserting Eqs. 38-39 into Eq. 37 we get: 

 

 
1

,1 ,1, '

1, ',

,

. cos sin

( )
'

II III I III

III III

B

B AB

k d d H

Ik H

I s







   




      

 
   

 (40) 

 

The torsional-warping stiffness 𝑘𝜃,III, of the core, is 

produced from Eq. 40 as the following relationship: 
 

 ,1 ,1 ,

, 1, '

1, '

cos sin '

( )

II I B AB

III

B

d d I s
k k

I



 



 



     
 

 
  (41) 

 
Afterward, inserting the values of the core parameters, 

and considering that the core material is concrete C30/37, 

thus E = 33GPa, we get: 
  

   
1, '

1, ' 33

1, '

3 18,351,815.63
101,659.42 /

5.5 1401475373 . / s

E I
k kN m

H E I H G A








  

   
 

 

 
because: 
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   

 

3
4

1, '

2

0.30.1.95
0.185372

12

/ 2 1 33,000,000 / 2 1 0.15 14,347,826.09 /

14,347,826.09. 0 85 0 30 1 95 7,134,456.52s

I m

G E kN m

G A kN





 

          

       

 

 

 

2

1, '

3

1, '

3 . 3 33,000,000 0.185372 18,351,815.63

3 . . / 18,351,815.63 5.5 / 7,134,456.52 14.147537s

E I kNm

E I H G A m





   

   

 

 

Hence, the torsional-warping stiffness 𝑘𝜃,III is equal: 
 

 
1

,1 ,1 ,

, , '

1, '

cos sin '

( )

29.674921
101,659.42 8,986,175.37 /

0.335709

II I B AB

III

B

d d I s
k k

I

kNm rad



 


 



     
  

 

 

 

 
because: 

 

,1 ,12.381, 3.874I IId d  

 

 
 

,1 ,1 ,cos sin '

3.874 cos (130.00932) 2.381 sin (130.00932)

II I B ABd d I s       

   
 

 

    816.39462 0.41954 29.674921m   

 

and: 

 
6

'( ) (1.81100) 0.185372 0.335709B I m      

 
Hence, if we use as a base the leg AB, then the 

torsional-warping stiffness is: , 8,986,175.37IIIk kNm  in a 

similar way, if we use as a base the leg DE, then the 

torsional-warping stiffness is , 8,767,901.00 .IIIk kNm   

The final equivalent torsional-warping stiffness of this 

core is always a mean value of the two end legs of the core

, 8,877,038.19 .IIIk kNm   

With reference to the two lateral, principal 

translational stiffnesses 𝑘𝛪 and 𝑘𝛪𝛪 of the core, these are 

given as follows: 

I. Lateral principal Translational Stiffness kI 

 

   33

3 796,249,0.80.
2,903,786.10 /

5.5 (107.83565)3 /
I

s

E I
k kN m

H E I H G A






  

   

 

 
where: 
 

48.04292I m   

 
   

 

2

2

/ 2 1 33,000,000. / 2 1 0.15 14,347,826.09 /

14,347,826.09 0.85 3.33 40,611,521.75

3 3 33,000,000. 8.04292 796,249,080.

s

G E kN m

G A kN

E I kNm

         

    

    

 

  33 / 796,249,080 5 5 / 40,611,521.75 107.83565sE I H G A m        

 

II. Lateral Principal Translational Stiffness kII  
 

   33

3 423,379,440.
1,892,510.84 /

5.5 (57.338086)3 /
II

s

E I
k kN m

H E I H G A






  

   

 

 

where: 

 
44.27656I m   

 

   

 

2

2

/ 2 1 33,000,000. / 2 1 0.15 14,347,826.09 /

14,347,826.09 0.85 3.33 40,611,521.75

3 3 33,000,000. 4.27656 423,379,440.

s

G E kN m

G A kN

E I kNm

         

    

    

 

 

  33 / 423,379,440. 5.5 / 40,611,521.7 57.338086sE I H G A m       

 
Hence, with reference to the Cartesian principal 

elastic reference system Κ(Ι, ΙΙ, ΙΙΙ) of the second 

asymmetric core, the equivalent lateral stiffness matrix 

Kcore of it, is given:  

 

1

core

,

0 0 2,903,786.10 0 0

0 0 0 1,892,510.84 0

0 0 8,877,038.190 0

II

III

k

K k

k

   
   

    
     

 

 

Results and Discussion 

The results of the present analysis permit the use of an 

equivalent column located at the elastic center K of the core. 

This column must be two lateral bending-shear stiffness for 

clear moving along the two horizontal principal axes and an 

equivalent torsional stiffness for the rotation of the core 

about the vertical axis, which pass-through point K. Also, 

this column must have axial-stiffness zero. Additionally, at 

the center of gravity of each leg of the core, a column with 

axial-stiffness (but with very small moment of inertia) of 

the leg of the core must be inserted. More details about it, 

are now in progress and it is beyond out of the target of the 

present article. 

Conclusion 

In order to simulate documented RC core with a 

thin-walled open cross-section, the present 

methodology has proposed to use an ideal-equivalent 

column that has to be located on the elastic center K of 

the core. This equivalent-ideal column must be 

provided with a diagonal, lateral-stiffness matrix that 

represents equivalently the properties of the real core. 

The present article has given a solution and has 

presented the following two numerical examples of 

cores: (a) The first example is a monosymmetric core 
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and (b) The second example is an asymmetric core. In 

order to calculate the above-mentioned diagonal, 

lateral stiffness matrix of the reinforced concrete cores 

that have thin-walled open cross-sections, a new 

analytical methodology, which combines the Vlasov 

torsion theory with the Bernoulli bending theory, has 

been presented. As the basis of the calculations we have 

used the principal elastic reference system of the RC 

core, the principal start point of the cross-section, the 

exact sectorial coordinates as well as, the warping 

moment of inertia of the open cross-section of the 

examined core. All these have been analytically known 

according to recent work (Makarios and 

Athanatopoulou, (2022). Furthermore, the two above-

mentioned theories (Vlasov and Bernoulli) are together 

combining and in the end, the equivalent torsional-

warping stiffness of the core has resulted. We ascertain 

that due to the fact that the lateral-stiffness matrix Kcore 

is a diagonal matrix, there is uncoupling between the 

three degrees of freedom (𝑢𝐼, 𝑢𝐼𝐼 and 𝜃𝐼𝐼𝐼 of the elastic 

center) of the core. Next, we consider the loading 

vector P that has consisted of two forces 𝑃𝐼 and 𝑃𝐼𝐼 

along the two principal axes, respectively, and a 

torsional moment MIII around the III-axis, with 

reference to these three degrees of freedom of the point 

K. If a core is loaded with the lateral-loading vector P 

then the balance equation is written:  

 

,

0 0

0 0

0 0

I I I

core II II II

III III III

k P

K u P k P

k M







     
     

       
     
     

 (42) 

 

Hence, the three degrees of freedom 𝑢𝐼, 𝑢𝐼𝐼, and 𝜃𝐼𝐼𝐼 of 

the elastic center of the core are uncoupled. From this last 

property the following conclusions have been resulted: 

 

a If a lateral static force PI (having the same orientation 

as I-axis) is applied on the elastic center K of a thin-

walled open cross-section, then the cross-section is 

moving parallel to itself along the I-axis, while the 

displacement along the II-axis is null. Moreover, the 

rotation around the z-axis of the cross-section is null, 

too. Hence, the I-axis is called the principal I-Axis of 

the cross-section 

b If a lateral static force PI (having the same orientation 

as II-axis) is applied on the Elastic Center K of a thin-

walled open cross-section having, then the cross-

section is moving parallel to itself along the II-axis, 

while the displacement along the I-axis is null. 

Moreover, the rotation around the z-axis of the cross-

section is null, too. Hence, the II-axis is called the 

principal II-Axis of the cross-section 

c If there is an axis of symmetry at the cross-section, 

then it is always the principal axis of the cross-section 

d If a torsional moment, MIII (about the vertical III-

axis) is applied on the elastic center K of a thin-

walled open cross-section of core, then the 

horizontal displacements 𝑢𝛪 and 𝑢𝛪𝛪 of the elastic 

center K are null, hence the point K is called as 

Center of twist of the cross-section 

e If a lateral static force P is applied on the elastic 

center K of a thin-walled open cross-section 

(having random orientation), then the rotation 𝜃𝐼𝐼𝐼 

about the vertical III-axis is null, hence the point K is 

called the center of the bending of the cross-section 

f For a random lateral static force P that is acting on 

any point of the thin-walled open cross-section, 

and if we consider that the rotation 𝜃𝐼𝐼𝐼 (about the 

vertical axis) of the cross-section has been fixed, 

then the equivalent base shear-force of the cross-

section is passed through point K. Hence, the point 

K is the center of Shear of the thin-walled open 

cross-section 

g The Shear Forces (recovery elastic forces) Q𝜉, Q𝜂 

are dependent on the moments of inertia 𝛪𝜉 and 𝛪𝜂 

of the core, but these forces are acting on the 

elastic center K of the cross-section 

h Last but not least, in order to check the reliability 

of the results of various analysis software, the 

proposed procedure can be used as a benchmark 

analysis method of RC cores. It is worth noting that 

this lateral stiffness matrix Kcore can be used as it 

is, directly, at the single-story building, while 

multi-story buildings need more processing that is 

out of the target of the present article 

 

Acknowledgment 

Thank you to the publisher for their support in the 

publication of this research article. We are grateful for 

the resources and platform provided by the publisher, 

which have enabled us to share our findings with a 

wider audience. We appreciate the efforts of the 

editorial team in reviewing and editing our work, and 

we are thankful for the opportunity to contribute to the 

field of research through this publication.  

Funding Information 

The authors have not received any financial support or 

funding to report.  

Ethics 

The author declares no conflict of interest, financial 

or otherwise. 



Triantafyllos Konstantinos Makarios / American Journal of Engineering and Applied Sciences 2023, 16 (2): 44.55 

DOI: 10.3844/ajeassp.2023.44.55 

 

55 

References 

Makarios, T. K., & Athanatopoulou, A. (2022). Center of 

Stiffness, Principal Axes and Principal Start Point of 

Thin-Walled Open-Sections of Cores: A New 

Modified Calculation Technique Based on Vlasov 

Torsion Theory. Buildings, 12(11), 1804.  

  https://doi.org/10.3390/buildings12111804 

Terzi, V. G., & Athanatopoulou, A. (2021). Optimum 

torsion axis in multistory buildings under earthquake 

excitation: A new criterion based on axis of twist. 

Engineering Structures, 249, 113356. 

  https://doi.org/10.1016/j.engstruct.2021.113356 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Terzi, V. G., & Athanatopoulou, A. (2023). Dynamic 

optimum torsion axis under soil-structure interaction 

effects. Engineering Structures, 274, 115150. 

  https://doi.org/10.1016/j.engstruct.2022.115150 

Vlasov, V. Z. (2020). Thin-Walled Elastic Bars, 2nd ed.; 

Israel Program for Scientific Translations: Jerusalem, 

Israel, 1961. (In English), ID number LCCN 

62061955, pp. 493. 

  https://openlibrary.org/books/OL5870368M/Thin-

walled_elastic_beams 


