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ABSTRACT 

Recent studies suggest that epigenetic mechanisms are not only essential for the dynamic transcriptional 

regulation in embryonic and somatic stem cells, but are also actively involved in tumorigenesis: genes 

important for pluripotency are epigenetically regulated and aberrant epigenetic changes have been detected 

in virtually all human malignancies studied, including Hepatocellular Carcinoma (HCC). Infection with 

Hepatitis C Virus (HCV) is a major risk factor for the development of HCC. Despite the fact that HCV is a 

RNA virus without a DNA intermediate, recent studies demonstrate that HCV viral proteins may actively 

participate in epigenetic regulation of hepatic cancer stem cell phenotypes and induce HCC-specific 

epigenetic changes. Identification of host epigenetic alterations induced by HCV infection and epigenetic 

differences between hepatic cancer stem cells and the bulk non-tumorigenic cancer cells, may yield 

potential biomarkers for early detection, as well as therapeutic targets for HCV associated HCC.  
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1. INTRODUCTION 

1.1. HCV Infection Associated HCC is Increasing 

 Hepatocellular Carcinoma (HCC) is the fifth most 
common solid tumor worldwide and the third leading 
cause of cancer-related death, accounting for 
approximately 600,000 deaths per year worldwide 
(Bosch et al., 2005; El-Serag and Rudolph, 2007; 
Schutte et al., 2009; Thomas and Zhu, 2005; Tsai and 
Chung, 2010). Infection with either HBV or HCV, is the 
major risk factor for HCC worldwide, with at least one 

of the two viruses present in over 80% of HCC cases 
(Perz et al., 2006). More than 80% of HCC cases 
occurring in developing countries are due to HBV 
infection, which are preventable through effective 
childhood HBV vaccination (Kane, 2003). On the other 
hand, the recent increase in the incidence of HCC in 
Western countries is largely due to the HCV endemic. 
About 200 million people are infected with Hepatitis C 
Viruses (HCV) worldwide. More than two thirds of 
people with acute HCV infection will develop persistent 
HCV infection, leading to chronic hepatitis, liver 
cirrhosis and ultimately HCC (Grebely and Dore, 2011; 
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Micallef et al., 2006). It has been estimated that age-
adjusted HCC incidence rates have doubled between 
1985 and 2002 (El-Serag and Rudolph, 2007) and the 
incidence and mortality rates of HCC in the United 
States are likely to double again over the next 10-20 
years (El-Serag, 2002). Surgical resection or liver 
transplantation remains the most effective treatment 
options for HCC; however, very few patients are suitable 
for these treatments. Despite recent advances in HCV 
antiviral therapies, these therapies are only effective to 
prevent HCC in a small proportion of highest risk 
patients, as sustained viral clearance is difficult to 
accomplish among patients with liver cirrhosis (Tai and 
Chung, 2009). Therefore, it is imperative to elucidate the 
molecular mechanisms underlying HCV caused 
hepatocarcinogenesis, in order to identify early detection 
biomarkers as well as effective targeted therapies and 
thus improve clinical outcomes of HCV associated HCC.  

1.2. Cancer Stem Cells 

1.2.1. Potential Cancer Stem Cells  

 Recent studies support the hypothesis that cancer is 

derived from a small proportion of tumorigenic cells, 

called Cancer Stem Cells (CSCs), which are responsible 

for cancer initiation, proliferation, heterogeneity, as well 

as invasion and metastasis (Vlerken et al., 2012) (Fig. 

1A). Similar to normal Embryonic Stem Cells (ESCs), 

CSCs possess the capability of self-renewal and 

differentiation (Wu, 2008). They express established 

ESC markers, pluripotency transcription factors (Oct4, 

Sox2 and Nanog) and activate the embryonic signaling 

pathways, Hedgehog, Notch and Wnt (Harris et al., 

2012; Takebe and Ivy, 2010). Similar to ESCs, 

Epithelial-Mesenchymal Transition (EMT) plays an 

important role in CSCs, increasing the capacity for tumor 

invasion and metastasis (Ksiazkiewicz et al., 2012;  

Mani et al., 2008) (Fig. 1B). CSCs are also highly 

influenced by signals in their microenvironment and 

often reside in specialized niches within tissues (Li and 

Neaves, 2006). Finally, similar to ESCs, polycomb 

repressive protein complexes (PRC1 and PRC2) are also 

involved in CSCs to establish dynamic epigenetic profiles 

(Takebe and Ivy, 2010; Tysnes, 2010; Vlerken et al., 2012).  

 Several lines of evidence suggest that HCV infection 

is intimately linked to the presence of hepatic stem cells, 

such as Hepatic Progenitor Cells (HPCs) (Ali et al., 

2011; Machida et al., 2012; Wu et al., 2012). HPCs are 

small periportal cells capable of proliferation and 

differentiation into both hepatocytes and bile ductular 

epithelium (Clouston et al., 2005; Roskams, 2003). They 

express stem cell, hepatocyte and bile duct cell markers, 

including CD133, Nanog, α-Fetoprotein (AFP), CK19, 

Lin29 and c-Myc (Clouston et al., 2005; Oliva et al., 

2010). Their frequency increases with the severity of the 

liver disease and inversely correlated with response to 

treatment (Oliva et al., 2010; Tsamandas et al., 2006). 

Further, there is evidence that HCV infection directly 

induces HPCs and the presence of HPCs facilitates HCV 

replication. For example, HCV infection in vitro induces 

both cancer stem cell markers (DCAMKL-1, CK19, α-

fetoprotein, active c-Src) and a distinct tumor phenotype 

(Ali et al., 2011); expression of HCV NS5A gene 

coupled with alcohol intake induces stem cell 

regulator Nanog expression through the TLR4 

signaling pathway (Machida et al., 2012; 2009). 

Finally, it has been shown that HCV can infect 

Differentiated Human Hepatocyte-like cells (DHHs) 

from human ESCs and induced Pluripotent Stem Cells 

(iPSCs) and clinical HCV isolates reportedly infect 

HPCs with a higher efficiency than infection of 

mature hepatocytes (Wu et al., 2012). 

 We have previously characterized the gene 

expression pattern of a HCV replicon-containing 

hepatoma cell line using the Agilent whole human 

genome oligo microarrays 4×44k (Miltonic Biotech, 

Germany) (Blight et al., 2002). The Agilent Feature 

Extraction Software (FES) was used for initial 

processing of the microarray image files and Rosetta 

Resolver gene expression data analysis system (Rosetta 

Biosoftware) was used to build pair-wise ratios and for 

data normalization. We have detected up regulation of 

Octamer-binding protein 3 (Oct3, transcription factor, 

essential for embryonic stem cell pluripotency), Sex 

determining region Y-box 2 (Sox2, transcription factor 

required for stem-cell maintenance in the central nervous 

system) and suppressor of zeste 12 homolog (Suz12, a 

core component of Polycomb Group (PcG) proteins) in 

HCV replicon cells compared to parental HCV naïve 

cells (Table 1). Similarly, we have also detected the 

expression of EMT markers, such as down regulation of 

E-cadherin (CDH1) and cytokeratin 19 (KRT19) and up 

regulation of Vimentin (Vim). Using 

immunohistochemistry analysis, we have detected over 

expression of Enhancer of Zeste Homolog 2 (EZH2, 

histone lysine methyltransferase, a member of the PcG 

proteins) in HCC samples compared to normal liver 

tissues. These results provide further evidence that HCV 

infection might be directly involved in inducing EMT 

and hepatic stem cell phenotypes, which in turn may 

facilitate HCV replication. 
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Fig. 1. Cancer Stem Cells (CSC) and Epithelial Mesenchymal Transition (EMT) in hepatocarcinogenesis. (A) The stochastic model 

suggests that each cancer cell has the ability to generate the bulk tumor, while in cancer stem cell model, only a few of CSCs 

have the capability to generate the bulk tumor. (B) EMT and CSC are intimately connected. Epithelial cells undergoing EMT 

generate CSCs, which in turn are responsible for tumor growth (self-renewal), heterogeneity (bulk tumor) and invasion 

(metastasis) 

 

1.3. Epigenetic Regulation and Cancer Stem Cells 

 Normal stem cells involve complex molecular 

networks to achieve a flexible but precise transcription 

regulation of genes important for pluripotency and 

differentiation and epigenetic mechanisms are a key 

component of this dynamic transcriptional program. It 

is known that genes important for pluripotency are 

epigenetically regulated. For example, Oct 4 and Nanog 

genes are active in normal stem cells, their promoters 

are enriched with H3K4me3 marks and not methylated, 

they become silenced upon differentiation and their 

promoters are then enriched with H3K27me3 marks 

and undergo DNA methylation. On the other hand, 

developmentally regulated genes are characterized by 

the presence of both active and repressive histone 

marks in normal stem cells, which ensures their rapid 

transcriptional activation upon differentiation. 
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Table 1 Gene expression alteration in HCV replicon cells 

Gene Symbol Fold change Entrez gene name 

Genes involved in stem cells 

BMI1 -1.9 BMI1 polycomb ring finger oncogene 

CDKN2A -1.8 cyclin-dependent kinase inhibitor 2A (p16) 

CDX2 2.9 caudal type homeobox 2 

DLX1 5.5 distal-less homeobox 1 

DNMT3B 1.7 DNA (cytosine-5-)-methyltransferase 3 beta 

DNMT3L 2.5 DNA (cytosine-5-)-methyltransferase 3-like 

ISL1 12.0 ISL LIM homeobox 1 

KLF2 -14.7 Kruppel-like factor 2 (lung) 

KLF4 -4.7 Kruppel-like factor 4 (gut) 

PAX6 -2.9 paired box 6 

POU5F1 1.9 POU class 5 homeobox 1 (Oct3) 

RUNX1 -20.0 runt-related transcription factor 1 

Sox2 15.9 SRY (sex determining region Y)-box 2 

STAT3 -7.7 signal transducer and activator of transcription 3 

  (acute-phase response factor) 

SUZ12 2.3 suppressor of zeste 12 homolog (Drosophila) 

VDR 9.7 vitamin D (1,25- dihydroxyvitamin D3) receptor 

Genes involved in EMT 

CAMK2N1 2.8 calcium/calmodulin-dependent protein kinase II inhibitor 1 

CDH1 -1.5 E-cadherin 

KRT19 -11.1 keratin 19 

MAP1B 10.9 microtubule-associated protein 1B 

MST1R -1.9 macrophage stimulating 1 receptor 

  (c-met-related tyrosine kinase) 

SPP1 -50.1 secreted phosphoprotein 1 

TFPI2 32.3 tissue factor pathway inhibitor 2 

TGFB3 -11.7 transforming growth factor, beta 3 

TIMP1 -100.0 TIMP metallopeptidase inhibitor 1 

Vim 1.6 Vimentin 

VPS13A 2.3 vacuolar protein sorting 13 homolog A (S. cerevisiae) 

 

In the context of cancer stem cells, virtually all known 

CSC markers are epigenetically regulated, either by 

DNA methylation or histone modification. Thus, tumor 

cells have the ability to switch cancer stem cell markers 

on and off, in order to generate tumor heterogeneity. 

This nature applies to both tumorigenic cancer stem cells 

and the bulk of non-tumorigenic cancer cells. It has been 

proposed that aberrant epigenetic changes might explain 

fundamental differences between normal stem cells and 

cancer stem cells. Proliferation of normal stem cells is 

tightly regulated, while cancer stem cells have higher 

proliferation rate. This in part might be explained by the 

different epigenetic regulation of Polycomb protein 

complex targets. In normal stem cells, developmentally 

regulated genes are repressed by PcGprotein complexes 

through chromatin modification, which is transient and 

reversible. In neoplastic cells, these PcG target genes 

become hypermethylated, which is stable and 

irreversible, thus ensuring higher proliferation of CSCs. 

In addition, PcG proteins, including BIM1 and EZH2, 

are frequently over expressed in cancer, further locking 

CSCs in the proliferation mode. It has been hypothesized 

that the associated epigenetic differences are responsible 

for the phenotypic differences between tumorigenic 

CSCs and non-tumorigenic bulk cancer cells and that 

epigenetic reprogramming is used by CSCs to promote 

greater tumor heterogeneity.  

 At least some data suggest that HCV infection might 

directly participate in the generation of liver cancer stem 

cells. BMI1 is the key regulatory component of the 

Polycomb Regulatory Complex 1 (PRC1) (Cao et al., 

2005). It is essential for self-renewal of both 

hematopoietic stem cells as well as neural stem cells 

through Ink4a/Arf locus (Bruggeman et al., 2005;   

Oguro et al., 2006). Similarly, BMI1 enhances self-

renewal of hepatic stem cells through repression of 

Ink4a/Arf locus (Chiba et al., 2010). We have previously 

shown that CDKN2A is preferentially methylated in 

HCV caused HCC (Feng et al., 2010) and HCV infection 

directly down regulates CDKN2A. This suggests that 
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persistent HCV infection might be actively involved in 

maintaining pluripotency of hepatic cancer stem cells. 

Future studies of epigenetic profiling of HCV infected 

hepatocytes and potential hepatic progenitor cells are 

needed to elucidate the epigenetic mechanisms involved 

in HCV infection, hepatic cancer stem cells and 

hepatocarcinogenesis. 

 With respect to tumor heterogeneity, it is interesting 

to consider the extremely marked heterogeneity of HCV 

and HCV is clearly capable of broad regulation of 

cellular genes. Thus, we hypothesize that evolution and 

adaptation of HCV to tumor cellular conditions may 

serve to generate a major growth advantage for 

successful HCCs. HCV also exerts profound negative 

effects on cellular innate immunity, including anticancer 

regulatory pathways. This diversification potential may 

provide a powerful alternative mechanism for HCV as an 

oncogenic virus. 

1.4. Epigenetic Alterations in HCC 

 Cancer risk is determined by the interaction between 

individual genetic variations and environmental exposure 

and environmental exposure is manifested as epigenetic 

alterations (Brait and Sidransky, 2011). Epigenetics refer 

to heritable changes of gene expression that are not 

mediated by alterations in the primary nucleotide gene 

sequence. Among these stable but reversible changes, 

DNA methylation and specific post-translational 

modifications on NH2-terminal histone tails, are the key 

mechanisms that control chromatin condensation and 

gene expression (Fig. 2). In general, acetylation of 

histone H3 and H4 is mostly associated with gene 

expression, while DNA methylation, di- and 

trimethylation of H3 lysine 9 (H3K9) and trimethylation 

of H3K27, cause or contribute to the condensation of 

chromatin, recruitment of Heterochromatin Protein 1 

(HP1) and PcGprotein complexes. These latter events 

ultimately lead to gene silencing. 

 DNA methylation, the addition of a methyl group to 

the cytosine in the CpGdinucleotides, plays an important 

role in normal development and in gene expression 

regulation. The majority of CpGdinucleotides are 

methylated in the genome, except when they are 

clustered as a CpGisland located in the promoter regions 

of many housekeeping genes. In normal cells, such 

promoter-associated CpG islands are usually not 

methylated, regardless of whether the gene is transcribed 

or not. In tumor cells, CpG islands in the promoter 

region of many tumor suppressor genes become 

methylated and are associated with transcriptional 

silencing of these genes. Consequently, methylation of a 

CpG island associated with a tumor suppressor gene is as 

potent as genetic mutations with respect to gene 

inactivation. Both global hypomethylation and gene-

specific hypermethylation, have been reported in 

virtually every tumor type tested and are early events in 

tumorigenesis, occurring in precursor lesions of many 

cancer types (Belinsky et al., 1998; Esteller et al., 2000; 

Evron et al., 2001; Tsuda et al., 2000; Umbricht et al., 

2001). Unlike genetic mutations, DNA methylation 

usually occurs at a fixed location in the promoter region 

of the gene, facilitating the development of clinical 

suitable assays. In addition, DNA methylation changes 

can be detected noninvasively in blood or other bodily 

fluids, making them ideal biomarkers. Finally, in contrast 

to genetic alterations, epigenetic changes are potentially 

reversible, thus are attractive therapeutic targets. In fact, 

5-azacytidine, a DNA methyltransferase inhibitor, has 

been FDA approved for the treatment of myelodysplastic 

syndrome and Suberoylanilidehydroxamic Acid 

(SAHA), a histone deacetylase inhibitor, has been 

approved for the treatment of T cell cutaneous 

lymphoma. More inhibitors are currently being 

developed and tested in clinical trials for both 

hematological and solid tumors (Gal-Yam et al., 2008).  

1.5. DNA Methylation Changes Associated with 

Specific Etiologies 

 Several studies havetried to identify specific DNA 

methylation patterns associated with various risk factors 

in hepatocarcinogenesis, such as viral infections, 

aflatoxin exposure and alcohol consumption. p16 

methylation was present in early stages of HBV-

associated hepatocarcinogenesis, not only in high 

frequency in HCCs, but also was in Cirrhotic Nodules 

(CNs) and Dysplastic Nodules (DNs), known precursor 

lesions of HCCs (Shim et al., 2003). Further, p16 

methylation has been shown to preferentially occur in 

liver tissues with HBV infections compared to liver 

tissues without HBV infection (Jicai et al., 2006). 

Although a few studies did not detect differences of p16 

methylation between HBV-HCCs and HCV-HCCs 

(Fukai et al., 2005; Kaneto et al., 2001), several studies 

consistently observed higher frequency of p16 

methylation in HCV-HCCs than HBV-HCCs (Katoh et al., 

2006; Li et al., 2004; Narimatsu et al., 2004). However, 

whether p16 methylation occurs in HCCs without 

hepatitis virus infection is inconclusive, with some 

studies reporting no methylation (Fukai et al., 2005; 

Li et al., 2004), while others reported 31-50% 

methylation (Katoh et al., 2006; Narimatsu et al., 2004).  
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Fig. 2. Multiple epigenetic mechanisms influence gene expression. DNA methylation of the gene promoter usually leads to 

transcription inactivation, while histone modifications are either associated with active (H3K9Ac, H3K4me, KeK36me) or 

inactive (H3K9me, H3K27me) transcription 

 

Specific gene methylations were also reported to be 

associated with viral infections. Methylation of four 

genes (MINT31, p16, GSTP1 and RASSF1A) was more 

frequent in HCC associated with viral infections    

(Katoh et al., 2006). Methylation of CIITA was 

significantly associated with chronic but not acute HBV 

infection (He et al., 2006). Methylation of CTGF, 

RARB, E-cadherin and p73 was more frequent in HBV-

associated HCCs than in HCV-associated HCCs    

(Chiba et al., 2005; Yang et al., 2003), while RUNX3, 

APC, SOCS-1 and p14 were preferentially methylated in 

HCV-HCC (Mori et al., 2005; Yang et al., 2003). 

However, it is not known whether the observed 

difference of gene specific hypermethylation was 

statistically or clinically significant. Several recent 

studies also linked environmental exposures to specific 

DNA methylation patterns. High frequencies of p16, 

GSTP1, MGMT and RASSF1 methylation were 

significantly associated with high level of AFB1-DNA 

adducts in HCC tumors (Zhang et al., 2002; 2003; 2005; 

2006). Although these studies suggest that different gene 

specific hypermethylation might be associated with HCCs 

of different etiologies, systematic studies on a large number 

of HCC cases are needed to confirm these observations. 

 We previously conducted a retrospective study to 

identify tumor suppressor genes differentially methylated 

in HCV-associated HCC (Feng et al., 2010). DNA 

methylation status of 10 genes (APC, CCND2, 

CDKN2A, GSTP1, HOXA9, RARB, RASSF1, RUNX, 

SFRP1 and TWIST1) was determined using MethyLight 

assays on 65 archived liver tissue blocks (25 normal, 12 

HBV-HCC and 28 HCV-HCC).Five genes (APC, 

CDKN2A, HOXA9, RASSF1 and RUNX) were 

significantly more frequently methylated in malignant 

liver tissues than normal liver tissues. Among HCC 

cases, HOXA9, RASSF1 and SFRP1 were methylated 

more frequently in HBV positive HCC cases while 

RARB and CDKN2A were methylated only in HCV 

positive HCC cases. (p16) was significantly more 

frequently methylated in HCV positive HCC cases. 

Subsequently, immunohistochemistry analysis of 

CDKN2A (p16) protein expression on 26 HCC cases 

demonstrated the inverse correlation between the protein 

expression of CDKN2A (p16) and DNA methylation of 

CDKN2A (p16) (unpublished data). Interestingly, 

expression of both CDKN2A (p16) and RARB was 

reduced in HCV replicon cells (Huh7.5 hepatomasubline 

with genotype 1a strain H77 replicon (FL-Neo replicon)) 

by gene expression microarray analysis (Blight et al., 

2002), while de novo DNA methyltransferases 3L and 

3B were up regulated 2.5 and 1.7 fold respectively. 

Finally, CDKN2A (p16) promoter is associated with 

decreased histone 3 lysine 27 trimethylation (H3K27m3) 

in HCV replicon cells (unpublished data).  
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1.6. DNA Methylation Changes Associated with 

Disease Progression 

 Several candidate gene approach studies have 

reported on the role of DNA methylation of various 

panels of genes during the stepwise progression of HCC. 

Methylation of several genes occurred not only in HCC 

and its precursor lesions, but also in chronic hepatitis and 

liver cirrhosis, suggesting that these changes are early 

events during HCC progression. DNA methylation of 

four genes (Col1A2, IGFBP2, CTGF, fibronectin (1) 

increased from normal liver, chronic hepatitis, liver 

cirrhosis to hepatoma (Chiba et al., 2005). Frequency of 

E-cadherin promoter methylation increased from 

dysplastic nodules to early stage and late stage HCCs 

(Kwon et al., 2005). Similarly, methylation of p16, p15 

and SFRP1 was not only present in HCC, but was also 

present at low frequencies in chronic hepatitis and liver 

cirrhosis samples (Fukai et al., 2005; Shih et al., 2006). 

Further, methylation analysis in various liver tissues 

demonstrated that the number and frequency of genes 

methylated progressively increased in liver cirrhosis, 

dysplastic nodules and HCC, supporting the hypothesis 

that CpG island methylation of tumor-related genes is an 

early and frequent event and methylation changes 

accumulate during a multistep hepatocarcinogenesis  

(Lee et al., 2003).  

1.7. Global DNA Methylation Profiling 

 Recently several genome-wide DNA methylation 

profiling studies have been performed on HCC tissues, 

using MeDIP-chip (Deng et al., 2010), CpG island 

Amplification Microarray (MCAM) (Gao et al., 2008; 

Shitani et al., 2012), IlluminaGoldenGate assay 

(Archer et al., 2010; Shin et al., 2010) or Illumina 

humanmethylation27 bead array (Ammerpohl et al., 

2012; Hernandez-Vargas et al., 2010; Shen et al., 2012). 

However, most of these studies were not designed to 

investigate the direct role of HCV infection in epigenetic 

changes during HCC development: some had less than 5 

HCV-HCC cases (Ammerpohl et al., 2012; Deng et al., 

2010), lacked normal controls and only adjacent non-

cancerous liver tissues were included (Hernandez-

Vargas et al., 2010; Shen et al., 2012; Shin et al., 2010; 

Shitani et al., 2012), while others did not stratify DNA 

methylation changes by different etiological agents 

(Ammerpohl et al., 2012; Gao et al., 2008; Shin et al., 

2010). At least one study indicated that certain DNA 

methylation changes already occurred in liver cirrhosis 

caused by HCV infection and persisted in HCC and 

specific DNA methylation patterns are associated with 

either cirrhosis or HCC (Ammerpohl et al., 2012). Thus 

far, the largest global methylation profiling study 

included 62 pairs of tumor/adjacent non-tumorous liver 

tissues and methylation of those candidate genes was 

detected in plasma samples from HCC patients. However, 

most of the HCCs included were HBV+ (Shen et al., 2012). 

Only three studies attempted to identify HCV-HCC 

specific methylation changes. Archer et al. (2010) 

compared DNA methylation changes using the Illumina 

Golden Gate array on 76 liver tissues, including 20 

HCV+ HCC and adjacent non-tumorous liver tissues, 16 

HCV+ cirrhotic liver tissues and 20 normal liver tissues. 

Both cirrhotic and HCC-specific methylation changes 

were identified. Deng et al. (2010) analyzed DNA 

methylation changes by methylated DNA 

immunoprecipitation-on-chip on 3 HBV-HCC, 3 HCV-

HCC and 3 normal liver tissues and showed that DNA 

methylation preferentially occurred in HCV-related HCC 

cases. Hernandez-Vargas et al. (2010) compared DNA 

methylation changes in 30 HCC tumors with various 

etiologies (HBV, HCV, alcohol) and matched 

surrounding non-tumorous liver tissues using Illumina 

bead array technology and identified DNA methylation 

changes associated with specific etiological agents. These 

studies suggest HCV infection induces specific DNA 

methylation changes in HCC; however, the direct role of 

HCV viral proteins in epigenetic regulation is unclear. 

1.8. Histone Modification Changes in HCC 

 Besides DNA methylation changes, alterations in 

histone modification patternshave been observed in HCC 

(Pogribny and Rusyn, 2012). Acetylation and 

methylation of histone lysine residues are the best-

studied histone modifications so far. Usually, histone 3 

lysine 9 acetylation (H3K9Ac) and histone 3 lysine 4 

methylation (H3K4Me) are associated with active 

transcription, while histone 3 lysine 9 and 27 

methylation (H3K9Me and H3K27Me) are associated 

with gene silencing (Kouzarides, 2007). Both global and 

gene specific histone modifications have been detected 

in HCC tissues. For example, compared to normal liver 

tissues, HCC has higher level of histone H3 lysine 27 

methylation (H3K27Me) (Cai et al., 2011), lower level 

of global histone H4 lysine 20 methylation (H4K20Me) 

and undetectable levels of H3K4Me (Magerl et al., 

2010). Silencing of p21 (WAF1), CTGF, CYR61 and 

NIPSNAP1 is associated with reduced levels of histone 

H3 and H4 lysine acetylation (Chiba et al., 2004), 

silencing p16 and RASSF1A is associated with increased 

level of H3K9Me, silencing PGR and ERα is associated 

with H3K27Me (Kondo et al., 2007; Yao et al., 2010), 
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while silencing of RIZ1 is associated with both H3K9Me 

and promoter DNA methylation (Zhang et al., 2010). 

Aberrant expression of histone modification enzymes 

have also been detected in HCC. For example, Histone 

Deacetylases (HDACs) are aberrantly expressed in HCC 

and panobinostat, a novel pan-HDAC inhibitor, has 

shown anti-tumor efficacy in preclinical models of HCC 

(Lachenmayer et al., 2012). Histone 

methyltransferases(SMYD3, RIZ1 and EZH2) are also 

aberrantly expressed in HCC (Hamamoto et al., 2004; 

Jiang et al., 1999; Sudo et al., 2005). Mechanistically, it 

has been shown that HCV infection inhibits histone 

H4 arginine argininemethyltransferase 1 (PRMT1) 

through upregulation of Protein Phosphatase 2A 

(PP2Ac) (Duong et al., 2010). Currently, histone 

modification analysis in HCC has been limited to 

phenotypic characterization. The lack of simple 

association of individual histone modifications with 

gene expression and disease progression suggest the 

existence of complex networks among various histone 

modifications and DNA methylations. Future studies 

focusing on simultaneous profiling of DNA 

methylation and chromatin modification should help 

delineate epigenetic mechanism during HCC 

development. 

1.9. Carcinogenesis of HCV Associated HCC 

1.9.1. Direct Oncogenic Role of HCV Genes 

 The precise molecular mechanism underlying HCV 

infection caused hepatocarcinogenesis is not fully 

understood. Because HCV is an RNA virus that does not 

involve a DNA intermediate, it has been proposed that 

HCV infection leads to hepatocarcinogenesis indirectly 

through viral induced inflammation and oxidative stress. 

Subsequently, this microenvironment sets the stage for 

malignant transformation of hepatocytes through 

accumulation of both genetic and epigenetic changes 

(Levrero, 2006). However, inflammation alone could not 

fully explain HCV induced hepatocarcinogenesis, as 

patients with autoimmune hepatitis rarely develop HCC 

despite the presence of persistent liver inflammation and 

cirrhosis (Fujinaga et al., 2011). More recent studies 

have suggested that HCV might play a more direct role 

in HCC carcinogenesis through interaction between viral 

and cellular proteins (Banerjee et al., 2010) (Fig. 3). At 

least four of the ten HCV viral genes (core, NS3/4A, 

NS5A and NS5B) can potentiate oncogenic 

transformation in vitro (Banerjee et al., 2010). For 

example, HCV core protein can transform primary Rat 

Embryo Fibroblast (REF) cells together with the H-ras 

gene (Moriya et al., 1998; Ray et al., 1996); HCV 

NS3/4A protein can transform NIH 3T3 cells 

(Sakamuro et al., 1995); HCV NS5A protein 

differentially modulates transcription of p21WAF1 and 

PCNA, thus promotingmurine fibroblast cell growth with 

a tumorigenic phenotype (Ghosh et al., 1999). Although 

NS5B fails to regulate cell cycle progression in Huh7 

cells, it does stimulate proliferation and transformation in 

U2OS osteosarcoma cells (Munakata et al., 2005). 

Finally, transgenic mice expressing the HCV core 

protein develop HCC resembling early stage of HCC in 

human patients with chronic hepatitis C infection 

(Moriya et al., 1998). Since most of the putative 

transforming potentials of the HCV proteins have been 

defined using in vitro systems and laboratory HCV 

strains, it is unclear whether these observations are 

applicable to HCV infection in vivo. Further, the effects 

of HCV quasispecies in these proposed tumorigenic 

mechanisms need further investigation. 

1.10. HCV Viral Proteins and Epigenetic 

Alterations in HCC 

 Conventionally, it has been proposed that HCV 
induces epigenetic changes either through the generation 

of Reactive Oxygen Species (ROS) or chronic 

inflammation (Nishida, 2010). More recent studies 
suggest that HCV viral genes might be directly involved 

in epigenetic regulation. For example, HCV core protein 
from HCV genotype 1b can inhibit CDKN2A (p16) 

expression by inducing promoter methylation via up 

regulation of DNMT1 and DNMT3b in HepG2 cells 
(Park et al., 2011), while HCV core protein induces 

CDH1 methylation thus reducing its expression via up 
regulation of SIRT1 in Huh7 cells (Ripoli et al., 2011). 

Similarly, it has also been shown that HCV core protein 

induces RASSF1A promoter methylation through 
upregulatingexpression of SET and MYND domain 

containing 3 (SMYD3), a novel histone 
methyltransferase, in cholangiocarcinoma cells (Guo et al., 

2011). However, the presence of HCV biovariability 
strongly underscores the importance of using clinical 

HCV isolates to investigate hepatocarcinogenesis. A 

recent study demonstrated that only liver-cancer derived 
HCV core protein is capable of shifting TGF-β responses 

from cytostatic effects to EMT development (Battaglia et 

al., 2009). It is important to determine whether HCV 

variants isolated from clinical samples and their encoded 

viral proteins can induce specific HCC-specific DNA 
methylation changes when expressed in hepatoma cell 

lines. We hypothesize that DNA methylation changes 
directly induced by HCV infection are likely the driving 

force for tumor development and maintenance. 
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Fig. 3. Genome organization of HCV. HCV encodes 10 viral genes, encoding 4 structural (Core, E1, E2, p7) and 6 non-structural 

(NS2, NS3, NS4A, NS4B, NS5A, NS5B) proteins 

 

 
 

Fig. 4. Development of stem cell specific therapy. Based on the cancer stem cell model, the conventional cancer therapy will 

eradicate the bulk of tumor cells but not CSCs, which will repopulate and lead to tumor relapse. The CSC-specific epigenetic 

therapy specifically targets CSCs and the remaining bulk tumor will spontaneously regress 

 

1.11. Summary and Future Directions 

 The development of high-throughput methods for 

analysis of epigenetic alterations in tumors have 

provided convincing evidence that epigenetic alteration 

is as important as genetic mutations in tumorigenesis. 

First, aberrant DNA methylation has been detected in 

virtually all types of cancer studied so far and is an early 

event during tumorigenesis (Jones and Baylin, 2002; 

2007; Laird, 2003). Second, proteins important for 

epigenetic regulation are frequently mutated during 

tumor development (Baylin and Jones, 2011). Third, 

chemoresistance can be caused by epigenetic changes 

(Crea et al., 2009; Teodoridis et al., 2004). Fourth, both 

EMT and differentiation of tumor initiating cells are 

epigenetically regulated (Jordan et al., 2011; Scheel and 

Weinberg, 2012). Finally, DNA methyltransferase and 

histone deacetylase inhibitors have shown good efficacy 

in treating hematopoietic malignancies (Gryder et al., 

2012; Popovic and Licht, 2012; Yang et al., 2010). 

However, little is known about which epigenetic changes 

are the cause and which one are the consequence of 

tumor development and maintenance. The ability to 

distinguish these epigenetic changes will not only 

provide better diagnostic markers, but also novel 

therapeutic and prevention targets (Fig. 4). 
 Characterization of epigenetic landscapes in hepatic 
cancer stem cells will not only identify markers for 
tumor detection, but also elucidate the mechanism of the 
origin of hepatic cancer stem cells. Current evidence 
suggest that cancer stem cells can either originate from 
normal stem cells via accumulation of aberrant 
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epigenetic profiles and genetic mutations, or from 
differentiated cells acquiring stem cell like properties. 
Perhaps the greatest prospect is the possibility that 
understanding the mechanisms driving epigenetic 
differences between normal and hepatic cancer stem 
cells will help in the discovery of novel therapies 
specifically and efficiently targeting hepatocellular 
carcinoma without altering normal tissue homeostasis.  

2. CONCLUSION 

 HCV c Recent studies suggest that epigenetic 
mechanisms are not only essential for the dynamic 
transcriptional regulation in embryonic and somatic stem 
cells, but are also actively involved in tumorigenesis: 
genes important for pluripotency are epigenetically 
regulated and aberrant epigenetic changes have been 
detected in virtually all human malignancies studied, 
including Hepatocellular Carcinoma (HCC). Infection 
with Hepatitis C Virus (HCV) is a major risk factor for 
the development of HCC. Despite the fact that HCV is a 
RNA virus without a DNA intermediate, recent studies 
demonstrate that HCV viral proteins may actively 
participate in epigenetic regulation of hepatic cancer 
stem cell phenotypes and induce HCC-specific 
epigenetic changes. Identification of host epigenetic 
alterations induced by HCV infection and epigenetic 
differences between hepatic cancer stem cells and the 
bulk non-tumorigenic cancer cells, may yield potential 
biomarkers for early detection, as well as therapeutic 
targets for HCV associated HCC.  
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