
Journal of Computer Science 2 (4): 373-381, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Adnan Rawashdeh, IT Department, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710,
Karak, Jordan

373

A New Software Quality Model for Evaluating COTS Components

Adnan Rawashdeh and Bassem Matalkah

IT Department, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710, Karak, Jordan

Abstract: Studies show that COTS-based (Commercial off the shelf) systems that are being built
recently are exceeding 40% of the total developed software systems. Therefore, a model that ensures
quality characteristics of such systems becomes a necessity. Among the most critical processes in
COTS-based systems are the evaluation and selection of the COTS components. There are several
existing quality models used to evaluate software systems in general; however, none of them is
dedicated to COTS-based systems. In this contribution, an analysis study has been carried out on
several existing software quality models, namely: McCall’s, Boehm, ISO 9126, FURPS, Dromey,
ISO/IEC TR 15504-2 1998(E), Triangle and Quality Cube, for the purpose of evaluating them and
defining a ground to build a new model specializing in evaluating and selecting COTS components.
The study also outlines limitations found in the existing models, such as the tendency to ignore a
certain quality feature like Functionality or the failure to describe how the quality measurement in
these models has been carried out. As a result of this analysis, a new model has been built that supports
a standard set of quality characteristics suitable for evaluating COTS components, along with newly
defined sets of sub-characteristics associated with them. The new model avoids some of the limitations
found in the existing models. The new model ignores quality characteristics that are not applicable to
COTS components and is empowered with new ones that are. In addition, it matches the appropriate
type of stakeholders with corresponding quality characteristics; such a feature is missing in all existing
models. The objective of the new model is to guide organizations that are in the process of building
COTS-based systems to evaluate and choose the appropriate products, and that is essential to the
success of the entire system.

Key words: COTS, Stakeholders, ISO 9126 Model, Dromey Model, McCall’s Model, Boehm’s

Model, FURPS Model, and Quality Model

INTRODUCTION

 Over the past decade, the use of commercial off-
the-shelf (COTS) products to implement significant
portions of a software system has grown in both
government and industry. The use of COTS products
emphasizes buying commercial capabilities rather than
building unique ones from scratch. Organizations that
adopt a COTS-based system approach generally expect
either more rapid or less costly system construction.
These organizations also hope to stay in step with the
technological advancements happening in the
competitive marketplace. Government organizations are
particularly encouraged to use COTS products by
acquisition reform regulations. The use of COTS
products can indeed have a beneficial effect. For
example, NASA (National Aeronautics and Space
Administration) successfully employed COTS products
in reengineering the Hubble Space Telescope
Command and Control system[1].
 Quality is a functional and artistic measurement
used, for instance, to specify user satisfaction with a
product, or how well the product performs compared to
similar products. A model is an abstract form of reality,

enabling details to be eliminated and an entity or
concept to be viewed from a particular perspective.
There are all kinds of models: cost estimation models,
quality models, maturity models, etc. Models can be
presented in different ways, such as in the form of
equations, functions or diagrams. This makes it possible
to show how components are related, so they can be
examined, their relationships understood and opinions
formed. This is one reason why a quality model has
become essential for ensuring that a firm product and
process meets customers’ needs.
 In the literature of quality models, the reader can
observe that different authors have proposed different
models, for example: McCall’s quality factors proposed
in 1976, Barry Boehm’s quality model presented in
1978, FURPS in 1987, ISO (International Standard
Organization) proposed the quality attribute ISO 9126
in 1991, and Dromey model in 1996. Such models are
intended to evaluate the quality of software in general;
none of the models is specialized in or dedicated for
COTS-based systems. Thus it is likely they include
characteristics that are not necessarily applicable to
COTS components.

J. Computer Sci., 2 (4): 373-381, 2006

 374

 Using COTS software products in large systems
provides many benefits, including the potential of rapid
delivery to end users, shared development costs with
other customers, reusability of the final application due
to the reuse of software components already tested and
validated, and the opportunity to expand capacity and
performance as improvements are made in the products.
For systems that depend on COTS products, the
evaluation and selection of appropriate products is
essential to the success of the entire system. Yet many
firms struggle during the evaluation and selection
process. In[2] Dean, John et al define a COTS product as
one that is (i) sold, leased, or licensed to the general
public, (ii) offered by a vendor trying to profit from it,
(iii) supported and evolved by the vendor, (iv) available
in multiple identical copies, or (v) used without
modification of the internals.
 Software development is increasingly becoming an
“acquire and glue” process. How do you know when
you can trust a COTS component to do what you expect
it to, in your system? Obviously, software certification
is viable. In 1997 an estimated 25.5% of a typical
corporation’s software portfolio was COTS software.
Forecasts had that figure rising in 1998 to around
28.5% and exceeding 40% in the subsequent years[3].
 A quality model has become an important
requirement to avoid purchasing COTS of questionable
quality. A starting point for a quality model might be to
consider some of the existing quality approaches. In[3],
Jeffrey also suggested the software certification
triangle, software certification might be one or more of
three approaches:

* accrediting developers for demonstrating specific

skill sets
* assessing the codes behavior, and
* certifying that processes are properly followed.
These are shown in Fig. 1 below.

Fig. 1: The software quality certification triangle[3]

 The McCall’s, Boehm’s, FURPS, ISO/IEC 9126,
ISO/IEC TR 15504-2 1998(E) and Dromey’s are called
hierarchy models, whereas Triangle and Quality Cube
are called non-hierarchy models. All of the above
models have been studied, and analyzed with the

purpose of developing a new model that: (i) overcomes
some of the existing limitations, (ii) features standard
quality characteristic and associated sub-characteristics
integrated from hierarchies and non-hierarchical models
in an attempt to combine the advantages of both types,
and (iii) associates all categories of stakeholders
involved in the process with the appropriate set of
quality characteristics. As a result, the new model will
be utilized as a tool for evaluating and selecting the
appropriate COTS product.

Analysis study of selected hierarchy and non-
hierarchy quality models: The choice of existing
models to be evaluated here was based on the most
standard and well-known quality models. Among the
hierarchy the following models have been described:
 McCall’s model for software quality combines
eleven criteria around product operations, product
revision, and product transitions. These include:
Correctness, Reliability, Efficiency, Integrity, Usability,
Maintainability, Testability, Flexibility, Portability,
Reusability and Interoperability.
 McCall’s Model is used in the United States for
very large projects in the military, space, and public
domain. It was developed in 1976, by the USAir-force,
ESD (Electronic System Decision), RADC (Rome Air
Development Center) and GE (General Electric), with
the aim of improving the quality of software products[4].
 The main idea behind McCall’s model is to assess
the relationships among external quality factors and
product quality criteria. External quality is quality as
measured by the customers; internal quality is quality as
measured by the programmers[5,6]. McCall’s model is
based on three aspects of software: product operation
refers to the product’s ability to be quickly understood,
product revision is related to error correction, and
system adaptation, product transition is related to
distributed processing, together with rapidly changing
hardware, is likely to increase its importance.
One of the major contributions of the McCall model is
the relationship created between quality characteristics
and metrics, although there has been criticism that not
all metrics are objective. One aspect not considered
directly by this model was the Functionality of the
software product[7].
 Boehm added some characteristics to McCall’s
model with emphasis on the Maintainability of a
software product. Also this model includes
considerations involved in the evaluation a of software
product with respect to the utility of the program.
However it is similar to McCall’s in that it presents a
hierarchy of characteristics, each of which contributes
to overall quality. His model is based on a wider range
of characteristics and incorporates 19 criteria. It has
been noted that Boehm’s notation of successful
software includes characteristics of hardware
performance that are missing in McCall model[8].

J. Computer Sci., 2 (4): 373-381, 2006

 375

 Boehm’s model looks at utility from various
dimensions, considering the types of user expected to
work with the system once it is delivered. General
utility is broken down into Portability, Utility and
Maintainability. Utility is further broken down into
Reliability, Efficiency and Human Engineering.
Maintainability is in turn broken down into Testability,
Understandability and Modifiability.
 However, Boehm’s model contains only a diagram
without any suggestion about measuring the quality
characteristics.
 The FURPS model proposed by Robert Grady and
Hewlett-Packard Co. decomposes characteristics into
two different categories of requirements:

* Functional requirements: Defined by input and

expected output.
* Non-functional requirements: Usability,

Reliability, Performance, and Supportability.

 FURPS takes into account the five characteristics
that make up its name: Functionality, Usability,
Reliability, Performance, and Supportability. One
disadvantage of the FURPS model is that it fails to take
into account the software product’s Portability[7].
 In reply to the software industry’s need to
standardize the evaluation of software products using
quality models, the ISO (International Standard
Organization) proposed a standard, which specifies six
areas of importance for software evaluation, and, for
each area, specifications that attempt to make the six
areas measurable, these include: Functionality,
Reliability, Usability, Efficiency, Maintainability and
Portability. One of the advantages of the ISO 9126
model is that it identifies the internal and external
quality characteristics of a software product. On the
other hand, it does not show very clearly how these
aspects can be measured[7].
 Dromey proposed a model consisting of eight high-
level quality attributes, namely the same six from ISO
9126 plus Reusability and Process Maturity[9,10]. He
suggested a more dynamic idea for modeling the
process on three prototypes concerning quality. These
are:

* implementation quality model
* requirements quality model, and
* design quality model. Dromey’s model seeks to

increase understanding of the relationship between
the attributes (characteristics) and the sub-attributes
(sub-characteristics) of quality. It also attempts to
pinpoint the properties of the software product that
affect the attributes of quality[7]. The disadvantage
of the Dromey model is associated with Reliability
and Maintainability. It is not feasible to judge both
attributes Reliability and Maintainability of a
system before it is actually operational in the
production area.

 Among the non-hierarchy, Triangle and Quality
Cube models have been described. In[3] Jeffrey Voas
suggested that software quality certification might take
one or more of three approaches: (i) accrediting
developers for demonstrating specific skills sets, (ii)
assessing the code behavior, and (iii) certifying that
processes are properly followed. The three distinct
approaches are shown in Fig. 1 above. Although you
can approach software certification in any one of these
ways, a combination of the three provides a more
balanced approach. This is preferable, since any one of
the three can be inadvertently misapplied[3].
 In[11] Nagib et al discussed the ‘totality of quality’
concept in information system design. He stated that the
conventional design in software engineering is initiated
with a set of given requirements and the task of the
designer is to find the most efficient way to satisfy
these given requirements. This kind of design could be
called ‘efficiency-design’. However, no matter how
efficient the system design is, it won’t be useful if the
given requirements are not the real requirements of the
system users. So the design should also be effective,
and this is the essential characteristic of the ‘total
quality movement’ and the new methodologies that are
emerging in software engineering (such as prototyping,
and joint application design) the requirements are to be
defined by the users of the system. The designer should
design the right system, in addition to designing the
system right. This is the essence of the ‘total quality
movement’. The meaning of the term ‘design’ includes
both senses: the design as a product and the design as a
process. The system designed (the product) is different
to the system of human activities (the process) through
which the product-system is being designed. Both
product and process could be objective of efficiency-
design and effectiveness-design. There are four kinds of
qualities: product-efficiency, product-effectiveness,
process-efficiency and process-effectiveness. Putting
these together, Fig. 2 shows our own illustration of the
Quality Cube model described in[11].

 Fig. 2: The quality cube model

 The disadvantage of such non-hierarchy models is
the lack of identifying sub-attributes for the associated
high level attributes. In addition, it is not clear how to
measure the quality of those attributes.

J. Computer Sci., 2 (4): 373-381, 2006

 376

 The quality characteristics found in the majority of
the models are: Efficiency, Reliability, Mainability,
Portability, Usability and Functionality, these have been
present in more recent models, as described above. In
order to examine, compare and come to a conclusive
result, we have prepared Table 1 below. The table
shows six hierarchy models among the ones that have
been studied here, each associated with its software
quality characteristics.
 With this tabular illustration, it becomes easy to
observe the models that support a wider range of
characteristics in comparison to the ones that support
fewer features. For example, it can be seen clearly that
ISO 9126 and McCall support more characteristics than
Boehm, FURPS and Dromey. Furthermore we can
observe the common characteristics that are supported
by almost all of the models, namely: Efficiency,
Reliability, Functionality, Mainability, Portability, and
Usability; because of this general agreement, the six
characteristics can be observed as the standard
requirements for any new model. This is a useful
conclusion to be considered in our new model.
Therefore, the general agreement on the six
characteristics, in addition to their applicability for
COTS components, supports our decision to specify
them as the standard requirements for our new model.
Table 1 also facilitated the projection of the most
appealing model among the existing ones, and that is
the ISO 9126. Therefore making the ISO 9126 our
starting point for building the new model with respect
to the others is a justifiable decision.

Addressing the problem: There is no general
consensus on the quality model which can fit into all
types of applications, considering the different
classifications: McCall’s, Barry Boehm’s, ISO 9126,
FURPS, Dromey, Triangle, and Quality Cube models.
McCall’s ignored Functionality, Boehm’s contains a
diagram without any suggestion about measuring the
quality characteristics, FURPS ignored Portability,
ISO-9126 does not show very clearly how the attributes
can be measured.
 Thus, there is an absence of any kind of metrics
that could help in evaluating quality characteristics
objectively, in particular when the underlying software
project is a COTS component. In addition, none of the
existing models attempts to relate certain characteristic
with the type of stakeholders that are most concerned
with such characteristic.
 Among the available models for evaluating
software quality, none of McCall’s, Boehm’s, FURPS,
ISO/ICE, and Dromey explicitly consider process-
efficiency and process-effectiveness. An efficient
product is obtained when correct physical design and
programming practices are applied; product-
effectiveness is determined by activities involving
requirement identification, interface design and general
network design. Process-efficiency is associated with

project management activities which include meeting
deadlines, increasing productivity and saving resources,
process-effectiveness is related to general management
activities such as leadership, change management,
human and group relations, as these lead to good
relations between the members of the team responsible
for developing information systems[12,13].
 ISO 9126 identifies the external quality
characteristics of a software product. Therefore it
represents product-effectiveness. Dromey’s model
identifies internal properties[9,10], which specify four
areas: Correctness, Internal, Contextual and
Description. Therefore, Dromey represents product-
efficiency. Process-effectiveness and process-efficiency
are not presented in Dromey’s model nor in ISO 9126;
however the solution is proposed in a reference model
called ISO/IEC TR 15504-2. (IEC stands for
International Electro-technical Commission). As the
ISO/IEC model described in[14], it groups the processes
into four categories, so that each category is associated
with a set of processes. These are shown in Table 2.

SUGGESTED METHODOLOGY

 Steps that are used to build a quality model
prototype based on ISO 9126 and Dromey’s model.
Step 1: Identify a small set of agreed-upon, high-level

quality attributes, and then, in a top-down
fashion decompose each attribute into a set of
subordinate attributes.

Step 2: Distinguish between internal and external
metrics. For COTS components, it is essential
to observe such distinctions, specifically; the
internal metrics measure the internal attribute
of a product (e.g. specification or source code)
during the design and coding phases, known as
‘white box’ metrics[15]. Whereas external
metrics specialize in the system behavior
during testing and component operation, from
an outsider view. In fact, external metrics,
known as ‘black-box’, are more appropriate
for COTS components.

Step 3: Identify Stakeholders (type of users) for each
high-level quality attribute.

Step 4: Put the pieces together; constructing the new
model that implement ideas from international
standards: ISO-9126, Dromey, ISO.IEC TR
15504-2, and accordingly recognize
appropriate Stakeholders for each set of
attributes.

Executing the methodology to build the new quality
model: The objective of creating our new model is to
build one suitable to work for a variety of COTS-based
systems. The starting point for building our model is the
ISO 9126, simply because it includes the common
software quality characteristics that are supported by
the other six models, as shown in Table 1.

J. Computer Sci., 2 (4): 373-381, 2006

 377

Table 1: Quality characteristics in Boehm, McCall, FURPS, ISO 9126 and dromey models
Software Quality Boehm McCall FURPS ISO 9126 Dromey
Testability X X X
Correctness X
Efficiency X X X X X
Understandability X X
Reliability X X X X X
Flexibility X X
Functionality X X X
Human Engineering X
Integrity X X
Interoperability X X
Maturity X
Mainability X X X X X
Changeability X
Portability X X X X
Reusability X X
Usability X X X X

Table 2: Process categories in ISO/IEC TR 15504-2 1998(E) model
 Category Processes
Customer-Supplier System or Product Acquisition Process, Supply Process, Requirement Bidding Process, Operation
Engineering Development, Software and System Maintenance
Support Documentation, Configuration Management, Quality Assurance Process, Verification, Validation, Joint Review, Auditing,

Problem Solving Process
Management Management, Project Management, Quality Management, Risk Management
Organizational Organizational Alignment, Change Management, Improvement, Infrastructure Process, Measurement Process, Re-use

Process

Table 3: ISO 9126 Quality Characteristics
Characteristics Sub-characteristics
Functionality Suitability, Accuracy, Interoperability, Compliance, Security
Reliability Maturity, Recoverability, Fault tolerance
Usability Learnability, Understandability, Operability
Efficiency Time behavior, Resource behavior
Maintainability Stability, Analyzability, Changeability, Testability
Portability Installability Conformance, Replaceability, Adaptability,

 The next step is to apply some tailoring on the ISO
9126 that harness COTS evaluation requirements.
 The six areas of importance for software
evaluation, as proposed by ISO 9126 as a standard, are
shown in Table 3.
 The following is the evaluation discussion of the
high-level set of characteristics, along with their
associated sub-characteristics; the implementation of
step 1 of our methodology:
 Functionality is the capability of the software
product to provide functions, which meet stated and
implied needs when the software is used under
specified conditions. Functionality is a set of attributes
that bear on the existence of a set of functions and their
specified properties. The functions are those that satisfy
stated or implied needs. Functionality is assessed by
three things: (i) evaluating the set of features and
capabilities of the program, (ii) the generality of
functions that are delivered, and (iii) the security of the
overall system[15]. The sub-characteristic Compatibility
has been added to our model. The purpose of
Compatibility is to reflect the degree to which a
component can be used and function correctly in
different environments, and that is consistence with
evaluating COTS components.

 Reliability is the capability of the software product
to maintain a specified level of performance when used
under specified conditions[16]. Reliability is the extent to
which a program can be expected to perform its
intended function with required precision[17], usually
evaluated by measuring the frequency and severity of
failure, the accuracy of output result, the mean time
between failures (MTBF), the ability to recover from
failure and the predictability of the program[18], because
unreliable programs fail frequently, or produce
incorrect data[19]. Also, Reliability is a set of attributes
that bear on the capability of software to maintain its
level of performance under stated conditions for a
stated period of time[20]. Reliability is the degree to
which a work product operates without failure under
given conditions during a given time period.
 The Maturity sub-characteristic is measured in
terms of the number of commercial versions and the
time interval between them. The Recoverability sub-
characteristic is a capability of the software product to
re-establish a specified level of performance and
recover the data directly affected in the case of failure.
Therefore, it tries to measure whether the component is
able to recover from unexpected failures, and how it
implements these recovery mechanisms. The Fault

J. Computer Sci., 2 (4): 373-381, 2006

 378

Tolerance tries to measure the capability of the software
product to maintain a specified level of performance in
cases of software faults. The COTS-based system that
supports Recoverability feature is in a subsequent stage
of passing a Fault Tolerance stage, thus Recoverability
implies Fault Tolerance and not vice versa. For this
reason Fault Tolerance is omitted from our model,
while the emphasis remains on Recoverability.
 Usability is the capability of the software product
to be understood, learned, used and attractive to the
user, when used under specified conditions. Usability is
related to the set of attributes that bear on the effort
needed for use, and on the individual assessment of
such use, by a stated or implied set of users. In addition,
Usability is the effort required to learn, operate, prepare
input, and interpret output of a program[15]. In COTS,
most stakeholders of components are the application
developers, designers that have to build applications
with them, and end-users who interact with COTS.
Thus, the Usability of a component should be
interpreted as its ability to be used by the application
developer and designer when constructing a new
software product. Under this characteristic we must add
an attribute that measures the component’s Usability
during the design of application. Therefore, Complexity
is a new sub-characteristic that is added to provide a
measure of the components complexity when
integrating and using it within a software product or
system. This characteristic aims to measure the
complexity of using and integrating the component into
the final system.
 Efficiency is the capability of the software product
to provide appropriate performance, relative to the
amount of resources used, under stated conditions.
Efficiency is the degree to which something effectively
uses (i.e., minimizes its consumption of) its resources.
These may include all types of resources such as
computing (hardware, software, and network),
machinery, facilities, and personnel[15]. In fact,
Efficiency will used in our new model as it is described
in the ISO.
 Maintainability is the capability of the software
product to be modified. Modifications may include
corrections, improvements or adaptations of the
software to change in an environment, and in
requirements and functional specifications[16]. Also, the
effort required to locate and to fix an error in an
operational program[17,18]. Maintainability is the ease
with which an application or component can be
maintained between major releases. Also, a set of
attributes that bear on the effort needed to make
specified modifications[20], the degree of changing or
modifying the components to correct errors, to improve
performance, or to adapt for changing the environment.
The user of a component (i.e. the developer) does not
need to do the internal modifications but he does need
to adapt it, re-configure it, and perform the testing of
the component before it can be included in the final

product. Thus, Stability and Analyzability are omitted
from our model.
 Portability is the capability of the software product
to be transferred from one environment to another[16].
Also, the effort required to transfer a program from one
hardware configuration and/or software system
environment to another[17,18]. Portability is the ease with
which an application or component can be moved from
one environment to another[20,21]. In COTS, Portability
is an important property in the nature of components,
which are in principle designed and developed to be re-
used in different environments (it is important to note
that in COTS, re-use means not only to use more than
once, but also to use in different environments. Thus,
Portability is omitted from our model.
 Manageability; in order to empower our model
with new a feature, the characteristic Manageability has
been added. Manageability is concerned with
developing and refining estimates of effort and
deadlines for the project as a whole, and with gathering
any data that might be needed for such estimates. We
have added to our model the sub-characteristics Quality
Management, which indicates the people within the
organization, who are constantly monitoring what they
do to find ways to improve quality of operation,
product, budgets, schedule, services, and everything
else about the firm. Table 4 shows the quality model we
propose for selecting COTS components.
 The second step in the proposed methodology,
distinction between internal and external metrics, is
already described and reasoning led us to consider the
external metrics ‘black-box’ as more appropriate for
COTS components.
 Stakeholders: The term stakeholder is used to refer
to any person or group who will be affected by the
system, directly or indirectly. Stakeholders include the
end-user who interacts with the system and everyone
else in an organization that may be affected by its
installation. Other system stakeholders may be
engineers who are developing or maintaining a related
system, and business managers[21]. From our
experience, end-users are concerned with observable
attributes (such as Functionality, Reliability,
Availability, and Efficiency). BO (business owner) is
concerned with Maintainability, while system
administrators are concerned with Scalability,
Portability, and Manageability.
 In this work, a typical set of stakeholders as
explained in[22] has been adopted in order to name the
appropriate category of evaluators for each quality
characteristic. We start with the analyst who produces
the business model, the end-user who interacts with the
system, QA officer (quality assurance) who tests the
product, and the PM (project manager) who constructs
and manages the process.
* the solution verifiability satisfies the requirement,

both functional and non-functional, this should be
verifiable by the analysts and the QA professionals.

J. Computer Sci., 2 (4): 373-381, 2006

 379

Table 4: Quality Model for COTS Components
Characteristics Sub-characteristics (Product) Sub-characteristics (Process)
Functionality Accuracy, Security Suitability, Interoperability, Compliance, Compatibility
Reliability Recoverability Maturity
Usability Learnability, Understandability, Operability, Complexity
Efficiency Time behavior, Resource behavior
Maintainability Changeability, Testability
Manageability Quality management

Table 5: Tabular illustration of the new model components
Stakeholders (Professional Parties) Characteristics Product Sub-characteristics Process Sub-characteristics
End user, analysts, quality assurance Functionality Accuracy, Security Suitability, Interoperability, Compliance, Compatibility
End user, analysts, quality assurance Reliability Recoverability Maturity
End user, analysts, quality assurance Usability {Non Applicable} Learnability, understandability, operability, complexity
End user, analysts, quality assurance Efficiency Time behavior, Resource behavior {Non Applicable}
Project manager or business owner Maintainability {Non Applicable} Changeability, Testability
Project manager Manageability Quality management Quality management

* the solution is verifiable by other architects, who

can evaluate trade-offs and determine its fitness as
a solution to the problem. This implies clearly
stating the system goals.

* the developers can build the solution. This implies
partitioning the solution into comprehensible
pieces, with clear interface and definitions, and
explicit mapping of dependencies among pieces.

* the product can be tested by QA. This relies on the
mentioned partitioning (to plan unit testing) and
traceability (to verify deployed functionality and
properties).

* the process can be managed by PM. This relies on
partitioning (to determine work units for teams and
individuals) and on dependencies (to schedule
work); thus, the project manager must be able to
determine “intermediate deliverables” that are
usable, testable and allow to show working
progress.

 The domain of the above classification of
stakeholders can be re-organized as follows; which
implements the third step of our methodology:
* the solution must offer the Functionality,

observable attributes (Reliability, Usability, and
Efficiency) specified requirements according to
end-users, verified by analysts and QA.

* the solution must be maintainable according to the
future PM, verified by the BO.

* the construction process must be manageable
according to the project manager.

 Table 5 shows the components that constitute our
new model. Consequently, we have adapted to our
model the common characteristics that are found and
agreed upon by the majority of the existing models, and
these are consistent with COTS component evaluation
criteria. However, we did omit some of the
characteristics that are inconsistent with the new model
requirements. New characteristics are added, and these
are necessary to empower our new model. Accordingly,

any modification step, including removal or additions
has been justified above.
 Next, a new set of sub-characteristics has been
defined and associated with each high-level
characteristic that is supported by the new model, this
was done by breaking down the characteristics into two
categories; one set supports the development process
(the process) and the second one supports the
operational state on the production area (the product).
 Finally, stakeholders, the members of the team
responsible for developing, maintaining, interacting
with and/or using the information system have been
categorized then matched accordingly with the
appropriate characteristics throughout the entire system
development life-cycle, including operational and
maintenance phases.
 Figure 3 shows the final structure of the new
model, containing all the associated components, which
implements the fourth step of our methodology:

Fig. 3: The new quality model for COTS-based systems

CONCLUSION AND RECOMMENDATIONS

 The number of COTS-based systems being built
continues to increase. Consequently, the need for a
model that ensures quality characteristics of such
systems becomes a necessity.

J. Computer Sci., 2 (4): 373-381, 2006

 380

Several models, including hierarchy and non-hierarchy,
specializing in measuring the quality of software
products have been described. The features of such
models have been studied, analyzed and their
limitations outlined. Specifically, Functionality of a
software product was not considered directly by
McCall’s model. No suggestion about measuring the
quality characteristics has been found in Boehm’s
model. FURPS model fails to take account of the
software product’s Portability. ISO 9126 has the
limitation of not showing very clearly how certain
quality aspects can be measured. The disadvantage of
Dromey’s model is associated with Reliability and
Maintainability. It is not feasible to judge these two
attributes of a system before it is actually operational in
the production area. The disadvantage of non-hierarchy
models, Triangle and Quality Cube, is the failure to
identify sub-attributes for the associated high level
attributes. In addition, it is not clear how to measure the
quality of those attributes.
 Among all the existing models that have been
studied, we found the ISO 9126 is the most appealing
model, irrespective of some limitations. For this reason,
we based our new model on the ISO 9126. We defined
a four-step methodology to guide the process of
building the new model that is specialized in evaluating
COTS components. The analysis step assisted us to
benefit from existing general quality models and
simultaneously avoiding repetition of such limitations.
 Subsequently, justified high-level characteristics
have been projected and a new set of sub-characteristics
has been defined for each one. This is accomplished by
breaking down the characteristics into two categories;
‘the process’ and ‘the product’.
 The distinction between internal and external
metrics led us to realize that external metrics is more
appropriate for COTS components.
 A major advantage of the new model is the
addition of stakeholders, the members of the team
responsible for developing, maintaining, interacting
and/or using the COTS-based system. End-users,
analysts, QA, PM and BO categories are matched with
appropriate characteristics that each one is concerned
about.
 Finally, the pieces are put together to construct the
new model. Although our proposed model features
specialization and improvement over existing models, it
lacks the ability to measure the internal quality
characteristics. This can be accomplished in future
research work by applying one of the evaluation
techniques such as AHP (Analysis Hierarchy Process).

REFERENCES

1. Pfarr, T. and J.E. Reis, 2002. The integration of

COTS/GOTS within NASA’s HST command and
control system. Proc. First Intl. Conf. COTS-Based
Software System, Systems, Orlando, FL, Feb. 4-6,.
In Lecture Notes in Computer Science 2255,
Berlin: Springer-Verlag, pp: 209-221.

2. John, D., G. Lewis, E. Morris, P. Oberndorf and E.
Harper, 2004. A Process for COTS Software
Product Evaluation. Technical Report CMU/SEI-
2003-TR-017, ESC-TR-2003-017.

3. Jeffrey, V., 1999. Certification: Reducing the
hidden costs of poor quality. Reliable Software
Technologies, IEEE Software, 0740-7459/99.

4. Ronan, F., 1996. Software quality definitions and
strategic issues. Staffordshire University, School of
Computing Report,
http://www.comp.dit.ie/rfitzpatrick.

5. Kent, B., 1999. Extreme Programming Explained:
Embrace Change. Addison Wesley Professional.

6. Lisa, C., 2001. Is quality negotiable? STARWest
2001 Conference.
citeseer.ist.psu.edu/crispin01is.html

7. Maryoly, O., M.A. Perez and T. Rojas, 2002. A
systemic quality model for evaluating software
products. Laboratorio de Investigcin en Sistemas
de Informacin, 2002,
http:/www.lisi.usb.ve/publicaciones.

8. Nihal, K. and A. Abran, 2001. Analyzing
Measuring & Assessing Software Quality Within A
Logic-Based Graphical Framework, Dept. of
Computer Science, Software Engineering
Management Research Laboratory (SEMRL),
Universite du Quebec a Montreal, P.O. Box 8888,
Centre-Ville Postal Station, Montreal (Quebec),
Canada H3C 3P8, nkececi@lrgl.uqam.ca.

9. Geoff, D., 1995. A model for Software Product
Quality, IEEE Transactions on Software
Engineering, 21(2nd): 146-162.

10. Geoff, D., 1996. Cornering the Chimera, Australian
Software Quality Research Institute, EE Software
0740-7459/96.

11. Nagib, C.B. De Callaos, 1994. Designing With A
Systemic Total Quality, Educational Technology
34:29-36.

12. Rojas, T. and M. Perez, 1995. A Comparison of
Three Information System Development
Methodologies Related to Effectiveness/Efficiency
Criteria, International Symposium on Applied
Corporate Computing, (ISACC’95) Monterrey,
Mexico.

13. Rojas, T. and M. Perez, 1997. Determination of
Factors That Affect The Process Effectiveness In
The Development of Information System,
Americas Conference on Information Systems,
Simon Bolivar University, Processes and Systems
Dept., Caracas, Venezuela, P.O.Box 89000,
trojas@usb.ve, (AIS'97) Indianápolis, USA.

14. ISO/IEC TR 15504-2 1998(E) Technical Report,
(1998), Information Technology – Software
Process Assessment – Part 2: A Reference Model
for Processes and Process Capability, ISOSTD ISO
Template Version 3.3, 1998, Canada.

J. Computer Sci., 2 (4): 373-381, 2006

 381

15. Khashayar, K. and Y.-G. Gueheneuc, 2004. A
Quality Model for Design Patterns, Master’s
Thesis, Laboratory of Open Distributed Systems &
Software Engineering, Dept. of Informatics and
Operations Research, University of Montreal, C.P.
6128 succ, Centre-Ville, Montreal, Quebec, H3C
3J7, Canada, guehene@iro.umontreal.ca.

16. International Standard. ISO/IEC 9126-1 (2001),
Institute of Electrical and Electronics Engineering,
Part 1,2,3: Quality Model, 2001, http://www.iso.ch.

17. Gaffney, J.E., 1981. Metrics in Software Quality
Assurance. Proc. ACM ’81 Conf., pp: 126-130.
http://portal.acm.org.

18. Roger, S.P., 1992. Software Engineering A
Practitioner’s Approach, McGraw-Hill, Inc.

19. Lowell, J.A., 1951. Software Evolution, The
Software Maintenance Challenge. John Wiley and
Sons.

20. Joc, S. and E. Curran, 1995. Software Quality, A
Framework for Success in Software Development
and Support. Addison-Wesley Publishing
Company.

21. Ian, S., 2004. Software Engineering, Seventh
Edition, Pearson Education Limited, Edinburgh
Gate, Harlow, Essex CM20 2JE, England.

22. Hernan, A. and S. Hammer, 1998. Understanding
The Architect’s Job: An Opinionated View of
What We Do and Why Do it, Hernan; University
of Sao Paulo, Brazil, hernan@acm.org. Stuart;
Object Practice, MCI Systemhouse,
Shammer@shl.com.

