
Journal of Computer Science 2 (6): 528-534, 2006

ISSN 1549-3636

© 2006 Science Publications

Corresponding Author : Tadashi Dohi, Professor, Department of Information Engineering, Hiroshima University, Japan

528

Determining the Optimal Software Rejuvenation Schedule

via Semi-Markov Decision Process

Hiroyuki Eto and Tadashi Dohi

Department of Information Engineering, Hiroshima University

1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

Abstract: Software rejuvenation is a preventive and proactive maintenance policy that is particularly

useful for counteracting the phenomenon of software aging. In this study we consider an operational

software system with multiple degradations and derive the optimal software rejuvenation policy

minimizing the expected operation cost per unit time in the steady state, via the dynamic programming

approach. Especially, we show analytically that the control-limit type of software rejuvenation policy is

optimal. A numerical example is presented to make a decision table and to perform the sensitivity

analysis of cost parameters.

Key words: Software aging, software rejuvenation, semi-Markov decision process, optimality

INTRODUCTION

 Software faults should ideally have been removed

during the debugging phase. Even if a piece of software

has been thoroughly tested, it still may have some

design faults that are yet to be revealed. Such software

faults are called bohrbugs and may exist even in mature

software such as commercial operating systems. Also,

even mature software can be expected to have what are

known as heisenbugs[1]. These are bugs in the software

that are revealed only during specific collusions of

events. For example, a sequence of operations may

leave the software in a state that results in an error on an

operation executed next. Simply retrying a failed

operation, or if the application process has crashed,

restarting the process might resolve the problem.

Another type of fault observed in software systems is

due to the phenomenon of resource exhaustion.

Operating system resources such as swap space and free

memory available are progressively depleted due to

defects in software such as memory leaks and

incomplete cleanup of resources after use. These faults

may exist in operating systems, middleware and

application software.

 When software application executes continuously
for long periods of time, some of the faults cause

software to age due to the error conditions that accrue
with time and/or load. Software aging will affect the
performance of the application and eventually cause it

to fail[2-4]. Software aging has also been observed in
widely-used communication software like Internet

Explorer, Netscape and xrn as well as commercial
operating systems and middleware. A complementary

approach to handle software aging and its related
transient software failures, called software rejuvenation,

is becoming popular[3-5]. Software rejuvenation is a

preventive and proactive solution that is particularly
useful for counteracting the phenomenon of software

aging. It involves stopping the running software
occasionally, cleaning its internal state and restarting it.

Cleaning the internal state of a software might involve
garbage collection, flushing operating system kernel
tables, reinitializing internal data structures and

hardware reboot.

 In this study we consider an operational software

system with multistage degradations and derive the

optimal software rejuvenation policy minimizing the

expected operation cost per unit time in the steady state,

via the dynamic programming approach. This can be

considered as an extension of the classical two-step

failure models with time-based rejuvenation policies[5-8].

Vaidyanathan et al.[9] treat a multistep failure model,

but do not discuss the optimal software rejuvenation

policy from the analytical point of view. We suppose

that the state of software system deteriorates

stochastically and is described by a right-skip free

continuous-time Markov chain (CTMC) with an

absorbing state[10]. In the dynamic operation

circumstance, we formulate the semi-Markov decision

process and derive the optimal software rejuvenation

policy minimizing the expected operation cost per unit

time in the steady state. Especially, we show

analytically that the control-limit type of software

rejuvenation policy is optimal.

 The rest part of this study is organized as follows.

First, we summarize the related work and describe a

multistage degradation software system with a CTMC

and define the software rejuvenation scheme with the

condition-based monitoring. Next, we formulate

the cost minimization problem via the familiar

J. Computer Sci., 2 (6): 528-534, 2006

 529

semi-Markov decision process and propose an iteration

algorithm to derive the optimal software rejuvenation

policy which minimizes the expected operation cost per

unit time in the steady state. Thirdly, we study the

optimality structure carefully and characterize some

mathematical properties of the optimal software

rejuvenation policy under several parametric

assumptions. Numerical examples are presented to

make a decision table and to perform the sensitivity

analysis of cost parameters. Finally, the study is

concluded with some remarks.

RELATED WORK

 Huang et al.[5] consider a degradation phenomenon

as a two-step stochastic process. From the clean state

the software system jumps into a degraded state from

which two actions are possible: rejuvenation with return

to the clean state or transition to the complete failure

state. They model a four-state process as a CTMC and

derive the steady-state system availability and the

expected operation cost per unit time in the steady state.

Avritzer and Weyuker[11] discuss the aging in a

telecommunication switching software where the effect

manifests as gradual performance degradation. Garg et

al.
[7] introduce the idea of periodic rejuvenation

(deterministic interval between successive

rejuvenations) into the Huang et al.'s model[5] and

represent the stochastic behavior by using a Markov

regenerative stochastic Petri net. Dohi et al.[6] and

Suzuki et al.[8] extend the seminal two-step software

degradation models in Huang et al.[5] and Garg et al.[7],

respectively, by using semi-Markov processes.

 As other examples, it is interesting to consider both

effects of aging as crash/hang failure, referred to as

hard failure and of aging as soft failure that can lead to

performance degradation. Pfening et al.[12] model a

performance degradation process by the gradual

decrease of the processing rate in a non-stationary

Markovian queueing system and formulate a

determination problem of the optimal software

rejuvenation schedule by a Markov decision process.

Garg et al.[13] consider a transaction-based software

system, which involves arrival and queueing of jobs and

analyze both effects of aging; hard failures that result in

an unavailability and soft failures that result in

performance degradation. Park and Kim[14] carry out the

availability analysis for active/standby cluster systems

with rejuvenation. Li et al.
[15] analyze an aging

phenomenon in a real web server application. Liu et

al.
[16] and Vaidyanathan et al.[17] model a cable modem

termination system and a cluster software system with

rejuvenation, respectively. Recently, Xie et al.
[18]

develop a two-level software rejuvenation scheme with

service-level rejuvenation and box-level rejuvenation.

 Fujio et al.[19] and Okamura et al.[20] also formulate

the control-limit type of rejuvenation policies and

compare them with the corresponding time-based

policies[13,21] numerically, where the control-limit policy

triggers the software rejuvenation at the time instant

when the system state reaches to a threshold level, while

the time-based policy does at a pre-specified time. As

expected intuitively, it is shown in the references[19,20]

that the control-limit type of rejuvenation policies can

provide better performance than the time-based ones.

The main purpose of this study is to prove that the

control-limit type of software rejuvenation policy is the

best policy among all the Markovian policies in a

simple multistage degradation model. In real time

applications, actually, the static models[5-8] are difficult

for use, because the decision making whether the

software rejuvenation should be triggered or not is

impossible at an arbitrary timing. On the other hand, the

dynamic rejuvenation policy in Pfening et al.[12] would

be useful to trigger the software rejuvenation

sequentially as observing the system state, although they

never take account of an event of hard (system) failure.

In other words, Pfening et al.
[12] represent a

performance degradation process by the decreasing

processing rate in a Markovian queueing system, but we

model it by the right-skip free CTMC for a non-

transaction based software system. Our approach in this

study can be classified into a condition-based

preventive maintenance with observation of system

state[22].

MULTISTAGE DEGRADATION SOFTWARE

SYSTEM

Fig. 1: Markovian transition diagram of software

degradation level

 Consider an operational software system which

deteriorates with time. State of the software system

deteriorates stochastically and changes from i to j,

where states 0 and s + 1 are the normal (robust) state

and the system down state, respectively. Without any

loss of generality, the level j is degradated more

severely than the level i (< j). Suppose that the state of

software at time t, {N(t), t ≥ 0}, is described by a right

right-skip free CTMC with state space I = {0, 1, …, s +

1} and that the transition rate from i to j (i, j = 0, …, s +

J. Computer Sci., 2 (6): 528-534, 2006

 530

1, i < j) is given by γi,j (> 0), where iji
s

ij Γ=∑
+

+= ,
1

1 γ for

all i (= 0, 1, …, s) (Fig. 1). That is, it is assumed that

the system state with degradation level i can make a

transition to all the upper levels j (> i). When the system

failure occurs, then the system is down (j = s + 1) and

the recovery operation immediately starts, where the

time to complete the recovery operation is an

independent and identically distributed (i.i.d.) random

variable having the cumulative distribution function

(c.d.f.) Hs+1(x) and mean 1/ωs+1 (> 0).

 On the other hand, one makes a decision whether to

trigger the software rejuvenation at the time instant

when the state of software system changes from i to j (=

i + 1, i + 2, …, s). If one decides to continue operation,

the state is monitored until the next change of state,

otherwise, the software rejuvenation is preventively

triggered, where the time to complete the rejuvenation

is also an i.i.d. random variable with the c.d.f. Hi(x) and

mean 1/ωi (> 0), depending on the state i (= 0, 1, …, s).

Let x1 (> 0) and x2 (> 0) be the rejuvenation cost per

unit time and the recovery cost per unit time,

respectively. In both periods of rejuvenation and

recovery operation, the system operation is stopped.

Also, it is assumed that the state-dependent cost ai (> 0)

is incurred per unit operation time for i = 0, 1, …, s.

 Note that the system state can be described by only

the index j (0 < j ≤ s + 1). At each time instant when the

state changes from i to j, one has an option to choose

Action 1 (rejuvenation) or Action 2 (continuation of

processing). When the system failure occurs, i.e. the

state of system becomes j = s + 1, the recovery

operation (Action 3) is taken. Let Q(δ)(i, j) denote the

probability that the state changes from i to j under

Action δ (= 1, 2, 3). Then it is seen that

(i) Case 1:

,s,,,i,tdH,iQ
i

⋯101)()0(
0

(1)
=== ∫

∞

 (1)

where the mean rejuvenation time (overhead) is given

by

.ttdHh
ii ∫

∞

=

0

)((2)

 (ii) Case 2:

.jis,,,j,i,j,iQ
ij,i

<+=Γ= ;110)(
(2)

⋯γ (3)

 (iii) Case 3:

,tdH,sQ
s

1)()01(
0

1

(3)
==+ ∫

∞

+

 (4)

where the mean recovery time (overhead) is given by

.ttdHh
ss ∫

∞

++
=

0
11

)((5)

 After completing rejuvenation and recovery

operations, the state of software system becomes as

good as new, i.e. j = 0 in Eqs. (1) and (4) and the same

cycle repeats again and again over an infinite time

horizon. We define the time interval from the initial

point to the completion of rejuvenation or recovery

operation whichever occurs first, as one cycle.

SEMI-MARKOV DECISION PROCESS

 Observing the state of software system, we

sequentially determine the optimal timing to trigger the

software rejuvenation so as to minimize the expected

operation cost per unit time in the steady state. Define

the following cost component:

V(i): value function at state i ∈ I,

M(i): minimum expected cumulative cost when Action 1

is taken at state i (< s + 1),

W(i): minimum expected cumulative cost when Action 2

is taken at state i (< s + 1),

z: expected operation cost per unit time in the steady

state, where z* denotes the minimum one,

D(i): action space at state i:









+=

+<>

+<≤

=

1.:3

1)()(:2

1)()(:1

)(

si

si,iWiM

si,iWiM

iD
 (6)

 From the preliminary above, the Bellman equation

based on the principle of optimality[10] is given by

{ },iW,iMiV)()(min)(= (7)

where

,hVhxsV
ss 1

*

12
)0()1(

++
−+=+ z (8)

,hVhxiM
ii

*

1
)0()(z−+= (9)

.
jV

aiW
i

s

ij i

j,i

ii
Γ−

Γ
+Γ= ∑

+

+=

*

1

1

)(
)(z

γ (10)

It is well known that the software rejuvenation policy

satisfying Eq. (7) is the best policy among all the

Markovian policies[10]. To solve the above functional

equation numerically, we can easily develop the well-

known value iteration algorithm for the semi-Markov

decision process. Define

A(n) = mini∈I{V
n(i) - Vn-1(i)},

B(n) = maxi∈I{V
n(i) - Vn-1(i)},

ε : tolerance level,

τ : design parameter satisfying 0 ≤ τ /hi for all i, τΓi and

τ/hs+1 ≤ 1 (Tijms
[10]).

In general, Vn(i) denotes the value function at n-th

iteration. Then, the value iteration algorithm is given in

the following:

Value Iteration Algorithm:

Step 1:

.iWiMiV,n 0:)(:)(:)(0: 000
==== (11)

Step 2:

),(1
)(

:)(
1

0

1

0

1
iV

jV
aiW

n
s

j i

j,i
s

j i

n

j,i

i

n












Γ
−+

Γ
+= ∑∑

+

=

+

=

+
τγτγ (12)

,iV
h

V
h

xiM
n

i

n

i

n)(1)0(:)(
1

1









−+








+=+

ττ (13)

J. Computer Sci., 2 (6): 528-534, 2006

 531

{ },iWiMiV
nnn)(),(min:)(111 +++

= (14)

.sV
h

V
h

xsV
n

s

n

s

n

)1(1)0(:)1(
11

2

1 +







−+








+=+

++

+
ττ (15)

Step 3: If 0 ≤ B(n) - A(n) ≤ εA(n), then stop the

procedure, otherwise, n := n + 1 and go to Step 1.

 It would be possible to derive the optimal software

rejuvenation schedule by applying the above value

iteration algorithm, if there exists a unique optimal

solution. However, it is worth noting that an analytical

approach to characterize the optimal rejuvenation

policy, without solving the Bellman equation directly, is

possible by making some parametric (but reasonable)

assumptions. In the following section, we investigate

some mathematical properties for the optimal software

rejuvenation policy and prove its optimality.

OPTIMALITY OF CONTROL-LIMIT POLICY

 We prove the optimality of the control-limit type of

policy. We make the following assumptions:

(A-1) Γi is monotonically increasing in i (=0,1, …, s+1).

(A-2) For an arbitrary increasing function fj,

ijji
s

ij f ΓΣ
+

+=
/,

1
1γ is monotonically increasing in i (= 0, 1,

…, j - 1).

(A-3) For an arbitrary x,),()(1 xHxH is >+ where in

general).(1)(⋅−=⋅ HH

(A-4) ai/Γi is monotonically increasing in i (= 0, 1, …,

s).

(A-5) ai/Γi - x1hi in monotonically increasing in i (= 0, 1,

…, s).

(A-6) x2 - z ≥ x1 - z ≥ 0.

 The assumption (A-1) implies that the mean

sojourn time in each state decreases, as the system

deteriorates. The assumption (A-2) seems to be

somewhat technical, but is intuitively reasonable. For

instance, let fj be any cost parameter depending on state

j. In this case, the expected cost incurred when the

system state makes a transition,),/(,
1

1 ijij
s

ij f ΓΣ
+

+=
γ

tends to increase as the degraded level i progresses. In

the assumption (A-3), one expects in the sense of

probability that the recovery time from system failure is

strictly greater than the rejuvenation overhead. The

assumption (A-4) means that the operation cost

increases, but according to (A-5) the advantage of

triggering rejuvenation of the software increases

gradually, as the software system deteriorates. In the

assumption (A-6), we require that the recovery cost is

greater than the rejuvenation cost, where the both cost

parameters, x1 and x2, are greater than the expected

operation cost per unit time in the steady state, say, z. In

fact, if z > x2 > x1, the system is down in the steady state

with probability one. That is, due to the deductive

argument, the assumption (A-6) has to necessarily hold.

 We give the main results of this study.

Lemma 4.1: The function V(i) is increasing in i.

Proof: It is evident from (A-3) and (A-6) to show that

,hVhxsM
ss

z−+=)0()(
1

 (16)

.hVhxsV
ss 112

)0()1(
++

−+=+ z (17)

Hence we have V(s) ≤ V(s+1) immediately. Supposing

that V(i+1) ≤ V(i+2) ≤ … ≤ V(s) ≤ V(s+1) for an

arbitrary i, from (A-2), it can be seen that

).()(
1

1

jVjV
j i

j,i

j i

j,i

∑∑
+

+

Γ
≤

Γ

γγ (18)

In Case 1 with D(i+1) = 1, from the assumption (A-6)

we have

.hhhhxiViV
iiii

0)()()(-)1(
111

≥−−−≥+
++

z (19)

This implies that V(i+1) ≥ V(i). In Case 2 with

D(i+1)=2, we obtain

)20(0

)()(

)()(

)(

)()(-)1(

1

1

111

1

1

1

11

,

jVjV

aa

jVa

jVaiViV

j i

j,i

j i

j,i

iiiiii

i

j i

j,i

ii

i

j i

j,i

ii

≥









Γ
−

Γ
+

Γ−Γ+Γ−Γ=

Γ+
Γ

−Γ−

Γ−
Γ

+Γ≥+

∑∑

∑

∑

+

+

+++

+

+

+

++

γγ

γ

γ

zz

z

z

which is due to (A-1), (A-2) and (A-4). Thus, it can be

shown that V(i) ≤ V(i+1). From the inductive argument,

it can be proved that V(i) ≤ V(i+1) for an arbitrary i.

Theorem 4.2: There exists the optimal control limit N
*

+ 1 satisfying





≤
=

*
Ni

otherwise
iD

:2

:1
)((21)

under the assumptions (A-1)-(A-6).

Proof:

)22()0(

)()(

)0()()(-)(

1

1

.hV

jVhxa

hVhxjVaiMiW

ii

j i

j,i

iii

iii

j i

j,i

ii

zz

zz

+−Γ−

Γ
+−Γ=

+−−Γ−
Γ

+Γ=

∑

∑

γ

γ

From (A-1), (A-2), (A-5) and Lemma 4.1, it is seen that

W(i) - M(i) is a monotonically increasing function of i.

Hence, the proof is completed.
 From Theorem 4.2, the problem can be reduced to
obtain the optimal control-limit N* + 1 so as to
minimize the expected operation cost per unit time in
the steady state. In fact, this type of rejuvenation policy

J. Computer Sci., 2 (6): 528-534, 2006

 532

is essentially the same as the workload-based
rejuvenation policy in the transaction-based software
system[20]. In other words, even for our non-queueing
system framework, the control-limit type of
rejuvenation policy is better than any time-based
one[13,21].
 Next, we formulate the expected operation cost as a

function of N, i.e. z = z(N). Define









Γ

=

=
∑

+=

,R

,ji

R j

ik

ij.kk,i

j,i
otherwise

1

1

γ

 (23)









>

≤Γ
=

∑
+=

,Ni

,NiR
t

N

ij

jj.i

i

0

1

 (24)

where Ri,j is the transition probability from the state i to

the state j and ti denotes the mean time to trigger the

software rejuvenation. Define the first passage time:

{ },NtNtT
**

1)(:0inf +≥≥= (25)

so that the random variable T* is the first time when N(t)

is greater than the level N* + 1. Using the above

notation, we can get the following result without the

proof.

Theorem 4.3: The optimal software rejuvenation time

is given by the first passage time T*, where the optimal

threshold level N* is the solution of min0≤N<∞z(N) and

{ }
.)(

1

11

1

0

0

112

1

1

1

0

∑ ∑

∑∑

=

++

+=

++

+==

+
Γ

+









++
Γ

=
N

j

ss,jkk,j

s

Nk i

j,

ss,j

s

Nk

kk,jj

N

j i

j,

hh
R

t

hxhxa
R

N

γγ

γγ

z

 (26)

In Eq. (26), the function z(N) is formulated as the

expected operation cost for one cycle divided by the

mean time length of one cycle. The minimization

problem of z(N) with respect to N (= 0, 1, 2, …) is

trivial. Define the difference of z(N) by φ(N) = z(N+1) -

z(N). If φ(N+1) - φ(N) > 0, then the function z(N) is

strictly convex in N. Further, if φ(N*-1) >0 and φ(N*) ≤

0, then there exist (al least one, at most two) optimal

threshold level N* which minimizes z(N), i.e., z* =

z(N*). In fact, the convex property of the function z(N)

can be easily checked numerically.

 Figure 2 depicts the behavior of the expected

operation cost with respect to N, where the model

parameters used here are given by γ0,1 = γ0,2 = γ1,2 = 0.5,

γ0,3 = γ0,6 = γ2,6 = 0.3, γ0,4 = γ0,5 = γ1,5 = 0.2, γ1,3 = γ1,4 =

0.6, γ1,6 = γ5,5 = 0.1, γ2,3 = γ2,4 = γ3,6 = 0.7, γ3,4 = 0.4, γ3,5

= 0.9, γ4,5 = γ4,6 = 1, γ5,6 = 1.9, x1 = 8 ($), x2 = 15 ($), a0

= 1 ($), a1 = 3 ($), a2 = 5 ($), a3 = 7 ($), a4 = 9 ($), a5 =

11 ($), ω0 = 2.0 (hr
-1), ω1 = 1.5 (hr

-1), ω2 = 1.2 (hr
-1), ω3

= 1.0 (hr-1), ω4 = 0.7 (hr
-1), ω5 = 0.5 (hr

-1), ω6 = 0.2

(hr-1). It can be shown that there is a unique optimal

threshold level N* = 1 in this example.

Fig. 2: Behavior of the expected operation cost with

respect to N

NUMERICAL EXAMPLES

 Here we give an illustrative example to determine

the optimal rejuvenation schedule. Huang et al.[5] and

Dohi et al.[6,8] suppose that the number of system states

is only 3: normal operation, deterioration (failure

probable state) and system down (failure). In this

section we consider a generalized Markovian

deterioration process with 3 degradation levels (totally,

5 states). Figure 3 illustrates the Markovian transition

diagram with absorption, representing the deterioration

process of the software system, where each transition

rate is assigned on each arc. The transition probability

that the system state changes from k to l at time t,

denoted by Tk,l(t), satisfies the Chapman-Kolmogorov

equation. Since the system state follows a right-skip free

CTMC, the transition probability Tk,l(t) can be derived

analytically. For instance, when (k, l) = (0, 0), we have

the following differential equation:

).()(
0000
tTtT

dt

d
,,

−=
 (27)

Solving the above equation with the initial condition

Tk,k(0) = 1, we get T0,0(t) = e
-t. Similarly, we have: T0,1(t)

= 0.4te-t, T0,2(t) = 0.3te
-t + 0.08t2e-t, T0,3(t) = 0.2te

-t +

0.17t2e-t + 0.016t3e-t, T0,4(t) = - e
-t - 0.9te-t - 0.25t2e-t -

0.016t3e-t + 1, T1,1(t) = e
-t, T1,2(t) = 0.4te

-t, T1,3(t) = 0.2te
-

t + 0.12t2e-t, T1,4(t) = - 0.8e
-t - 0.6te-t - 0.12t2e-t + 0.8,

T2,3(t) = 0.6te
-t, T2,4(t) = - e

-t - 0.6te-t + 1, T3,4(t) = e
-t + 1.

Table 1: Decision table

i 0 1 2 3 4

D(i) 2 2 1 1 3

 Suppose that the rejuvenation cost and the recovery

cost from system failure are given by x1 = 8 ($) and x2 =

15 ($), respectively. Also, it is assumed that a0 = 1 ($),

a1 = 3 ($), a2 = 5 ($), a3 = 7 ($), ω0 = 2.0 (hr
-1)$, ω1 =

J. Computer Sci., 2 (6): 528-534, 2006

 533

1.5 (hr-1), ω2 = 1.2 (hr
-1), ω3 = 1.0 (hr

-1), ω4 = 0.2 (hr
-1).

In Table 1, we obtain the so-called decision table

Fig. 3: An illustrative example with three degradation

levels

Table 2: Dependence of cost ratio x1/x2 on the optimal rejuvenation

policy and its associated expected operation cost

x1/x2 i = N* + 1 z(N*)

7/15 2 4.021

8/15 2 4.255

9/15 2 4.489

10/15 2 4.722

11/15 3 4.956

12/15 3 5.168

13/15 3 5.364

14/15 3 5.543

15/15 3 5.675

to characterize the optimal software rejuvenation policy.

From this result, it is optimal to trigger the software

rejuvenation at the first time when the system state

reaches to i = N* + 1 = 2. Then the associated minimum

expected operation cost per unit time in the steady state

is given by z* = z(N*) = z(1) = 4.255 ($).

 Next, we examine the dependence of the cost ratio

x1/x2 on the optimal software rejuvenation policy. Table

2 presents the dependence of x1/x2 on the expected

operation cost, where the corresponding optimal

threshold level N* is insensitive to the change of x1/x2 in

the both ranges of 7/15 ~ 10/15 and 11/15 ~ 15/15. This

is because the optimal threshold level is given by an

integer value. As the rejuvenation cost per unit time is

relatively larger with a fixed recovery cost parameter,

the expected operation cost also increases

monotonically for larger rejuvenation cost.

CONCLUSION

 In this study, we have considered a dynamic

rejuvenation policy for a multistage degradation
software system. We have formulated the underlying

optimization problem by a semi-Markov decision
process and proved the optimality of control-limit type
of software rejuvenation policy. A numerical example

has been presented to illustrate the dynamic
rejuvenation policy and its associated expected

operation cost per unit time in the steady state. Here we
have derived the decision table to characterize the

optimal policy and performed the sensitivity analysis of
cost parameters on it.

 The result can be applied to the preventive

maintenance problem with garbage collection for an

application software, if the degradation level can be

quantified by the total amount of memory leak. Based

on the optimality of control-limit policy, the software

user monitors the level of resource exhaustion and can

trigger the garbage collection at the best timing in terms

of the cost minimization. Of course, it is essentially

important to estimate the transition rate from the field

data with higher accuracy. If one fails to collect such

data on the degradation time, the applicability of our

stochastic model to the real software fault management

can not be limited. Also, it is worth noting that the

optimality of control-limit policy can not be guaranteed

if the assumptions (A-1)-(A-6) do not hold, so that these

parametric assumptions have to be checked carefully in

practice.

 In future, we will consider an adaptive software

rejuvenation policy in the same modeling framework as

this study. In practice, it is not so easy for an arbitrary

software user to model software aging phenomena

(number of degradation states and transition

architecture) and to estimate the transition rates from his

or her operational experience. To challenge the above

issue, adaptive algorithms like non-parametric statistics

and reinforcement learning should be applied to design

an autonomic rejuvenation protocol with adaptive

prediction ability.

ACKNOWLEDGMENTS

 This study is an extended version of the reference

[23]. This research was partially supported by the

Ministry of Education, Science, Sports and Culture:

Grant-in-Aid for Exploratory Research, Grant

No.15651076 (2003-2005).

REFERENCES

1. Gray, J., 1986. Why do computers stop and what

can be done about it? Proc. 5th Intl. Symp. on
Reliab. Distributed Software and Database
Systems, pp: 3-12.

2. Adams, E., 1984. Optimizing preventive service of
the software products. IBM J. Res. & Develop., 28: 2-14.

3. Castelli, V., R.E. Harper, P. Heidelberger, S.W.
Hunter, K.S. Trivedi, K.V. Vaidyanathan and W.P.
Zeggert, 2001. Proactive management of software
aging. IBM J. Res. & Develop., 45: 311-332.

4. Dohi, T., K. Goševa-Popstojanova, K.
Vaidyanathan, K.S. Trivedi and S. Osaki, 2003.
Software Rejuvenation Modeling and Applications.
Handbook of Reliability Engineering (Ed. H.
Pham), pp: 245-268. Springer-Verlag, London.

5. Huang, Y., C. Kintala, N. Kolettis and N.D. Fulton,
1995. Software Rejuvenation: Analysis, Module
and Applications. Proc. 25th Intl. Symp. on Fault
Tolerant Computing, pp: 381-390.

J. Computer Sci., 2 (6): 528-534, 2006

 534

6. Dohi, T., K. Goševa-Popstojanova and K.S.

Trivedi, 2001. Estimating software rejuvenation

schedule in high assurance systems. The Computer

J., 44: 473-485.

7. Garg, S., M. Telek, A. Puliafito and K.S. Trivedi,

1995. Analysis of software rejuvenation using

Markov regenerative stochastic Petri net. Proc. 6th

Intl. Symp. on Software Reliab. Eng., pp: 24-27.

8. Suzuki, H., T. Dohi, K. Goševa-Popstojanova and

K.S. Trivedi, 2002. Analysis of Multi Step Failure

Models with Periodic Software Rejuvenation. In:

Advances in Stochastic Modelling (Eds. J.R.

Artalejo and A. Krishnamoorthy), pp: 85-108.

Notable Publications, Neshanic Station.

9. Vaidyanathan, K., D. Selvamuthu and K.S. Trivedi,

2002. Analysis of inspection-based preventive

maintenance in operational software systems. Proc.

21st IEEE Symp. on Reliable Distributed Systems,

pp: 286-295.

10. Tijms, H.C., 1994. Stochastic Models: An

Algorithmic Approach. John Wiley & Sons, New

York.

11. Avritzer, A. and E.J. Weyuker, 1997. Monitoring

smoothly degrading systems for increased

dependability. Empirical Software Eng., 2: 59-77.

12. Pfening, S., S. Garg, A. Puliafito, M. Telek and

K.S. Trivedi, 1996. Optimal rejuvenation for

tolerating soft failure. Performance Evaluation,

27/28: 491-506.

13. Garg, S., S. Pfening, A. Puliafito, M. Telek and

K.S. Trivedi, 1998. Analysis of preventive

maintenance in transactions based software

systems. IEEE Trans. on Computers, 47: 96-107.

14. Park, K. and S. Kim, 2002. Availability analysis

and improvement of active/standby cluster systems

using software rejuvenation. J. Systems and

Software, 61: 121-128.

15. Li, L., K. Vaidyanathan and K.S. Trivedi, 2002. An

approach for estimation of software aging in a web

server. Proc. 2002 Intl. Symp. on Empirical

Software Eng., pp: 91-100.

16. Liu, Y., Y. Ma, J.J. Han, H. Levendel and K.S.

Trivedi, 2002. Modeling and analysis of software

rejuvenation in cable modem termination System.

Proc. 13th Intl. Symp. on Software Reliab. Eng.,

pp: 159-170.

17. Vaidyanathan, K., R.E. Harper, S.W. Hunter and

K.S. Trivedi, 2001. Analysis of software

rejuvenation in cluster systems. Proc. ACM

SIGMETRICS 2001/Performance, pp: 62-71.

18. Xie, W., Y. Hong and K.S. Trivedi, 2005. Analysis

of a two-level software rejuvenation policy. Reliab.

Eng. Sys. Safety, 87: 13-22.

19. Fujio, H., H. Okamura and T. Dohi, 2003. Fine-

grained shock models to rejuvenate software

systems. IEICE Trans. on Information and Systems

(D), E86-D: 2165-2171.

20. Okamura, H., S. Miyahara, T. Dohi and S. Osaki,

2001. Performance evaluation of workload-based

software rejuvenation scheme. IEICE Trans. on

Information and Systems (D), E84-D: 1368-1375.

21. Bobbio, A., M. Sereno and C. Anglano, 2001. Fine

grained software degradation models for optimal

rejuvenation policies. Performance Evaluation, 46:

45-62.

22. Chen, D. and K.S. Trivedi, 2005. Optimization for

condition-based maintenance with semi-Markov

decision process. Reliab. Eng. Sys. safety, 90: 25-

29.

23. Eto, H. and T. Dohi, 2005. Optimality of control-

limit type of software rejuvenation policy. Proc.

IEEE 11th Intl. Conf. on Parallel and Distributed

Systems, II: 483-487.

