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Abstract: Software rejuvenation is a preventive and proactive maintenance policy that is particularly 

useful for counteracting the phenomenon of software aging. In this study we consider an operational 

software system with multiple degradations and derive the optimal software rejuvenation policy 

minimizing the expected operation cost per unit time in the steady state, via the dynamic programming 

approach. Especially, we show analytically that the control-limit type of software rejuvenation policy is 

optimal. A numerical example is presented to make a decision table and to perform the sensitivity 

analysis of cost parameters. 
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INTRODUCTION 

 

 Software faults should ideally have been removed 

during the debugging phase. Even if a piece of software 

has been thoroughly tested, it still may have some 

design faults that are yet to be revealed. Such software 

faults are called bohrbugs and may exist even in mature 

software such as commercial operating systems. Also, 

even mature software can be expected to have what are 

known as heisenbugs[1]. These are bugs in the software 

that are revealed only during specific collusions of 

events. For example, a sequence of operations may 

leave the software in a state that results in an error on an 

operation executed next. Simply retrying a failed 

operation, or if the application process has crashed, 

restarting the process might resolve the problem. 

Another type of fault observed in software systems is 

due to the phenomenon of resource exhaustion. 

Operating system resources such as swap space and free 

memory available are progressively depleted due to 

defects in software such as memory leaks and 

incomplete cleanup of resources after use. These faults 

may exist in operating systems, middleware and 

application software.  

 When software application executes continuously 
for long periods of time, some of the faults cause 

software to age due to the error conditions that accrue 
with time and/or load. Software aging will affect the 
performance of the application and eventually cause it 

to fail[2-4]. Software aging has also been observed in 
widely-used communication software like Internet 

Explorer, Netscape and xrn as well as commercial 
operating systems and middleware. A complementary 

approach to handle software aging and its related 
transient software failures, called software rejuvenation,  

 

is becoming popular[3-5]. Software rejuvenation is a 

preventive and proactive solution that is particularly 
useful for counteracting the phenomenon of software 

aging. It involves stopping the running software 
occasionally, cleaning its internal state and restarting it. 

Cleaning the internal state of a software might involve 
garbage collection, flushing operating system kernel 
tables, reinitializing internal data structures and 

hardware reboot.  

 In this study we consider an operational software 

system with multistage degradations and derive the 

optimal software rejuvenation policy minimizing the 

expected operation cost per unit time in the steady state, 

via the dynamic programming approach. This can be 

considered as an extension of the classical two-step 

failure models with time-based rejuvenation policies[5-8]. 

Vaidyanathan et al.[9] treat a multistep failure model, 

but do not discuss the optimal software rejuvenation 

policy from the analytical point of view. We suppose 

that the state of software system deteriorates 

stochastically and is described by a right-skip free 

continuous-time Markov chain (CTMC) with an 

absorbing state[10]. In the dynamic operation 

circumstance, we formulate the semi-Markov decision 

process and derive the optimal software rejuvenation 

policy minimizing the expected operation cost per unit 

time in the steady state. Especially, we show 

analytically that the control-limit type of software 

rejuvenation policy is optimal.  

 The rest part of this study is organized as follows. 

First, we summarize the related work and describe a 

multistage degradation software system with a CTMC 

and define the software rejuvenation scheme with the 

condition-based    monitoring.    Next,    we formulate 

the cost       minimization     problem  via   the   familiar   
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semi-Markov decision process and propose an iteration 

algorithm to derive the optimal software rejuvenation 

policy which minimizes the expected operation cost per 

unit time in the steady state. Thirdly, we study the 

optimality structure carefully and characterize some 

mathematical properties of the optimal software 

rejuvenation policy under several parametric 

assumptions. Numerical examples are presented to 

make a decision table and to perform the sensitivity 

analysis of cost parameters. Finally, the study is 

concluded with some remarks.  

 

RELATED WORK 

 

 Huang et al.[5] consider a degradation phenomenon 

as a two-step stochastic process. From the clean state 

the software system jumps into a degraded state from 

which two actions are possible: rejuvenation with return 

to the clean state or transition to the complete failure 

state. They model a four-state process as a CTMC and 

derive the steady-state system availability and the 

expected operation cost per unit time in the steady state. 

Avritzer and Weyuker[11] discuss the aging in a 

telecommunication switching software where the effect 

manifests as gradual performance degradation. Garg et 

al.
[7] introduce the idea of periodic rejuvenation 

(deterministic interval between successive 

rejuvenations) into the Huang et al.'s model[5] and 

represent the stochastic behavior by using a Markov 

regenerative stochastic Petri net. Dohi et al.[6] and 

Suzuki et al.[8] extend the seminal two-step software 

degradation models in Huang et al.[5] and Garg et al.[7], 

respectively, by using semi-Markov processes.  

 As other examples, it is interesting to consider both 

effects of aging as crash/hang failure, referred to as 

hard failure and of aging as soft failure that can lead to 

performance degradation. Pfening et al.[12] model a 

performance degradation process by the gradual 

decrease of the processing rate in a non-stationary 

Markovian queueing system and formulate a 

determination problem of the optimal software 

rejuvenation schedule by a Markov decision process. 

Garg et al.[13] consider a transaction-based software 

system, which involves arrival and queueing of jobs and 

analyze both effects of aging; hard failures that result in 

an unavailability and soft failures that result in 

performance degradation. Park and Kim[14] carry out the 

availability analysis for active/standby cluster systems 

with rejuvenation. Li et al.
[15] analyze an aging 

phenomenon in a real web server application. Liu et 

al.
[16] and Vaidyanathan et al.[17] model a cable modem 

termination system and a cluster software system with 

rejuvenation, respectively. Recently, Xie et al.
[18] 

develop a two-level software rejuvenation scheme with 

service-level rejuvenation and box-level rejuvenation.  

 Fujio et al.[19] and Okamura et al.[20] also formulate 

the control-limit type of rejuvenation policies and 

compare them with the corresponding time-based 

policies[13,21] numerically, where the control-limit policy 

triggers the software rejuvenation at the time instant 

when the system state reaches to a threshold level, while 

the time-based policy does at a pre-specified time. As 

expected intuitively, it is shown in the references[19,20] 

that the control-limit type of rejuvenation policies can 

provide better performance than the time-based ones. 

The main purpose of this study is to prove that the 

control-limit type of software rejuvenation policy is the 

best policy among all the Markovian policies in a 

simple multistage degradation model. In real time 

applications, actually, the static models[5-8] are difficult 

for use, because the decision making whether the 

software rejuvenation should be triggered or not is 

impossible at an arbitrary timing. On the other hand, the 

dynamic rejuvenation policy in Pfening et al.[12] would 

be useful to trigger the software rejuvenation 

sequentially as observing the system state, although they 

never take account of an event of hard (system) failure. 

In other words, Pfening et al.
[12] represent a 

performance degradation process by the decreasing 

processing rate in a Markovian queueing system, but we 

model it by the right-skip free CTMC for a non-

transaction based software system. Our approach in this 

study can be classified into a condition-based 

preventive maintenance with observation of system 

state[22]. 

 

MULTISTAGE DEGRADATION SOFTWARE 

SYSTEM 

 

 
Fig. 1:  Markovian transition diagram of software 

degradation level 

 

 Consider an operational software system which 

deteriorates with time. State of the software system 

deteriorates stochastically and changes from i to j, 

where states 0 and s + 1 are the normal (robust) state 

and the system down state, respectively. Without any 

loss of generality, the level j is degradated more 

severely than the level i (< j). Suppose that the state of 

software at time t, {N(t), t ≥ 0}, is described by a right 

right-skip free CTMC with state space I = {0, 1, …, s + 

1} and that the transition rate from i to j (i, j = 0, …, s + 
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1, i < j) is given by γi,j (> 0), where iji
s

ij Γ=∑
+

+= ,
1

1 γ  for 

all i (= 0, 1, …, s) (Fig. 1). That is, it is assumed that 

the system state with degradation level i can make a 

transition to all the upper levels j (> i). When the system 

failure occurs, then the system is down (j = s + 1) and 

the recovery operation immediately starts, where the 

time to complete the recovery operation is an 

independent and identically distributed (i.i.d.) random 

variable having the cumulative distribution function 

(c.d.f.) Hs+1(x) and mean 1/ωs+1 (> 0).  

 On the other hand, one makes a decision whether to 

trigger the software rejuvenation at the time instant 

when the state of software system changes from i to j (= 

i + 1, i + 2, …, s). If one decides to continue operation, 

the state is monitored until the next change of state, 

otherwise, the software rejuvenation is preventively 

triggered, where the time to complete the rejuvenation 

is also an i.i.d. random variable with the c.d.f. Hi(x) and 

mean 1/ωi (> 0), depending on the state i (= 0, 1, …, s). 

Let x1 (> 0) and x2 (> 0) be the rejuvenation cost per 

unit time and the recovery cost per unit time, 

respectively. In both periods of rejuvenation and 

recovery operation, the system operation is stopped. 

Also, it is assumed that the state-dependent cost ai (> 0) 

is incurred per unit operation time for i = 0, 1, …, s.  

 Note that the system state can be described by only 

the index j (0 < j ≤ s + 1). At each time instant when the 

state changes from i to j, one has an option to choose 

Action 1 (rejuvenation) or Action 2 (continuation of 

processing). When the system failure occurs, i.e. the 

state of system becomes j = s + 1, the recovery 

operation (Action 3) is taken. Let Q(δ)(i, j) denote the 

probability that the state changes from i to j under 

Action δ (= 1, 2, 3). Then it is seen that 

 

(i) Case 1: 
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where the mean rejuvenation time (overhead) is given 

by 

.ttdHh
ii ∫

∞

=

0

)(   (2) 

 (ii) Case 2: 

.jis,,,j,i,j,iQ
ij,i

<+=Γ= ;110)(
(2)

⋯γ  (3) 

 (iii) Case 3: 

,tdH,sQ
s

1)()01(
0

1

(3)
==+ ∫

∞

+

 (4) 

where the mean recovery time (overhead) is given by 
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 After completing rejuvenation and recovery 

operations, the state of software system becomes as 

good as new, i.e. j = 0 in Eqs. (1) and (4) and the same 

cycle repeats again and again over an infinite time 

horizon. We define the time interval from the initial 

point to the completion of rejuvenation or recovery 

operation whichever occurs first, as one cycle. 

 

SEMI-MARKOV DECISION PROCESS 

 

 Observing the state of software system, we 

sequentially determine the optimal timing to trigger the 

software rejuvenation so as to minimize the expected 

operation cost per unit time in the steady state. Define 

the following cost component: 

V(i): value function at state i ∈ I,  

M(i): minimum expected cumulative cost when Action 1 

is taken at state i (< s + 1), 

W(i): minimum expected cumulative cost when Action 2 

is taken at state i (< s + 1),  

z: expected operation cost per unit time in the steady 

state, where z* denotes the minimum one,  

D(i): action space at state i: 
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 From the preliminary above, the Bellman equation 

based on the principle of optimality[10] is given by 
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It is well known that the software rejuvenation policy 

satisfying Eq. (7) is the best policy among all the 

Markovian policies[10]. To solve the above functional 

equation numerically, we can easily develop the well-

known value iteration algorithm for the semi-Markov 

decision process. Define 

A(n) = mini∈I{V
n(i) - Vn-1(i)},  

B(n) = maxi∈I{V
n(i) - Vn-1(i)},  

ε : tolerance level,  

τ : design parameter satisfying 0 ≤ τ /hi for all i, τΓi and 

τ/hs+1 ≤ 1 (Tijms
[10]).  

In general, Vn(i) denotes the value function at n-th 

iteration. Then, the value iteration algorithm is given in 

the following:  

 

Value Iteration Algorithm: 
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Step 3: If 0 ≤ B(n) - A(n) ≤ εA(n), then stop the 

procedure, otherwise, n := n + 1 and go to Step 1. 

 

 It would be possible to derive the optimal software 

rejuvenation schedule by applying the above value 

iteration algorithm, if there exists a unique optimal 

solution. However, it is worth noting that an analytical 

approach to characterize the optimal rejuvenation 

policy, without solving the Bellman equation directly, is 

possible by making some parametric (but reasonable) 

assumptions. In the following section, we investigate 

some mathematical properties for the optimal software 

rejuvenation policy and prove its optimality. 

 

OPTIMALITY OF CONTROL-LIMIT POLICY 

 

 We prove the optimality of the control-limit type of 

policy. We make the following assumptions: 

 

(A-1) Γi is monotonically increasing in i (=0,1, …, s+1). 

(A-2) For an arbitrary increasing function fj, 

ijji
s

ij f ΓΣ
+

+=
/,

1
1γ  is monotonically increasing in i (= 0, 1, 

…, j - 1). 

(A-3) For an arbitrary x, ),()(1 xHxH is >+  where in 

general ).(1)( ⋅−=⋅ HH  

(A-4) ai/Γi is monotonically increasing in i (= 0, 1, …, 

s). 

(A-5) ai/Γi - x1hi in monotonically increasing in i (= 0, 1, 

…, s). 

(A-6) x2 - z ≥ x1 - z ≥ 0. 

 

 The assumption (A-1) implies that the mean 

sojourn time in each state decreases, as the system 

deteriorates. The assumption (A-2) seems to be 

somewhat technical, but is intuitively reasonable. For 

instance, let fj be any cost parameter depending on state 

j. In this case, the expected cost incurred when the 

system state makes a transition, ),/( ,
1

1 ijij
s

ij f ΓΣ
+

+=
γ  

tends to increase as the degraded level i progresses. In 

the assumption (A-3), one expects in the sense of 

probability that the recovery time from system failure is 

strictly greater than the rejuvenation overhead. The 

assumption (A-4) means that the operation cost 

increases, but according to (A-5) the advantage of 

triggering rejuvenation of the software increases 

gradually, as the software system deteriorates. In the 

assumption (A-6), we require that the recovery cost is 

greater than the rejuvenation cost, where the both cost 

parameters, x1 and x2, are greater than the expected 

operation cost per unit time in the steady state, say, z. In 

fact, if z > x2 > x1, the system is down in the steady state 

with probability one. That is, due to the deductive 

argument, the assumption (A-6) has to necessarily hold.  

 We give the main results of this study.  

 

Lemma 4.1: The function V(i) is increasing in i. 

 

Proof: It is evident from (A-3) and (A-6) to show that 
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In Case 1 with D(i+1) = 1, from the assumption (A-6) 

we have 
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which is due to (A-1), (A-2) and (A-4). Thus, it can be 

shown that V(i) ≤ V(i+1). From the inductive argument, 

it can be proved that V(i) ≤ V(i+1) for an arbitrary i. 

 

Theorem 4.2: There exists the optimal control limit N 
* 
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under the assumptions (A-1)-(A-6). 

 

Proof: 
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From (A-1), (A-2), (A-5) and Lemma 4.1, it is seen that 

W(i) - M(i) is a monotonically increasing function of i. 

Hence, the proof is completed.  
 From Theorem 4.2, the problem can be reduced to 
obtain the optimal control-limit N* + 1 so as to 
minimize the expected operation cost per unit time in 
the steady state. In fact, this type of rejuvenation policy 
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is essentially the same as the workload-based 
rejuvenation policy in the transaction-based software 
system[20]. In other words, even for our non-queueing 
system framework, the control-limit type of 
rejuvenation policy is better than any time-based 
one[13,21].  
 Next, we formulate the expected operation cost as a 

function of N, i.e. z = z(N). Define 
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where Ri,j is the transition probability from the state i to 

the state j and ti denotes the mean time to trigger the 

software rejuvenation. Define the first passage time:  

{ },NtNtT
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so that the random variable T* is the first time when N(t) 

is greater than the level N* + 1. Using the above 

notation, we can get the following result without the 

proof. 

 

Theorem 4.3: The optimal software rejuvenation time 

is given by the first passage time T*, where the optimal 

threshold level N* is the solution of min0≤N<∞z(N) and  
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In Eq. (26), the function z(N) is formulated as the 

expected operation cost for one cycle divided by the 

mean time length of one cycle. The minimization 

problem of z(N) with respect to N (= 0, 1, 2, …) is 

trivial. Define the difference of z(N) by φ(N) = z(N+1) - 

z(N). If φ(N+1) - φ(N) > 0, then the function z(N) is 

strictly convex in N. Further, if φ(N*-1) >0 and φ(N*) ≤ 

0, then there exist (al least one, at most two) optimal 

threshold level N* which minimizes z(N), i.e., z* = 

z(N*). In fact, the convex property of the function z(N) 

can be easily checked numerically.  

 Figure 2 depicts the behavior of the expected 

operation cost with respect to N, where the model 

parameters used here are given by γ0,1 = γ0,2 = γ1,2 = 0.5, 

γ0,3 = γ0,6 = γ2,6 = 0.3, γ0,4 = γ0,5 = γ1,5 = 0.2, γ1,3 = γ1,4 = 

0.6, γ1,6 = γ5,5 = 0.1, γ2,3 = γ2,4 = γ3,6 = 0.7, γ3,4 = 0.4, γ3,5 

= 0.9, γ4,5 = γ4,6 = 1, γ5,6 = 1.9, x1 = 8 ($), x2 = 15 ($), a0 

= 1 ($), a1 = 3 ($), a2 = 5 ($), a3 = 7 ($), a4 = 9 ($), a5 = 

11 ($), ω0 = 2.0 (hr
-1), ω1 = 1.5 (hr

-1), ω2 = 1.2 (hr
-1), ω3 

= 1.0 (hr-1), ω4 = 0.7 (hr
-1), ω5 = 0.5 (hr

-1), ω6 = 0.2  

(hr-1). It  can  be  shown that  there  is  a  unique optimal  

threshold  level   N* = 1 in   this   example.  

 
Fig. 2:  Behavior of the expected operation cost with 

respect to N 
 

NUMERICAL EXAMPLES 
 
 Here we give an illustrative example to determine 

the optimal rejuvenation schedule. Huang et al.[5] and 

Dohi et al.[6,8] suppose that the number of system states 

is only 3: normal operation, deterioration (failure 

probable state) and system down (failure). In this 

section we consider a generalized Markovian 

deterioration process with 3 degradation levels (totally, 

5 states). Figure 3 illustrates the Markovian transition 

diagram with absorption, representing the deterioration 

process of the software system, where each transition 

rate is assigned on each arc. The transition probability 

that the system state changes from k to l at time t, 

denoted by Tk,l(t), satisfies the Chapman-Kolmogorov 

equation. Since the system state follows a right-skip free 

CTMC, the transition probability Tk,l(t) can be derived 

analytically. For instance, when (k, l) = (0, 0), we have 

the following differential equation: 

).()(
0000
tTtT

dt

d
,,

−=
  (27) 

Solving the above equation with the initial condition 

Tk,k(0) = 1, we get T0,0(t) = e
-t. Similarly, we have: T0,1(t) 

= 0.4te-t, T0,2(t) = 0.3te
-t + 0.08t2e-t, T0,3(t) = 0.2te

-t + 

0.17t2e-t + 0.016t3e-t, T0,4(t) = - e
-t - 0.9te-t - 0.25t2e-t - 

0.016t3e-t + 1, T1,1(t) = e
-t, T1,2(t) = 0.4te

-t, T1,3(t) = 0.2te
-

t + 0.12t2e-t, T1,4(t) = - 0.8e
-t - 0.6te-t - 0.12t2e-t + 0.8, 

T2,3(t) = 0.6te
-t, T2,4(t) = - e

-t - 0.6te-t + 1, T3,4(t) = e
-t + 1.  

 

Table 1: Decision table 

i 0 1 2 3 4 

D(i) 2 2 1 1 3 
 

      Suppose that the rejuvenation cost and the recovery 

cost from system failure are given by x1 = 8 ($) and x2 = 

15 ($), respectively. Also, it is assumed that a0 = 1 ($), 

a1 = 3 ($), a2 = 5 ($), a3 = 7 ($), ω0 = 2.0 (hr
-1)$, ω1 = 
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1.5 (hr-1), ω2 = 1.2 (hr
-1), ω3 = 1.0 (hr

-1), ω4 = 0.2 (hr
-1). 

In  Table 1, we  obtain   the   so-called  decision   table  

 
Fig. 3:  An illustrative example with three degradation 

levels 

 
Table 2: Dependence of cost ratio x1/x2 on the optimal rejuvenation 

policy and its associated expected operation cost 

x1/x2 i = N* + 1 z(N*) 

7/15 2 4.021 

8/15 2 4.255 

9/15 2 4.489 

10/15 2 4.722 

11/15 3 4.956 

12/15 3 5.168 

13/15 3 5.364 

14/15 3 5.543 

15/15 3 5.675 

 

to characterize the optimal software rejuvenation policy. 

From this result, it is optimal to trigger the software 

rejuvenation at the first time when the system state 

reaches to i = N* + 1 = 2. Then the associated minimum 

expected operation cost per unit time in the steady state 

is given by z* = z(N*) = z(1) = 4.255 ($).  

 Next, we examine the dependence of the cost ratio 

x1/x2 on the optimal software rejuvenation policy. Table 

2 presents the dependence of x1/x2 on the expected 

operation cost, where the corresponding optimal 

threshold level N* is insensitive to the change of x1/x2 in 

the both ranges of 7/15 ~ 10/15 and 11/15 ~ 15/15. This 

is because the optimal threshold level is given by an 

integer value. As the rejuvenation cost per unit time is 

relatively larger with a fixed recovery cost parameter, 

the expected operation cost also increases 

monotonically for larger rejuvenation cost.  
 

CONCLUSION 
 
 In this study, we have considered a dynamic 

rejuvenation policy for a multistage degradation 
software system. We have formulated the underlying 

optimization problem by a semi-Markov decision 
process and proved the optimality of control-limit type 
of software rejuvenation policy. A numerical example 

has been presented to illustrate the dynamic 
rejuvenation policy and its associated expected 

operation cost per unit time in the steady state. Here we 
have derived the decision table to characterize the 

optimal policy and performed the sensitivity analysis of 
cost parameters on it.  

 The result can be applied to the preventive 

maintenance problem with garbage collection for an 

application software, if the degradation level can be 

quantified by the total amount of memory leak. Based 

on the optimality of control-limit policy, the software 

user monitors the level of resource exhaustion and can 

trigger the garbage collection at the best timing in terms 

of the cost minimization. Of course, it is essentially 

important to estimate the transition rate from the field 

data with higher accuracy. If one fails to collect such 

data on the degradation time, the applicability of our 

stochastic model to the real software fault management 

can not be limited. Also, it is worth noting that the 

optimality of control-limit policy can not be guaranteed 

if the assumptions (A-1)-(A-6) do not hold, so that these 

parametric assumptions have to be checked carefully in 

practice.  

 In future, we will consider an adaptive software 

rejuvenation policy in the same modeling framework as 

this study. In practice, it is not so easy for an arbitrary 

software user to model software aging phenomena 

(number of degradation states and transition 

architecture) and to estimate the transition rates from his 

or her operational experience. To challenge the above 

issue, adaptive algorithms like non-parametric statistics 

and reinforcement learning should be applied to design 

an autonomic rejuvenation protocol with adaptive 

prediction ability. 
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