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Abstract: In long haul networks, the random birefringence induced in the optical fiber leads to a 
considerable Polarization Mode Dispersion (PMD). Polarization Dependent Loss (PDL) mainly occurs 
in optical components and depends on the state of polarization of optical signals. The presence of PMD 
and PDL causes pulsewidth narrowing and the pulsewidth reduction depends on states of polarization 
at which the input light launched and also the input pulsewidth. A system comprising of a PDL 
element sandwiched between two PMD elements was considered. This system was characterized using 
neural network approach. Back propagation algorithm was applied to train the network with four input 
vectors namely PMD, PDL, input pulsewidth and the angle describing the input states of polarization 
and one output vector indicating effective squared pulsewidth difference. On analysis, it was found that 
the pulsewidth reduction was higher for a PMD of 30ps, a PDL of 3.5 and input pulsewidth of 100ps at 
various (Linear and Circular) input states of polarization with the angle describing the input state of 
polarization to be |π/4|. Similarly, for a given value of PMD, PDL, input pulsewidth and a specific 
pulsewidth reduction, the input state of polarization at which the light was to be launched can also be 
determined using neural network approach. 
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INTRODUCTION 
 
 The birefringence properties of optical fiber 
systems are becoming important in optical fiber 
telecommunication and optical fiber networks as a 
limiting factor of the bit rate. They change the state of 
polarization of light wave on travel along the fiber. This 
change in state of polarization of light wave leads to 
various polarization effects such as PMD and PDL. 
PMD is due to random birefringence in optical fibers 
and components where signals with different states of 
polarization travel at different speeds. PMD causes 
random pulse distortion and pulse broadening[1]. Pulse 
broadening is due to the differential transmission time 
of two pulses polarized along orthogonal states of 
polarization. PDL induces random fluctuations of 
optical signal to noise ratio (OSNR)[2,3] in the system. 
PDL mainly occurs in optical components such as 
isolators and couplers, whose insertion loss is 
dependent on the states of polarization of input signals. 
Both PMD and PDL lead to significant performance 
degradation in long haul light wave transmission 
systems.  

 In the past decade, tremendous efforts has been 
made to understand the impairment in optical 
transmission systems caused by PMD, PDL and their 
combined effects[1-8]. Recent studies have shown that, 
the output pulsewidth becomes narrower than the input 
pulsewidth when PDL value is less than some critical 
value. It is also understood that, for a fixed value of 
PMD, whether the launched pulse shall spread or not 
depends on the input state of polarization.  
 A Radial Basis Function (RBF) equalizer based on 
neural network is used to mitigate the PMD induced 
intersymbol interference (ISI) in optical fiber 
communication systems[9]. In this paper, neural network 
is applied to analyse the combined effects of PMD and 
PDL on pulse propagation. A multilayer perceptron 
with four nodes at the input layer, three nodes at the 
hidden layer and one at the output layer is trained using 
τ (input pulsewidth), β (PMD), α (PDL) and θin (angle 
describing the direction of input states of polarization) 

as input vectors and 2
effσ  (effective squared 

pulsewidth difference) as output vector. 
Backpropogation algorithm is used for training the 
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network with suitable input patterns. It is found that the 
root mean squared pulsewidth of the output pulse is 
reduced for a selective range of PMD and PDL at 
different input states of polarization (Linear and 
circular) leading to pulsewidth narrowing. 
 
System Description 
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Fig. 1: System model 
 
 Neural algorithm is applied to a system model as 
shown in Fig. 1 where a PDL element is sandwiched 
between two PMD elements[10]. PDL element is aligned 
3π/8 with respect to PMD direction and it is parallel to 
the input polarization. The two identical PMD sections 
are arranged in parallel. Such a model is considered for 
analysing the effects of pulsewidth narrowing at 
different input states of polarization, different input 
pulsewidths and different values of PMD and PDL.  
 Neural network models are specified by their 
network topology, node characteristics and learning 
rules. These rules specify an initial set of weights and 
also indicate the method for changing the weights to 
achieve performance improvement. Appropriate 
activation functions are used in both hidden and output 
layers. Backpropagation learning requires the activation 
functions of the hidden units to be bounded and 
differentiable. For hidden units, sigmoid activation 
functions are usually preferable to threshold activation 
functions. Networks with threshold units are difficult to 
train because the error function is stepwise constant, 
hence the gradient either does not exist or is zero, 
making it impossible to use backpropagation or more 
efficient gradient-based training methods. With sigmoid 
units, a small change in the weights will produce a 
considerable change in the outputs, thereby deciding a 
correct value of the output whereas with the threshold 
units, a small change in the weights will not produce 
any appreciable change in the outputs.  
 Various activation functions are used in this 
simulator. Sigmoidal function (1/(1+exp(x))) is always 
used at the output since it produces a small percentage 
of error at a faster rate. Three different types of 
activation functions are used in the hidden layer namely 
sigmoidal, hyperbolic tangent ((exp(x)-1)/(exp(x)+1)) 
and linear activation function, out of which the linear 
function produces better results.  
 The backpropagation algorithm propagates an input 
through  the  network,  the   error is  calculated  and  the  

Table 1: Training sequence for linear polarization 

Input state τ (ps) β (ps) θin(rad) α  2
effσ  (ps2) 

of polarization 
Linear 25 1 -0.785 -6 -0.6025 
 25 1 -0.785 -3.5 -0.5979 
 25 1 -0.785 -2.5 -0.5697 
 25 1 -0.785 -1.5 -0.414 
 25 1 -0.785 -1 -0.2491 
 25 1 -0.785 -0.5 -0.084 
 25 1 -0.785 0 0.0215 
 25 1 -0.785 1.5 0.099 
 25 1 -0.785 2.5 0.1029 
 25 1 -0.785 5.5 0.1036 
 100 30 -0.785 -6 -495.309 
 100 30 -0.785 -2.5 -469.072 
 100 30 -0.785 -1.5 -343.423 
 100 30 -0.785 -1 -207.744 
 100 30 -0.785 0 21.8049 
 100 30 -0.785 0.5 65.0472 
 100 30 -0.785 1.5 89.4533 
 100 30 -0.785 2 91.9747 
 100 30 -0.785 6 93.4509 
 100 20 0.785 -6 41.4713 
 100 20 0.785 -1 36.6275 
 100 20 0.785 0 9.0762 
 100 20 0.785 1 -96.412 
 100 20 0.785 2 -200.158 
 100 20 0.785 3 -226.973 
 100 20 0.785 6 -231.685 
 
Table 2: Training sequence for circular polarization 

Input state τ (ps) β (ps) α  2
effσ  (ps2) 

of polarization 
Left 50 20 -6 -111.035 
Circular 50 20 -3.5 -117.057 
 50 20 -2 -136.639 
 50 20 -2.5 -127.404 
 50 20 -1.5 -148.48 
 50 20 -1 -158.082 
 50 20 -0.5 -148.043 
 50 20 0 -86.5829 
 50 20 1 138.8055 
 50 20 2 242.599 
 50 20 3 269.1603 
 50 20 4 276.6374 
 50 20 6 279.9082 
 
error is propagated back through the network while the 
weights are adjusted in order to make the error smaller. 
Although it is desired to minimize the mean square 
error for all the training data, the most efficient way of 
doing this with the backpropagation algorithm, is to 
train on the data sequentially one input at a time, 
instead of training on the combined data. However, this 
means that the order in which the data is given in is of 
importance, but it also provides a very efficient way of 
avoiding getting stuck in local minima.  
 Multi layer perceptron architecture with one hidden 
layer made of three neurons using back propagation 
algorithm[11] is found to provide better results for the 
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system model shown in Fig. 1. The input layer has four 
neurons indicating τ, β, α and θin. However, the output 
layer has only one neuron to indicate 2

effσ . A few of the 
sample data used for training the network with linear 
polarization is shown in Table 1 and that with circular 
polarization is shown in Table 2. The final weights 
obtained at the end of iteration are applied as the initial 
weights in the subsequent iteration and thereby faster 
convergence is achieved.  
 

RESULTS AND DISCUSSION 
 
 Neural network is trained with an error tolerance of 
10-5 and the network is tested for different input states 
of polarization, with different input pulsewidths and at 
different values of PMD and PDL. The test results are 
plotted in Fig. 2-5. For a case of linear polarization with 
θin= -π/4, 2

effσ  as a function of PDL value α has been 
plotted in Fig. 2 and 3, with PMD, β=1, 30 ps, input 
pulsewidth, τ=25, 100ps and ω0=400π rad/ps 
(corresponding to a wavelength of 1.5 µm). It is 
observed from Fig. 2 and 3 that the output pulsewidth 
becomes narrower than input pulsewidth, when PDL 
value α is between -1 and -4. It is also found that, even 
with the existence of finite DGD, the pulsewidth 
reduces due to a high value of PDL. It is to be noted 
that the pulsewidth narrowing is significant for an input 
pulsewidth of 100 ps and a PMD of 30 ps. There is a 
13.525% of pulsewidth reduction for a PDL of -3.5. 
The neural network simulator has produced results with 
an accuracy of 1.7191x10-4. 
 For a case of linear polarization with θin= +π/4, 

2
effσ as a function of PDL value α  is plotted in Fig. 4 

with PMD, β =20 ps; input pulsewidth, τ =100ps; and 
ω0=400π  rad/ps. The results are similar as in the case 
of θin= -π/4, but the curves are the mirror image of each 
other at about α =0. This indicates that the magnitude 
of the pulsewidth reduction is the same for the case of 
θin= +π/4 and -π/4 with a PDL value of same magnitude 
but with opposite sign. The neural network simulator 
produces the test outputs with an accuracy of 
1.0775x10-4. 
 For a case of left circular polarization, 2

effσ as a 
function of PDL value α has been plotted in Fig. 5, with 
PMD, β=20 ps, input pulsewidth, τ=50ps and ω0=400π 
rad/ps (corresponding to a wavelength of 1.5 µm). It is 
found from Fig. 5 that the pulsewidth narrowing is 
prominent at α  = -1.0, ω0= 400π rad/ps for left circular 
polarization. The pulsewidth reduction calculated for 
circular polarization is 10.43%.  

 
Fig. 2: Effective pulsewidth square difference between output and 

input pulses is plotted as a function of PDL value α for linear 
polarization β= 1 ps, ω0=400π rad/ps, θin= -π/4 and τ=50 ps  

 

 
Fig. 3: Effective pulsewidth square difference between output and 

input pulses is plotted as a function of PDL value α for linear 
polarization β=30 ps, ω0=400π rad/ps, θin= -π/4 and τ=100 ps  

 

 
Fig. 4: Effective pulsewidth square difference between output and 

input pulses is plotted as a function of PDL value α for linear 
polarization.   β=20  ps,  ω0=400π rad/ps, θin= +π/4 and 
τ=100 ps 
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Fig. 5: Effective pulsewidth square difference between output and 

input pulses is plotted as a function of PDL value α for left 
circular polarization with β=20 ps, ω0=400π rad/ps and 
τ=50ps 

 
Fig. 6: A comparison of three different activation functions at the 

hidden layer with the sigmoidal function at the output layer 
 
The neural network simulator produced the output with an 
accuracy of 6.4198x10-4. 
 Conversely, the neural network can also be trained to 
identify the input state of polarization for a given value of 
pulsewidth reduction, PMD, PDL and input pulsewidth. 
This can be done by chosing the input state of polarization 
as output vector and the remaining parameters as input 
vectors. 
 A comparison of the three types of activation 
functions considered in the hidden layer (Sigmoidal, 
hyperbolic tangent and linear) of this network are also 
presented in Fig. 6 by plotting the percentage of error 
versus number of iterations. It is found that the sigmoidal 
function at the output layer produces a smaller percentage 
of error with a faster convergence than compared to that of 
hyperbolic tangent and linear activation functions. 
However, at the hidden layer the linear activation function 
is found to produce a better result.  

CONCLUSION 
 
 From the above results, it is found that the pulsewidth 
reduction is more for a PMD of 30ps, a PDL of 3.5 and input 
pulsewidth of 100ps at various (Linear and Circular) input 
states of polarization. The magnitude of pulsewidth reduction 
for θin= +π/4 and -π/4 is found to be the same with a PDL 
value of same magnitude but of opposite sign. To obtain a 
specified value of pulsewidth reduction for a given value of 
PMD, PDL and τ  in a fiber transmission system, the required 
input state of polarization at which the light is to be launched 
can be determined using the neural network approach. A 
sigmoidal activation function at the output layer and a linear 
function at the hidden layer is found to converge with the 
smallest percentage of error at a less number of iterations. 
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